
ERTS 2014 - Piques

SysML for embedded automotive

Group Electronic Expertise
14 avenue des Béguines, F

Tel: +331 34 331

Abstract: This paper gives an overview of the
years of Valeo experience in deploying a Model
Based System Engineering (MBSE) approach for
mechatronic automotive embedded systems and
products. The different stages are described
initial studies, language and tool benchmarking up to
the last returns of experience on industrial projects.
Particular emphasis is put on describing the
SysCARS methodology which gives, not only a
precise mapping of System Engineering work items
to SysML artefacts, but also the sequence of
modeling activities to be performed. It is shown how
the SySCARS methodology has been implemented
as a SysML profile, based on a powerful “workflow
driven” mechanism, which helps the user during the
modeling process. Finally it is presented how
interoperability is ensured with the tools already in
place for requirements management and control
design.

Keywords: Model-Based System Engineering
(MBSE), System Modeling, SysML, System
Engineering, SysCARS

1. Introduction and overview

1.1. Motivations

During design and validation stages of automotive
products, increasing complexity of
systems, global organizations, business models and
safety regulation (ISO 26262) requires
formalization efforts than in the past. Standard
System Engineering processes (ISO
1220,…) are proven solutions to achieve the high
level of quality targeted. These methodologies have
been successfully used particularly in aerospace and
railway transportation industries. However,
implementation of these processes with a traditional
document centric approach leads to a huge effort in
updating the documentation when customer change
requests continuously occur; which is particularly the
case for incremental development cycles involved in
the automotive industry.
The Model Based System Engineering (MBSE)
approach is a key lever for the automotive industry to
cope with all these issues, while improving agility
and R&D efficiency on innovative products. Indeed,
the model is used as a (semi-)formal description of
the product requirements shared by all project
stakeholders, and as the unique sour
demand automatic documentation generation.

for embedded automotive systems: SysCARS methodology
Jean-Denis PIQUES

Valeo
Group Electronic Expertise and Development Services

14 avenue des Béguines, F-95892 Cergy-Pontoise Cedex
Tel: +331 34 331 751 – e-mail: jean-denis.piques@valeo.com

This paper gives an overview of the five
years of Valeo experience in deploying a Model

ineering (MBSE) approach for
mechatronic automotive embedded systems and
products. The different stages are described, from
initial studies, language and tool benchmarking up to
the last returns of experience on industrial projects.

put on describing the
SysCARS methodology which gives, not only a
precise mapping of System Engineering work items

, but also the sequence of
activities to be performed. It is shown how

methodology has been implemented
as a SysML profile, based on a powerful “workflow-
driven” mechanism, which helps the user during the

process. Finally it is presented how
interoperability is ensured with the tools already in

s management and control

Based System Engineering
(MBSE), System Modeling, SysML, System

Introduction and overview

During design and validation stages of automotive
products, increasing complexity of technical
systems, global organizations, business models and

26262) requires higher
formalization efforts than in the past. Standard

stem Engineering processes (ISO 15288, IEE
1220,…) are proven solutions to achieve the high

of quality targeted. These methodologies have
been successfully used particularly in aerospace and
railway transportation industries. However, the
implementation of these processes with a traditional
document centric approach leads to a huge effort in

ating the documentation when customer change
requests continuously occur; which is particularly the
case for incremental development cycles involved in

The Model Based System Engineering (MBSE)
otive industry to

while improving agility
and R&D efficiency on innovative products. Indeed,

)formal description of
the product requirements shared by all project
stakeholders, and as the unique source for on-
demand automatic documentation generation.

1.2. Main lessons learned

Although SysML has become the de facto standard
for MBSE, a supporting methodological background
was and is still mandatory. The related Valeo
experience is presented in
the formalization of System Engineering processes
and methods and ending with the development of a
specific customization, to cope with the weaknesses
of the current tools.
The SysCARS methodology [1], which is
summarized in Chapter 3
SysML diagrams and artefacts
order to implement the engineering process.
However, pilot projects have shown
guideline was not sufficient and consequently other
critical issues have been addressed.
A major issue is the ado
modelling tools which are too complicated for non
software engineers, providing no guidance on which
diagram and artefact to use among overloaded
GUIs. To support adoption and deployment control,
a workflow driven approac
4 and is implemented by a Valeo profile
ergonomic macros for the
Moving from a document centric approach to model
based engineering should also ensure the formal
coupling with requirement managem
Chapter 5 addresses these aspects, defining a
strategy regarding traceability checks and
connection to dedicated tools such as DOORS and
Reqtify.
Also to facilitate adoption and due to weaknesses of
SysML compared to discipline
tools, SysCARS supports synchronization of
structural diagrams. This feature is described in
Chapter 6 and is used to perform behavioural
studies in legacy tools such as Simulink.

Figure 01: Model-Based System Engineering at Valeo

Page 1/17

SysCARS methodology

denis.piques@valeo.com

Main lessons learned

Although SysML has become the de facto standard
for MBSE, a supporting methodological background
was and is still mandatory. The related Valeo
experience is presented in Chapter 2, starting from
the formalization of System Engineering processes
and methods and ending with the development of a
specific customization, to cope with the weaknesses

The SysCARS methodology [1], which is
Chapter 3, defines the sequence of

artefacts to be released, in
order to implement the engineering process.
However, pilot projects have shown that this

was not sufficient and consequently other
critical issues have been addressed.

is the adoption of SysML existing
which are too complicated for non

software engineers, providing no guidance on which
diagram and artefact to use among overloaded
GUIs. To support adoption and deployment control,
a workflow driven approach is described in Chapter

and is implemented by a Valeo profile, including
the Artisan Studio modeler.

Moving from a document centric approach to model
based engineering should also ensure the formal
coupling with requirement management tools.

addresses these aspects, defining a
strategy regarding traceability checks and

tools such as DOORS and

Also to facilitate adoption and due to weaknesses of
SysML compared to discipline modeling / simulation
tools, SysCARS supports synchronization of
structural diagrams. This feature is described in

and is used to perform behavioural
studies in legacy tools such as Simulink.

Based System Engineering at Valeo

ERTS 2014 - Piques

2. Valeo experience of using SysML

Valeo experience of using SysML and related works
were initiated five years ago.

2.1. Process definition

Until recently, the low complexity of the automotive
products historically manufactured by Valeo
require any System Engineering approach. This is
the reason why neither System Engineering
standard processes nor the related techniques and
tools were precisely known.
The new Valeo strategy focusing on products
minimizing the CO2 emissions of car
leads to the development of high added value
complex systems. It was clear that the traditional
processes, methods and tools were no longer
adequate and a breakthrough was necessary to
build a real System culture inside the Valeo group.
A transversal working group was put in place,
consisting of representative experts from the
relevant business groups of Valeo. This group,
called “System & Product Technical Focus Group”
was helped by external consultants familiar with
System Engineering practices deployed in other
industries such as aerospace and railways
transportation. Based on these mixed competences,
the working group defined engineering processes
inspired from international standards (ISO 152888,
IEE 1220, EIA 632, …) but totally adapted to
mindset and automotive constraints. The
cornerstone of this referential was a document
entitled “System Development and Validation
Process”, describing the System Engineering
process as adapted to Valeo culture, with examples
and hints to make it understandable by people not
familiar with this domain. It was also completed with
guidelines and templates of work products.

Figure 02: Valeo System Engineering

2.2. Role definition and organization

In the field implementations of the System
Engineering métier were also very different
depending on the needs of the various Valeo
Business Groups. In many situations, the System
Engineering activities were not at all identified and
there were no System team explicitly in charge of
defining the best product architecture trade

f using SysML

Valeo experience of using SysML and related works

Until recently, the low complexity of the automotive
products historically manufactured by Valeo didn’t
require any System Engineering approach. This is
the reason why neither System Engineering
standard processes nor the related techniques and

The new Valeo strategy focusing on products
minimizing the CO2 emissions of cars, naturally
leads to the development of high added value
complex systems. It was clear that the traditional
processes, methods and tools were no longer
adequate and a breakthrough was necessary to
build a real System culture inside the Valeo group.

sversal working group was put in place,
consisting of representative experts from the
relevant business groups of Valeo. This group,
called “System & Product Technical Focus Group”
was helped by external consultants familiar with

es deployed in other
industries such as aerospace and railways
transportation. Based on these mixed competences,
the working group defined engineering processes
inspired from international standards (ISO 152888,

…) but totally adapted to Valeo’s
mindset and automotive constraints. The
cornerstone of this referential was a document
entitled “System Development and Validation
Process”, describing the System Engineering
process as adapted to Valeo culture, with examples

understandable by people not
familiar with this domain. It was also completed with
guidelines and templates of work products.

: Valeo System Engineering process

Role definition and organization

In the field implementations of the System
ing métier were also very different

depending on the needs of the various Valeo
Business Groups. In many situations, the System
Engineering activities were not at all identified and
there were no System team explicitly in charge of

t architecture trade-off, prior

to implementation level activities (software,
hardware, mechanics). The system design was then
entrusted to one of the implementation teams and
generally not really formalized.
To cope with these issues, the “System &
Technical Focus Group” defined a generic mapping
of System Engineering activities to typical roles and
responsibilities well established inside Valeo
organization. This mapping was based on generic
job descriptions generally used in the System
Engineering community (e.g. system architect,
requirements engineer, product manager,
Starting from these indications, each Product Group
has the ability to define customization rules to put in
place the System organization best fitted to the
constraints of its product line.

2.3. Tool selection

Some members of the “System & Product Technical
Focus Group” were convinced that implementation of
System Engineering processes using a document
centric approach was unrealistic in the automotive
domain, with continuousl
requirements and very short time to market.
Therefore, investigations were performed in the
Powertrain Systems Business Group, on methods
and tools that could substantially help in deploying
effective System Engineering processes.
Considering that the key point is performing
architecture design not managing requirements, the
focus was put on investigating architecture modeling
tools and not on requirements engineering ones.
The first stage of the tool selection process was to
choose between tools with proprietary approaches
and those based on the SysML language. Even if
specialized architecture modeling tools (e.g. CORE)
could have very interesting features and user
friendly GUI, the tools built upon the SysML
language were preferred, due to
potential for evolution and interoperability. Indeed,
the SysML language benefits from inputs from the
whole System Engineering community and has the
huge advantage of being standardized by OMG.
Moreover, while still suffering from insufficie
the XMI interchange format offers the opportunity to
migrate (most of the) SysML data from one tool to
another tool, if required by the industrial constraints.
Last but not least, learning SysML is now generally
integrated into the training courses
which will make newly graduated engineers
immediately efficient in their first professional
environment.
The second stage of the tool selection process was
to choose the SysML modeling tool best adapted to
Valeo’s expectations. After a pre
answers to a questionnaire sent to SysML tool
vendors, a detailed benchmark was performed on
the three emerging SysML modelers.

Page 2/17

to implementation level activities (software,
hardware, mechanics). The system design was then
entrusted to one of the implementation teams and
generally not really formalized.
To cope with these issues, the “System & Product
Technical Focus Group” defined a generic mapping
of System Engineering activities to typical roles and
responsibilities well established inside Valeo
organization. This mapping was based on generic
job descriptions generally used in the System

ineering community (e.g. system architect,
ents engineer, product manager, …).

Starting from these indications, each Product Group
has the ability to define customization rules to put in
place the System organization best fitted to the

of its product line.

ome members of the “System & Product Technical
Focus Group” were convinced that implementation of
System Engineering processes using a document
centric approach was unrealistic in the automotive
domain, with continuously changing input
requirements and very short time to market.
Therefore, investigations were performed in the
Powertrain Systems Business Group, on methods
and tools that could substantially help in deploying
effective System Engineering processes.

ing that the key point is performing
architecture design not managing requirements, the
focus was put on investigating architecture modeling
tools and not on requirements engineering ones.
The first stage of the tool selection process was to

tools with proprietary approaches
and those based on the SysML language. Even if
specialized architecture modeling tools (e.g. CORE)
could have very interesting features and user-
friendly GUI, the tools built upon the SysML
language were preferred, due to their higher
potential for evolution and interoperability. Indeed,
the SysML language benefits from inputs from the
whole System Engineering community and has the
huge advantage of being standardized by OMG.
Moreover, while still suffering from insufficiencies,
the XMI interchange format offers the opportunity to
migrate (most of the) SysML data from one tool to
another tool, if required by the industrial constraints.
Last but not least, learning SysML is now generally
integrated into the training courses of engineers;
which will make newly graduated engineers
immediately efficient in their first professional

The second stage of the tool selection process was
to choose the SysML modeling tool best adapted to
Valeo’s expectations. After a pre-selection, based on
answers to a questionnaire sent to SysML tool
vendors, a detailed benchmark was performed on
the three emerging SysML modelers.

ERTS 2014 - Piques
 Page 3/17

Both the pre-selection questionnaire and the detailed
benchmark were based on the same weighted
criteria:
• Exchanging data with existing tools: Particular

focus was put on exchanging data with
requirement management tools (DOORS,
Reqtify, …) and automatic documentation
generation - Synchronizing architecture design
descriptions with Simulink was also expected.

• Ergonomics and generic features: Stress was
put on configuration management and control of
user access and rights - Ergonomics and model
readability were also mandatory expected
properties - Ability to customize the interface and
the workflow (ergonomic profiling) to make the
easier to use, was also a strongly expected
property for deployment.

• System Modeling specific features: Emphasis
was put on the ability to check SysML language
correctness, with contextual help to assist the
user - Simulation internal to the SysML tool and
autocoding from UML were not mandatory
features.

• Technical and methodological support:
Technical and methodological support from the
tool vendor were considered as particularly
important for efficient deployment.

• Cost of deployment: Lower cost of deployment
was (of course) wished for, on the basis of high-
end floating licences for System architects and
low-end standalone licences for other System
stakeholders.

• SysML standard conformity: Conformity to
SysML 1.1 specification (October 2008) and later
evolutions was mandatory.

Two tools emerged from the selection process:
Artisan Studio from Atego and Rhapsody from IBM.
Artisan Studio was preferred because it was best
adapted to Valeo’s intended use and ranking criteria.
It is important to notice that at the time when the
benchmark was performed (2009), open-source
alternatives were not considered as mature and
reliable enough for an industrial deployment.
Finally, the last stage of the tool selection process
was to verify in detail the features of the selected
tool, by implementing a wide scope example (i.e.
powertrain management system).

2.4. SysML tool profiling

Despite the high potential of the selected SysML
modeler, it was identified from the very beginning
that tool customizations would be mandatory prior
any efficient usage by generalist System Architects.
Two concurrent approaches were then competing:
• Either developing a Domain Specific Language

(DSL) completely masking the underlying SysML
language, by using Valeo’s own terminology and

semantics specific to automotive embedded
systems,

• Or keeping the original SysML syntax while
providing a guided approach for using efficiently
the right SysML diagram at the right analysis
stage.

The second approach was preferred because
Valeo’s maturity on Model Based System
Engineering processes was not estimated to be
sufficient to define its own DSL, and also because
using original SysML syntax is an efficient way to
take benefits from the community of users, and in
particular from young engineers already familiar with
SysML.
Consequently, in a first step, the so-called SysCARS
(“System Core Analyses for Robustness and
Safety”) methodology was developed to define a
precise mapping between the sequence of System
Engineering activities to be performed and the
SysML modeling artefacts and diagrams to be used.
In a second step, the SysML tool was customize to
implement the SysCARS methodology, thanks to the
“profiling” mechanism available in the tool. The
SysCARS methodology is described in more detail in
chapter 3, with its underlying workflow-driven
implementation in chapter 4.

2.5. Pilot projects

The SysCARS methodology and the related SysML
profile have been validated and optimized thanks to
the pilot projects carried out during the last three
years. These different projects allowed the coverage
of a wide spectrum of problematics:
• Different kinds of product lines (e.g. combustion

engine management systems, electrical and
hybrid vehicle subsystems, steering column lock
systems, electrical power steering systems,
traction control systems, wiping systems), with
different preferential modeling viewpoints,

• Different project typologies, from advanced
studies focused on user requirements capture
and architecture trade-off analyses, up to
industrial projects focused on customer
requirements traceability,

• Different System organizations.
Of course, these pilot projects led to the
improvement of the SysCARS methodology and of
its implementation inside the SysML tool. They have
also contributed to a better definition of the role of
the System Architect, as not just limited to
requirements management but also including the
completion of trade-off analyses necessary for
product architecture optimization.

2.6. Training

Among the issues faced on the pilot projects, the
main one was the slow learning curve of automotive
engineers, due to the complexity of SysML modeling
environments. The SysCARS methodology and the

ERTS 2014 - Piques
 Page 4/17

related SysML workflow-driven profile partially
solved the problem, but an efficient training course
remains a mandatory pre-requisite.
The Valeo internal training course is divided into
three main modules:
• System Engineering basics: This training is

dedicated to acquiring background knowledge on
System Engineering and related standard
processes, methods and tools.

• SysCARS methodology: The objective of this
training is to present SysCARS methodology
concepts independently from any tool
implementation, making comparisons with well
known methods traditionally used for functional
analysis.

• SysCARS practice with SysML: This training is
dedicated to acquiring practical skills in using the
SysML Valeo profile on a case study covering the
whole scope of the SysCARS methodology.

After that, trained people are also helped on their
initial project, by means of on the job training. In this
context, the first step is to build the skeleton of the
SysML model with the trainer. The latter also
periodically reviews the model at different maturity
steps and provides assistance for tricky tasks, such
as connection to existing requirement management
tools or configuration for automatic documentation
publishing.

2.7. Deployment

Since the end of 2012, the model-based SySCARS
methodology have been used at an industrial level
for designing an electrical power steering system,
with start of production planned for 2014. Other
industrial applications are planned to start this year,
in other product lines.

3. SysCARS methodology overview

SysCARS (System Core Analyses for Robustness
and Safety) is a Valeo methodology which provides
a practical help for system designers on how to
perform the sequence of System modeling activities
with SysML. However, its methodological
background also makes sense independently from
any tool implementation.

3.1. SysCARS principles

SysCARS methodology added value consists in:
• Selecting a subset of SysML diagrams and

artefacts to be used in a convenient and
pragmatic way (leading to the optimization of the
learning curve),

• Providing defined semantics related to diagrams
meaning and rules for verifying model
consistency,

• Defining an obvious diagram sequence which
ensures modeling efficiency regarding company
processes,

• Implementing stereotypes and templates for
automatic documentation generation at each
stage of the process,

• Taking into account coupling constraints with
other processes or tools such as Reqtify (from
Dassault Systèmes) for requirement traceability
or Simulink (from The Mathworks) for functional
modeling

The current methodology [1][2] is therefore targeting
the optimum trade off for Valeo deployment and it is
built from existing state of the art. It does not claim
for any theoretical novelty, while having merged
relevant best practices from existing approaches,
such as EIRIS methodology [3][4]. This
implementation is also taking maximum benefits
from available features of the selected SysML tool,
namely Artisan Studio from Atego.

3.2. SysCARS workflow

The overall System Engineering process begins by
analyzing the project context, considering the system
to be developed as a black box, and then
successively goes deeper into the details until
specifying internal component (or system element)
features. More precisely, the SysCARS methodology
is divided into five major phases:
• Stakeholder needs definition
• Requirements analysis
• Logical architecture design
• Physical architecture design
• Components needs definition
The related SysCARS workflow is described below.

Figure 03: SysCARS methodology

For clarity purpose, the process and the sequence of
activities are described in a pure sequential way.
However, in practice, different steps could be
performed simultaneously, with iterative and mutual
refinements.
Moreover, each phase systematically ends with:
• Traceability analysis, to check the consistency

and completeness of activities performed and
artefacts created,

• Automatic generation of a document making a
synthesis of the activities performed (SND:

Physical
Architecture

Physical
Internal

Interfaces

Physical
Internal

Scenarios

Physical
Architecture

Physical
Internal

Interfaces

Physical
Internal

Scenarios

Stakeholders Needs
Definition

Requirements
Analysis

Physical Architecture
Design

Logical Architecture
Design

Context Usage User
Scenarios

Modes

External
Interfaces

Main
Services

System
Scenarios States

Internal
Functions

Physical
Architecture

Phy Internal
Interfaces

Phy Internal
Scenarios

1a 1b 1c 1d

2a 2b 2c 2d

3a

4b 4c 4d

GROUPING

Logical
Architecture

Log Internal
Interfaces

3c3b

Candidate
Solutions

4a

BDD UCD SD STM

IBD STMSDUCD

AD BDD IBD

BDD IBD SDBDD

SND

SyRD

SyDD
ALLOCATION

Physical
Architecture

Physical
Internal

Interfaces

Physical
Internal

Scenarios

Physical
Architecture

Physical
Internal

Interfaces

Physical
Internal

Scenarios

Stakeholders Needs
Definition

Requirements
Analysis

Physical Architecture
Design

Logical Architecture
Design

Context Usage User
Scenarios

Modes

External
Interfaces

Main
Services

System
Scenarios States

Internal
Functions

Physical
Architecture

Phy Internal
Interfaces

Phy Internal
Scenarios

1a 1b 1c 1d

2a 2b 2c 2d

3a

4b 4c 4d

GROUPING

Logical
Architecture

Log Internal
Interfaces

3c3b

Candidate
Solutions

4a

BDD UCD SD STM

IBD STMSDUCD

AD BDD IBD

BDD IBD SDBDD

SND

SyRD

SyDD
ALLOCATION

ERTS 2014 - Piques
 Page 5/17

Stakeholder Needs Document, SyRD: System
Requirement Document, SyDD: System Design
Document, CND: Component Needs Document).

The last stage (Component Needs Definition) has
not been represented, because it is mainly an
extraction of component artefacts from the physical
architecture, producing one specification for each
component.
On the [figure 03], the kind of diagram used at each
step is given by its SysML acronym attached to the
related activity: Block Definition Diagram (BDD),
Internal Block Diagram (IBD), Use Case Diagram
(UCD), Sequence Diagram (SD), STate Machine
diagram (STM), Activity Diagram (AD)
Lessons learned on pilot projects have shown that in
most situations it makes sense to bypass the
elaboration of the logical breakdown and to directly
allocate internal functions onto the physical
architecture blocks. Indeed, physical architectures
are very often frozen because resulting from carry
over products, and therefore the investigation of
several candidate solutions is not necessary.
Consequently, two kinds of optimized workflow have
been defined depending on the project typology:
• SysCARS-XS (eXtended Stream): For innovative

products, the whole set of activities of the [figure
03] are performed, and in particular the
investigation of several physical architectures and
trade-off analyses.

• SysCARS-CS (Core Stream): For carry over
products, the activities represented by grey boxes
on the [figure 03] are not performed

In the following of this chapter, for a clarity purpose,
only the SysCARS-CS simplified workflow is
presented. It is also important to notice that the
names of paragraphs below are the same as those
used in the workflow diagram presented at chapter
4.

3.3. Stakeholder needs definition

Probably the most important step in a system
development process is collecting initial needs to
secure the goals that the system under development
is to pursue.
The key steps of this phase are:
• Identify all the stakeholder needs,
• Define the boundaries of the system and external

actors involved,
• Identify and describe the operational use cases,
• Identify the user level operating modes,
• Link the stakeholder requirements to the

operational use cases.
At this stage, all the analyses are performed from the
system external user point of view, the system being
considered as a black box. The output of this phase
is the “Stakeholder Needs Document” (SND), which
makes a synthesis of all the activities performed.

3.3.1. Stakeholder needs elicitation (REQ)
All individuals and organizations that may have an
interest in the system are the potential source of
requirements and therefore should be identified prior
to all other activities. The key point is that
stakeholder needs should describe the services
expected by the system user, and not how the
system will fulfill these needs.
The sources of stakeholder needs will be managed
outside of the SysML model, within requirements
documents or specific databases. It is particularly
important to capture mission-level performance
requirements and measurements of expected
performances that will be used later to select the
best one among the candidate solutions.
The next step is to import stakeholder needs (with all
their relevant fields) into mirroring SysML
requirement objects (with same identifiers). A
gateway mechanism, such as those implemented by
Reqtify, is required to perform a mono-directional
synchronization (from external data to SysML) in
case of change of source data.
Because the standard SysML requirement format is
quite limited, the extension mechanism of
stereotypes is used to add new specific attributes
(i.e. tags) to keep track of extra information resulting
from analyses performed during elicitation. A
particularly important tag attached to requirements at
elicitation stage is dedicated to classifying
requirement into one of the three following
categories: user related, system related or
component (i.e. system element) related. This value
conditions at which modeling level the requirement
will be later covered.

3.3.2. Context analysis (BDD)
The system context diagram represents the direct
environment of the system and gives initial
information about the system boundaries and the
interactions between the system and external
systems and users.
The first step is to identify the different stages of the
system lifecycle, from manufacturing to recycling.
For each stage of the system lifecycle, one SysML
block definition diagram is declared to model the
associated operational context.
The system itself appears in the center of the
diagram as a single black box SysML block. The
next step consists in representing all currently known
interacting partners, using SysML actor objects. An
actor is not necessarily a concrete individual or
system, but a role played by an outside element in
interaction. Then, interactions between actors and
the system are represented as SysML association
relationships. The purpose is to identify basic
information helpful to determine the services
requested from the system embedded in its
environment, and not to give technical details of
these services. Constraints on these services are

ERTS 2014 - Piques
 Page 6/17

documented in the description field of the
association relationships.

Figure 04: Operational context diagram

Even though, defining the context diagrams may
seem obvious, in practice, searching for actors can
lead to very fruitful discussions for defining
responsibilities between the different stakeholders.

3.3.3. Context scenarios identification (UC, SD)
Context use cases represent the services expected
by the system users (people or other systems);
which means that they will be key input elements for
the requirement analysis stage. Indeed, context use
cases will help to refine stakeholder expectations
and therefore identify system requirements in greater
details.

Figure 05: Context use case diagram (user level)

Context uses cases will be identified starting from
the context diagrams, asking what the actors want of
the system, especially with regard to their roles and
incoming information flows. More precisely, a use
case always refers to at least one actor; it is started
by an external trigger and it ends with a user result.
Moreover, as many use case diagrams as stages of
the system lifecycle will be described.
In fact, a use case can be seen as a group of
scenarios performed by the same main actor, with
the same starting point and leading to the same

ending point. These scenarios describe sequences
of interactions and actions, beginning with the same
pre-condition (trigger) and ending with the same
post-condition (result); the pre-condition and the
post-condition corresponding to modes (i.e. user
states) in the user mode state machine mentioned in
the next chapter.
The scenarios are described using SysML sequence
diagrams. The interactions inside scenarios are
declared as context events, also used later to define
transition conditions between states of the user
mode state machine. It is particularly important to
notice that each sequence diagram established here
is primarily aimed at identifying the system
interactions. The sequence diagram will be further
refined, at requirement analysis stage, to identify
functions performed by the system.

3.3.4. User modes identification (STM)
A mode characterizes a situation in the system life
for which a specific expected behavior can be
defined. It represents a state invariant of the system
from the external user point of view (i.e. regarding
the service given to the user and not how this
service is performed by the system).

Figure 06: User modes state diagram

The objective is to derive a unique state machine
aggregating all the modes (states) and main
transitions (events) identified in the context
scenarios. Therefore, establishing the user mode
state machine is an iterative process tightly coupled
and interleaved with the identification of context
scenarios described in the previous chapter. The
purpose is to describe the behaviours involved in all
the context scenarios, factorized into a unique state
machine. This state machine is owned by the context
block associated to the whole black box system.

3.3.5. Context traceability checking (REQ)
We remember that stakeholder (or initial)
requirements refer to statements that define the
expectations from the system in terms of mission
objectives, environment, constraints and

11

1

1

1 1

1

1

1

*

bdd Operational Context [Hybrid Vehicle]

«block»
«Context Block»

Hybrid Vehicle (Context)

Road Contact Low Voltage
Station

High Voltage
Station

Fuelling
Station

Electrical
Station

Driver
«Primary»

User
«Primary»

11 Drives

1

1

Reloads Energy

1 1

Provides Electricity

1

1

Provides Fuel

1

*

Moves on

High Voltage
Station

Road Contact

Fuelling
Station

Driver
«Primary»

Low Voltage
Station

User
«Primary» Load Electrical

Battery

Accelerate

Fill Fuel Tank

Brake

Park Vehicle

Start
Drive Vehicle

Stop

«include»

«include»

«include»

«extend»

«extend»

Hybrid Vehicle (Context)

uc Operational Context Use Cases [Hybrid Vehicle]

Braking Accelerating

Neutral

Driving

Parking Maintenance

Battery reloading Fuel refilling

Energy reloading

Hybrid Vehicle Modes

Braking Accelerating

Neutral

Driving

Braking Accelerating

Neutral

Parking Maintenance

Battery reloading Fuel refilling

Energy reloading

Battery reloading Fuel refilling

event_VehicleDisposal/

event_EndOfAssemblyLine/

event_FailureSuspected/

event_FailureRepaired/

event_EngageFuelPistol/event_DisconnectPlug/

event_ConnectPlug/

event_DisengageFuelPistol/

event_PushOnOffButton/event_PushOnOffButton[Vehicle_Speed == 0]/

event_PushBrakePedal/

event_ReleaseBrakePedal/

event_PushAcceleratorPedal/

event_ReleaseAcceleratorPedal/

ERTS 2014 - Piques
 Page 7/17

measurements of performance, from the system
user point of view. In order to make sure that all
stakeholder needs are covered by the context use
cases, respective traceability links have to be
established between SysML use cases and
requirements. As described in the traceability data
model presented at chapter 5.3, all requirements that
are characterized as user related shall be covered
by corresponding context use cases, and linked
together by derive relationships.
Traceability analyses are performed to verify the
model completeness, using requirements tables and
traceability matrices, which are specific features of
the Artisan Studio tool.

Figure 07: Requirement traceability diagram

3.3.6. Stakeholder needs document
The last step is to launch the automatic generation of
a document, making the synthesis of all the
modeling activities performed during the
“stakeholder needs definition” stage. This document
is entitled “Stakeholder Needs Document” (SND).

3.4. Requirements analysis

The objective of the requirement analysis phase is to
analyze the inputs previously collected, in order to
move from a problem statement to an abstract
solution.
The key steps of this phase are:
• Describe precisely the interfaces of the system

with external actors,
• Develop and refine the system use cases,
• Identify the system level operating states,
• Develop and refine the system requirements into

external function and interface descriptions,
• Link system functions and interfaces to the

system requirements.
At this stage all analyses are performed from system
designer point of view, the system still being
considered as a black box. The output of this phase
is the “System Requirement Document” (SyRD),
which summarizes all the activities performed.

3.4.1. External interfaces identification (IBD)
To keep track of analyses previously performed at
context level, it has been decided to define the
system block used afterward as a specialization of
the context block studied at the previous stage (i.e.
stakeholder needs definition stage).
The objective of the system interface identification
step is to give more details on the interaction flows
between the actors and the system (always seen as
a black box). The system physical external interfaces
are described using internal block diagrams, where
are represented the system block and all the
interacting actors.

Figure 08: External interfaces description

To specify the kind of admissible data flow, a type
indication shall be associated with each port, using
SysML item types or flow specifications. Several
internal block diagrams are defined to describe the
different contexts of use. Moreover, it is also
possible to define several internal block diagrams for
the same context of use, each diagram
corresponding to a specific kind of interface (e.g.:
mechanical, electrical, data processing buses…).
This is particularly interesting to ease information
sharing with involved disciplines and also to avoid
overloaded interface diagrams.

3.4.2. System scenario refinement (SD)
The objective of this stage is to refine context level
scenarios, in order to identify main services or
functions the system shall perform. Therefore, this
activity is similar to a classical external functional
analysis.
To keep track of analyses previously performed at
context level, it has been decided to keep context
sequence diagrams intact and to clone them, in
order to obtain initial system sequence diagrams.
The same approach is adopted between context use
case diagrams and system use case diagrams. The
system sequence diagrams are then complemented
by the functions to be performed by the system
(always seen as a black box), after having replaced
the context block by the system block. As shown on
the figure below, the functions are modeled as
SysML operations attached to the (lifeline of the)
system block.
The interactions inside scenarios are declared as
existing context events or new system events, used

req Stakeholder Needs Refinment to UC [Accelerate]

Accelerate

«requirement»

id#
U01

txt
In ZEV mode, time from 0 km/h
to 100 km/h shall be less than
15 s

Acceleration in ZEV mode
«requirement»

id#
U11

txt
The degradation of
performances comparatively to
a ICE vehicle shall be
admissible.

Performances closed to ICE
vehicle

«requirement»

id#
U10

txt
The vehicle shall have a paylod
capacity of 350 kg

Paylod capacity

«refine» «refine» «refine»

ibd External Interfaces [Hybrid Vehicle (System)]

: Hybrid Vehicle (System)

ElectricStationCommmunicationPort : CommunicationProtocol

DiagnosisToolCommunicationPort : DiagnosisProtocol

ZEVModeButton : On-Off signal

AcceleratorPedal : Continuous signal

StartVehicleButton : On-Off signal

ElectricPlug : Current

RoadContact : Torque

BrakePedal : Continuous signal

InformationDisplay : DisplayProtocol ElectricStationCommmunicationPort : CommunicationProtocol

DiagnosisToolCommunicationPort : DiagnosisProtocol

ZEVModeButton : On-Off signal

AcceleratorPedal : Continuous signal

StartVehicleButton : On-Off signal

ElectricPlug : Current

RoadContact : Torque

BrakePedal : Continuous signal

InformationDisplay : DisplayProtocol

Driver
«Primary»

Electrical
Station

Road Contact

Diagnosis Tool

ERTS 2014 - Piques
 Page 8/17

afterward to define transition conditions between
states of the system state machine. The starting
point and ending point of each scenario will also
correspond to states of the system state machine.

Figure 09: Scenario description (system level)

3.4.3. System states identification (STM)
The objective of this step is to describe the
behaviours involved in all the system scenarios,
factorized into a unique state machine. This state
machine is owned by the system block describing
the whole black box system.

Figure 10: Sub-state of the system state machine

The system state machine is not necessarily only a
refinement of the user mode state machine, as
possibly new sub-states or suppressed states and
even a completely different structure may be
defined. Practically, establishing the system state
machine is an iterative process tightly coupled and
interleaved with system scenarios refinement
described in the previous chapterOnce the
transitions and states of the system state machine
are well defined, a particularly important step is to
define in which states are triggered the main
functions identified in the system scenarios. This is
simply done by calling the related operations with the
Do property of the corresponding states. The system
state machine then becomes the central element of
the system model, allowing the simulation of its
behaviour for validation purpose.

3.4.4. System requirement traceability checking
(REQ)

As it will be discussed at chapter 5, system level
requirements are all described inside the SysML

model and not rewritten into an external (textual)
requirements repository. As often as possible, the
SysML model artefacts (e.g. operations, ports,
states) are directly used as “requirements”; their
description field being written in a requirement-like
way. Only non functional system requirements are
modeled by SysML requirements (at the exception of
system related functional requirements coming from
stakeholder inputs). Non functional requirements
concern constraints (including performance target)
related to existing model artefacts, such as
operations, ports, states or to the system block itself.
Therefore, we can identify two categories of
“traceability” links:
• Implicit traceability, when there exists a strong

dependency between two model artefacts (e.g.
operation owned by the system block, port owned
by the system block)

• Explicit traceability, when a satisfy relationship
has been declared between a model artefact (i.e.
operation, port, state, system block) and a non
functional requirement of the same level or when
a refine relationship has been declared between
a system level requirement and a user level
requirement.

During the requirement analysis process, implicit
traceability links have been generated, while the
system block has been automatically populated with
all operations and ports declared in the different
diagrams. Moreover, operations are also linked to
sequence diagrams where they have been defined
and to the states which call them.

Figure 11: System requirements as block properties
(implicit traceability)

Explicit traceability links shall be declared to ensure
that all user level requirements are covered by
system level requirements (derive relationship) and
that all system level requirements are covered by
model artefacts (satisfy relationship) of the same
level. These relationships are declared either in
requirement diagrams or directly in the object
database. Justifications related to coverage or
refinement are logged as comments inside the
description fields of the requirements diagrams.

:Hybrid Vehicle (System)Road Contact
Driver

«Primary»

event_PushAcceleratorPedal

MF-002_AccelerateVehicle

MF-006_ControlTraction

powertrain delivers positive torque to wheels event_PowertrainWheelPositiveTorque

MF-002_AccelerateVehicle

MF-006_ControlTractionMF-006_ControlTraction

powertrain delivers positive torque to wheels event_PowertrainWheelPositiveTorquepowertrain delivers positive torque to wheels event_PowertrainWheelPositiveTorque

event_ReleaseBrakePedal

IdleIdle

Torque Assisted AcceleratingTorque Assisted Accelerating

IdleIdle

...
...

...
...

Idle

do :
MF-001_StartVehicle

Starting do :
MF-008_StopVehicle

Stopping

Regenerative Braking
...Torque Assisted Accelerating

...

Hybrid Operating

Idle

do :
MF-001_StartVehicle

Starting do :
MF-008_StopVehicle

Stopping

Regenerative Braking
...Torque Assisted Accelerating

...

event_ICEngineStarted/
event_PushOnOffButton[Vehicle_Speed == 0]/

event_PushBrakePedal/

event_ReleaseAcceleratorPedal/

event_PushAcceleratorPedal/

event_ReleaseBrakePedal/

«block»

flowPorts
inout ElectricStationCommmunicationPort : CommunicationProtocol
inout DiagnosisToolCommunicationPort : DiagnosisProtocol
in ZEVModeButton : On-Off signal
in AcceleratorPedal : Continuous signal
in StartVehicleButton : On-Off signal
in ElectricPlug : Current
inout RoadContact : Torque
in BrakePedal : Continuous signal
out InformationDisplay : DisplayProtocol

operations
MF-001_StartVehicle ()
MF-002_AccelerateVehicle ()
MF-003_RecoverBrakingEnergy ()
MF-004_ChargeBatteryLowVoltageStation ()
MF-005_ChargeBatteryHighVoltageStation ()
MF-006_ControlTraction ()
MF-007_DecelerateVehicle ()
MF-008_StopVehicle ()
MF-009_TorqueAssist ()

Hybrid Vehicle (System)

ERTS 2014 - Piques
 Page 9/17

Figure 12: Traceability to system requirements
(explicit traceability)

Traceability analyses are then performed to verify
the model completeness, using requirements tables
and traceability matrices, which are specific features
of the Artisan Studio tool.

3.4.5. System requirements document
The last step is to launch the automatic generation of
a document, making the synthesis of all the
modeling activities performed during the
“requirements analysis” stage. This document is
entitled “System Requirements Document” (SyRD).

3.5. Architecture design

The objective of the architecture design phase is to
describe how the system will be internally structured
to perform the expected features. Within the
framework of the SysCARS-CS simplified workflow
presented here, the physical architecture is directly
elaborated taking into account implementation
technologies. Logical architecture design activities
are limited to identify internal functions and there is
no intermediate logical architecture.
The key steps of this phase are:
• Identify the set of internal functions to be

provided by the system elements (or
components),

• Describe how these internal functions are
activated depending on the system state,

• Define a physical architecture capable of
performing the required internal functions,

• Allocate coherently the internal functions to
physical components,

• Develop and refine the components physical
interfaces and interactions,

• Develop and refine the related components
requirements,

• Evaluate the measurements of effectiveness of
the physical architecture.

At this stage all the analyses are made from system
internal point of view, the system being considered
as a white box.

The modeling elements developed are included in
the “System Design Document” (SyDD), which
makes a synthesis of all logical and physical
architecture design activities. The output of this
phase is a also a set of “Component Needs
Documents” (CND), which correspond to
specifications for the components (or system
elements) to be implemented.

3.5.1. Internal functions identification (ACT)
The objective of this step is to provide details on the
internal behavior of the operations owned by the
system block. Therefore, the kind of task performed
is similar to a classical internal functional analysis.
For this analysis, a top level activity diagram is
attached to each operation of the system block, in
order to describe how the corresponding main
function is implemented by internal technical
functions. This description may involve several
layers of activity diagrams. The activity diagrams use
data flow and control flow representations in a
hierarchical decomposition to work out internal
activities that should be performed. The lowest level
activities (namely leaves activities) of this hierarchy
represent calls (call-operation-actions) to internal
functions modeled by elementary operations. The
rule to end the hierarchical decomposition is that
every identified elementary operation can be
assigned to a unique system element (or
component) of the physical architecture.

Figure 13: Lowest level activity diagram describing

system internal functions

The key point is that the upper level activity
diagrams describing the internal behavior are
triggered by the system state machine; which will be
an interesting and mandatory property for later
execution of the system model.

3.5.2. Physical architecture definition (BDD)
The focus of the physical architecture design phase
is on the allocation of elementary operations to
components (or parts) of a physical architectural
structure. This structure may result from a previous
trade-off study or be a legacy architecture resulting
from many years of experience of a product line. It is

req System Requirements Satisfied By Operations [Hybrid Vehicle Platform]

MF-002_AccelerateVehicleMF-002_AccelerateVehicle

MF-006_ControlTractionMF-006_ControlTraction

MF-001_StartVehicleMF-001_StartVehicle

MF-008_StopVehicleMF-008_StopVehicle

MF-005_ChargeBatteryHighVoltageStati-MF-005_ChargeBatteryHighVoltageStati-
on

MF-004_ChargeBatteryLowVoltageStati-MF-004_ChargeBatteryLowVoltageStati-
on

MF-003_RecoverBrakingEnergyMF-003_RecoverBrakingEnergy

MF-009_TorqueAssistMF-009_TorqueAssist

MF-007_DecelerateVehicleMF-007_DecelerateVehicle

«requirement»
Regenerative braking

«requirement»
Standard battery charging

«requirement»

Torque assistance

«requirement»
Fast battery charging

«requirement»
Stop time

«requirement»

Start time

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

vehCmd

vehTorqueRequest

: IF-018_ElaborateTorqueRequest

BatterySOC

vehSensors

: IF-020_EstimateBatterySOC

vehSensors

vehVelocity

: IF-019_MeasureVehicleVelocity

vehSensors

vehTractionStatus

: IF-021_MonitorTraction

vehTorqueRequest BatterySOC vehVelocity vehTractionStatus

vehCond

: IF-022_EstimateVehicleConditions

vehCond

vehCommands vehSensors
MonitorVehicleConditions

vehCmd

vehTorqueRequest

: IF-018_ElaborateTorqueRequest

vehCmd

vehTorqueRequest BatterySOC

vehSensors

: IF-020_EstimateBatterySOC

BatterySOC

vehSensors vehSensors

vehVelocity

: IF-019_MeasureVehicleVelocity

vehSensors

vehVelocity

vehSensors

vehTractionStatus

: IF-021_MonitorTraction

vehSensors

vehTractionStatus

vehTorqueRequest BatterySOC vehVelocity vehTractionStatus

vehCond

: IF-022_EstimateVehicleConditions
vehTorqueRequest BatterySOC vehVelocity vehTractionStatus

vehCond

vehCond

vehCommands vehSensors

«continuous»
«continuous»

«continuous»

«continuous»

«continuous»

«continuous»
«continuous» «continuous»

«continuous»

ERTS 2014 - Piques
 Page 10/17

the reason why the elaboration of an intermediate
logical architecture (independent from any
technology choice) is most of the time useless.
The partitioning criteria used for allocation of internal
functions to components should reduce the impact of
requirements and technology changes and more
effectively address key issues such as performance,
reliability, efficient re-use of COTS, maintainability,
security and cost.At model level, an internal physical
block is declared for each component (or part) of the
physical architecture, and this block owns the
elementary operations which were allocated to him.
To keep track of analyses previously performed at
system level, it has been decided to define the upper
level physical (system) block used afterward as a
specialization of the system block studied at the
previous stage (i.e. requirements analysis stage).
Then, a block definition diagram is used to describe
the physical architecture, i.e. the compositional
relationships between the upper level physical
(system) block and its constitutive physical blocks.

Figure 14: Physical architecture

3.5.3. Physical internal interfaces identification
(IBD)

The objective of the internal physical interface
description step is to provide more details on the
interaction flows between the internal physical
blocks, using internal block diagrams. Physical
interfaces between internal physical blocks are
represented by ports which can be connected either
to other internal physical blocks or directly to
external interfaces of the upper level physical
(system) block. To specify the kind of admissible
data flow, a type indication shall be associated with
each port, using SysML item types or flow
specifications.

Figure 15: Physical internal interfaces description

To avoid information overload on the same diagram
and to make communication to a specific team
easier, several internal block diagrams will be
described, each diagram corresponding to a specific
kind of interface (ex: mechanical, electrical, data
processing buses, …).

3.5.4. Internal scenarios definition (SD)
The focus of black-box sequence diagrams
described at system level was on the identification of
the system main functions. Because some physical
components may require significant refinement to
address discipline-specific concerns, it may be
necessary to establish white-box sequence diagrams
focusing on the collaboration between the different
internal components. This activity is not
systematically performed and is only reserved for
particularly critical scenarios. A white-box internal
scenario reveals internal physical blocks on a same
sequence diagram. It allows checking that the
sequential activation of the elementary functions
(operations owned by internal system blocks) is
consistent with the main functions (operations owned
by the upper level system block) expected at system
level.
Moreover, a physical internal component may
include a state machine as part of its specification, if
it has significant state-based behavior

3.5.5. Physical architecture traceability
checking (REQ)

The same considerations as those done at chapter
3.4.4, regarding implicit and explicit traceability links,
also apply for internal physical blocks and related
requirements. Therefore, the traceability checking is
performed in the same way as at the requirement
analysis stage.
During the architecture design process, implicit
traceability links have been generated, while the
internal physical blocks have been automatically
populated by all elementary operations and ports
declared in the different diagrams. Moreover,
elementary operations are also indirectly linked to

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1 1

11

11

1

1

1

1

bdd Physical Architecture Breakdown [Hybrid Vehicle]

«block»
«Physical Block»

values
Electric Engine Configuration = Central Motor
Vehicle cargo capacity = 350 kg
ZEV mode autonomy = 70 km
Hybrid mode emission = 65 g/km CO2
ZEV mode velocity = 105 km/h

Hybrid Vehicle (Physical)

«block»
«Physical Block»

VehicleElectricPlug

«block»
«Physical Block»

OnBoardElectricNetwork

«block»
«Physical Block»

Accelerator

«block»
«Physical Block»

BrakePedal

«block»
«Physical Block»
BatteryCharger

«block»
«Physical Block»

ElectricMotorGenerator

«block»
«Physical Block»

InternalCombustionEngine

«block»
«Physical Block»

CANCommunicationBus

«block»
«Physical Block»

ICEngineController-ICEMU

«block»
«Physical Block»

Transmission

«block»
«Physical Block»

ElectricMotorController-EMMU

«block»
«Physical Block»

BatteryPackController-BMU

«block»
«Physical Block»

BatteryPack

«block»
«Physical Block»
FrontDifferential

«block»
«Physical Block»
RearDifferential

«block»
«Physical Block»

Differential

«block»
«Physical Block»

RatioReducer

«block»
«Physical Block»
DC-DCConverter

«block»
«Physical Block»

RearWheel

«block»
«Physical Block»

FrontWheel

«block»
«Physical Block»

VehicleEnergyManagementUnit-VEMU

1

1

bpc

1

1

icec

1

1

ice

1

1

can

11

dcdc

1

1

rr

1

1

diff

1

1

emc

1

1

vem

1

1

bp

1

1

trm

1 1

bc

1

1

emg

1 1

acc

1 1

bkp

11
RightFw

11
LeftRw

1

1

vep 1

1

oben

diff

diff

ibd Electrical Physical Internal Interfaces [Hybrid Vehicle]

«block»
«Physical Block»

Hybrid Vehicle (Physical)

emc : ElectricMotorController-EMMU

emc_bcPrt : LoadVoltage

emc_bpPrt : BatteryVoltage

emc_emPrt : ElectricMotorFlow

dcdc : DC-DCConverter

dcdc_bpPrt : BatteryVoltage

dcdc_obenPrt : OnBoardVoltage

emg : ElectricMotorGenerator

emg_emcPrt : ElectricMotorFlow

vep : VehicleElectricPlug

vep_bcPrt : LoadVoltage

vep_elplgPrt : Current

oben : OnBoardElectricNetwork

oben_dcdcPrt : OnBoardVoltage

bp : BatteryPack
bp_bcPrt : BatteryVoltage bp_dcdcPrt : BatteryVoltage

bp_emcPrt : BatteryVoltage

bc : BatteryCharger

bc_vepPrt : LoadVoltage

bc_bpPrt : BatteryVoltage

ElectricPlug : Current

emc : ElectricMotorController-EMMU

emc_bcPrt : LoadVoltage

emc_bpPrt : BatteryVoltage

emc_emPrt : ElectricMotorFlow

emc_bcPrt : LoadVoltage

emc_bpPrt : BatteryVoltage

emc_emPrt : ElectricMotorFlow

dcdc : DC-DCConverter

dcdc_bpPrt : BatteryVoltage

dcdc_obenPrt : OnBoardVoltage

dcdc_bpPrt : BatteryVoltage

dcdc_obenPrt : OnBoardVoltage

emg : ElectricMotorGenerator

emg_emcPrt : ElectricMotorFlowemg_emcPrt : ElectricMotorFlow

vep : VehicleElectricPlug

vep_bcPrt : LoadVoltage

vep_elplgPrt : Current

vep_bcPrt : LoadVoltage

vep_elplgPrt : Current

oben : OnBoardElectricNetwork

oben_dcdcPrt : OnBoardVoltageoben_dcdcPrt : OnBoardVoltage

bp : BatteryPack
bp_bcPrt : BatteryVoltage bp_dcdcPrt : BatteryVoltage

bp_emcPrt : BatteryVoltage

bp_bcPrt : BatteryVoltage bp_dcdcPrt : BatteryVoltage

bp_emcPrt : BatteryVoltage

bc : BatteryCharger

bc_vepPrt : LoadVoltage

bc_bpPrt : BatteryVoltage

bc_vepPrt : LoadVoltage

bc_bpPrt : BatteryVoltage

ElectricPlug : Current

ERTS 2014 - Piques
 Page 11/17

the states, which call the activity diagrams in which
they appear. Regarding explicit traceability links,
they shall be declared to ensure that all system level
requirements are covered by component level
requirements (derive relationship) and that all
component level requirements are also covered by
model artefacts (satisfy relationship) of the same
level. These relationships are declared either in
requirement diagrams or directly in the object
database. Justifications related to coverage or
refinement are logged as comments inside the
description fields of the requirements diagrams.
Traceability analyses are then performed to verify
the model completeness, using requirements tables
and traceability matrices, which are specific features
of the Artisan Studio tool.
The results from engineering analyses done on the
physical architecture are also capitalized inside the
model. These information often referred to as
measurements of effectiveness (MoEs), are
incorporated into the SysML model as value
properties attached to the upper level physical block
describing the physical architecture. The estimations
of MoEs result from specific analyses performed with
appropriate tools such as modeling and simulation
environments and involve different analysis
objectives (performance, robustness, safety, cost…).

3.5.6. System design document and component
needs documents

The last step is to launch the automatic generation of
a document, making the synthesis of all the
modeling activities performed during the
“architecture design” stage. This document is entitled
“System Design Document” (SyDD).
The physical architecture model results in the
specification of the components to be implemented
by each specific discipline (e.g. hardware, software,
mechanics, …). As it is necessary to isolate relevant
information for each team in charge of developing
components, there is a need for as many
specification documents as there are internal
physical blocks inside the physical architecture.
These documents called “Component Needs
Documents” (CND) are also automatically
generated, making the extraction of all the artefacts
attached to the internal physical block under
consideration and filtering any confidential or
unnecessary information.

3.6. Modeling difficulties encountered with
SysML 1.2

During the different modeling stages, some
difficulties have been encountered with SysML 1.2.
First of all, we would like to have a unified semantics
for interfaces. Unfortunately there is no relationship
between the ports defined on Internal Block
Diagrams and the pins used on Activity Diagrams.
For each port declared for external interfaces, it was

necessary to create one corresponding pin with the
same name and type. To keep track of the similarity
of the two artefacts, a trace relationship was
declared between them.
Moreover, readability issues appear on Internal
Block Diagrams when the number of ports and
connectors becomes important. This problem was
partially solved by declaring composite flows as
often as possible, thanks to flow specifications.
Nevertheless, routing efficiently connectors remains
problematic. In this area, inspirations from tools like
Simulink would be welcome, for example by adding
higher level constructs such as virtual buses or
Goto-From connections, in order to avoid crossing
connectors. Including automatic routing features
would also be a valuable evolution.
In the context of the full SysCARS-XS workflow,
difficulties were experienced when dealing with
architecture alternatives and particularly for
functional to physical allocation. We would like that
the same operation could be declared only once and
be owned by different blocks, each one being related
to an architecture alternative. Unfortunately, it was
necessary to clone each operation representing the
same function, as many times as there were
alternatives to explore.
Weaknesses of the XMI interchange format are well
known and particularly the impossibility of
exchanging diagrams. However, we were very
surprised to notice that some basic information were
not exported (e.g. descriptions fields of some
artefacts or characters different than ASCII ones).
Therefore, it remains very difficult to transfer properly
modeling descriptions to other modeling tools or
environments such as Simulink.

4. Workflow-driven approach

4.1. A specific SysML profile

GUIs of SysML existing tools remain too complicated
for a non software specialist, who is the targeted
audience for System Engineering. Indeed, SysML
user interfaces provide confusing and unneeded
features from the UML world. Very often, UML and
SysML artefacts and diagrams are mixed without
any possibility for the user to limit to a pure SysML
scope. Moreover, no guidance is provided on the
relevant diagram to be used and on the correct
ordering of operations.
To cope with these drawbacks, a specific ergonomic
profile (thereafter referred to as “Valeo Profile”) has
been developed, introducing the concept of
workflow-driven approach. The basic idea behind the
workflow-driven approach is to provide the System
engineer with a step by step help throughout the
SysCARS engineering workflow. Moreover, at each
step of the workflow, only relevant features and
diagrams are available in a simplified GUI.

ERTS 2014 - Piques

The mechanisms of the workflow driven approach
are detailed in the chapters below.

4.2. Workflow diagram navigation

When creating a new model with the
this model directly opens on a pre-defined “workflow
diagram”. The “workflow diagram” is the central
element of the Valeo Profile, defining the sequence
of modeling activities to be performed in
with the SysCARS methodology. In fact, the
workflow diagram is simply a statechart diagram,
where states and super-states respectively
correspond to elementary activities and main stages
of the SysCARS methodology. No more than one
elementary state can be active at one moment;
only one kind of elementary activity should be
performed. On the workflow diagram represented
below, the active state is highlighted in blue.

Figure 16: Valeo profile GUI overview

It is possible to navigate the states of the workflow
diagram and to select the workflow commands
available: “Next Step”, “Previous Step”, “Go to
step…”. Then the modeling step is
accordingly.

Figure 17: Valeo profile navigation

A second kind of navigation mechanism is available
from the workflow diagram. Right-clicking on each
state allows to reach the diagrams summarizing the
results of this modeling step. The relevant diagrams
should have been attached as associated diagrams
once created.
The implementation of the workflow in the profile
not frozen but configured using dedicated XML file
This option enables further evolutions on the
SysCARS workflow.

Pre-defined Package Structure Embedded SysCARS WorkflowPre-defined Package Structure Embedded SysCARS Workflow

Workflow Menu

The mechanisms of the workflow driven approach

ating a new model with the Valeo profile,
defined “workflow

diagram”. The “workflow diagram” is the central
Profile, defining the sequence

of modeling activities to be performed in accordance
. In fact, the

workflow diagram is simply a statechart diagram,
states respectively

correspond to elementary activities and main stages
No more than one
t one moment; i.e.

only one kind of elementary activity should be
performed. On the workflow diagram represented
below, the active state is highlighted in blue.

verview

It is possible to navigate the states of the workflow
select the workflow commands

“Previous Step”, “Go to
Then the modeling step is changed

avigation

navigation mechanism is available
clicking on each

to reach the diagrams summarizing the
results of this modeling step. The relevant diagrams
should have been attached as associated diagrams

in the profile is
dedicated XML files.

further evolutions on the

4.3. Pre-defined package structure

When creating a new model with the
this model is also provided with a pre
package structure. This package hierarchy is directly
correlated to states and super states of the workflow
diagram, which in turn correspond to stages and
steps of the SysCARS methodology.
However, the user is free to organize
artefacts and diagrams within a different package
structure.
As previously, the pre-defined package structure is
not frozen but configured using

4.4. GUI features defined by workflow state

The current active state of the workflow diagram is
used to monitor the look and feel of the SysML
modeler, in order to provide the user only with the
features required at this step of the system modeling
process. Consequently, command menus available
in the object browser and toolbar menus on
diagrams are both customized differently in each
state of the workflow diagram.
The diagram below clearly shows the level of
simplification on command menus reached by the
Valeo Profile.

Figure 18: Customized m

In the object browser window, the “
command menu displayed when right
existing SysML object, is customized individually for
each type of SysML artefact and diagram.
the user wishes to have access to the classic
features of SysML, he can
command menu.
In the graphical window, buttons available on each
diagram toolbar are also customized depending on
the workflow diagram active s
The GUI features are evolutionary and
from two dedicated XML file
browser command menus and one for the diagram
toolbars.

4.5. Stereotypes for documentation

Documentation in a format that is easily
comprehensible by a broad range of stakeholders
remains an effective way to validate and

Embedded SysCARS WorkflowEmbedded SysCARS Workflow

Page 12/17

defined package structure

When creating a new model with the Valeo Profile,
this model is also provided with a pre-defined
package structure. This package hierarchy is directly

super states of the workflow
diagram, which in turn correspond to stages and
steps of the SysCARS methodology.

the user is free to organize differently
and diagrams within a different package

defined package structure is
using a dedicated XML file.

GUI features defined by workflow state

nt active state of the workflow diagram is
used to monitor the look and feel of the SysML

, in order to provide the user only with the
features required at this step of the system modeling
process. Consequently, command menus available

browser and toolbar menus on
diagrams are both customized differently in each
state of the workflow diagram.
The diagram below clearly shows the level of
simplification on command menus reached by the

: Customized menus

ject browser window, the “SysCars New”
command menu displayed when right-clicking an

is customized individually for
of SysML artefact and diagram. In case

the user wishes to have access to the classic
can select the standard “New”

In the graphical window, buttons available on each
are also customized depending on

the workflow diagram active state.
evolutionary and configured

from two dedicated XML files, one for the package
browser command menus and one for the diagram

Stereotypes for documentation

Documentation in a format that is easily
comprehensible by a broad range of stakeholders
remains an effective way to validate and

ERTS 2014 - Piques

communicate system design information. The first
thing to do is to precisely define the expected
document format and contents by creating a
corresponding template for the publishing tool. The
same document template will be re-used on different
projects, without any modification. Then, thanks to
the publishing feature of the SysML tool, automatic
document generation can be run on demand
collect relevant data from the SysML model, without
any special effort.
Furthermore, separation between modeling data and
document templates enables versatile customisation
either to generate generic outputs or to address
specific customer process.
The organisation of the documentation is also based
on the workflow diagram breakdown. One particular
kind of document (with related template)
for each workflow diagram super-state, in order to
make the synthesis of modeling activities performed
within this stage:
• SND (Stakeholder Needs Document) for

Stakeholder needs definition stage,
• SyRD (System Requirements Document) for

Requirements analysis stage,
• SyDD (System Design Document) for Logical and

Physical architecture design,
• CND (Components Needs Document

Components needs definition stage
SysML artefacts and diagrams created when being
in a given super-state of the workflow diagram are
automatically attached with stereotypes indicating
that they should appear in the document associated
with this super-state. The names of these
stereotypes are built with the name of artefact or
diagram, prefixed by the name of the target
document (e.g: SND_requirement). It is also possible
to manually apply documentation stereotypes when
artefacts should appear in multiple documents
The only thing left to do is to load into
tool the pre-defined documentation template related
to the workflow super-state to be documented, and
then to launch documentation rendering. Diagrams
and artefacts appearing in the final document are
automatically filtered depending on the
documentation stereotypes, i.e. on the stage of the
workflow where they have been created.

Figure 19: Documentation stereotype

m design information. The first
thing to do is to precisely define the expected
document format and contents by creating a
corresponding template for the publishing tool. The

used on different
ation. Then, thanks to

the publishing feature of the SysML tool, automatic
document generation can be run on demand, to

data from the SysML model, without

Furthermore, separation between modeling data and
ates enables versatile customisation

either to generate generic outputs or to address

documentation is also based
on the workflow diagram breakdown. One particular
kind of document (with related template) is defined

state, in order to
make the synthesis of modeling activities performed

(Stakeholder Needs Document) for
,

(System Requirements Document) for

(System Design Document) for Logical and

Document) for
Components needs definition stage.

and diagrams created when being
state of the workflow diagram are

automatically attached with stereotypes indicating
that they should appear in the document associated

state. The names of these
he name of artefact or

prefixed by the name of the target
). It is also possible

umentation stereotypes when
should appear in multiple documents

 the publishing
defined documentation template related

state to be documented, and
then to launch documentation rendering. Diagrams

appearing in the final document are
automatically filtered depending on their

. on the stage of the
they have been created.

tereotype example

5. Requirement management

5.1. Distributed requirement management

Speaking about requirements in
adopt wrong requirement management tooling
solutions. In fact, initial needs are iteratively refined
during the engineering process, producing different
levels of so-called requirements, corresponding to
very different kind of information. Typ
requirements can be classified in three categories:
• User requirements

services from the end user point of view.
• System requirements

system necessary to fulfill its mission.
• Component requirement

constitutive parts necessary to implement the
expected features.

Therefore, believing that a unique tool has the
capability to address efficiently these three layers of
information is incorrect. On the contrary, a pragmatic
approach adopted at Valeo
tools optimised for each field and to make them
collaborate efficiently.
Another common mistake is to
categories of requirements related tools:
• Requirement definition tools

requirements (or any modeling
specification).

• Requirement traceability tools
any requirements but have the ability to analyze
requirements from requirement definition tools,
and to verify properties of

A tool of the second category (
therefore be used as a gateway to optimi
collaboration between tools of the first category (
DOORS, SysML Artisan Studio, Simulink, …), for
synchronizing interface requirements and
the whole traceability analysis. Another interesting
property of this scheme is its ability to let people
working with their discipline specific tools (
Simulink for control design).
Classical requirement management approaches
assume that all requirements shall be written in
natural language inside a centralized database
(typically DOORS). Then, SysML modeling
are only considered as intermediary by
need to be finally
requirements. This process ma
aerospace or railway transportation fields were
certification procedures are document
nature. However, in the automotive area, without any
constraints from certification procedures, a pure
model-centric approach is far more effi
In the Valeo approach, maximum benefits are taken
from expressive power and semi
capability of the SysML modeling language.
Consequently, requirements or requirements
artefacts produced during system modeling activities
are not reformulated in natural language into an

Page 13/17

Requirement management

Distributed requirement management

Speaking about requirements in general may lead to
adopt wrong requirement management tooling
solutions. In fact, initial needs are iteratively refined
during the engineering process, producing different

called requirements, corresponding to
information. Typically these

requirements can be classified in three categories:
 describe the expected

services from the end user point of view.
System requirements define the features of the
system necessary to fulfill its mission.
Component requirements specify the internal
constitutive parts necessary to implement the

g that a unique tool has the
capability to address efficiently these three layers of

. On the contrary, a pragmatic
Valeo is to take benefits from

tools optimised for each field and to make them

Another common mistake is to confuse two
categories of requirements related tools:

Requirement definition tools are containers of
requirements (or any modeling artefacts used for

Requirement traceability tools do not define
any requirements but have the ability to analyze
requirements from requirement definition tools,

properties of traceability links.
A tool of the second category (e.g. Reqtify) can
therefore be used as a gateway to optimize
collaboration between tools of the first category (e.g.
DOORS, SysML Artisan Studio, Simulink, …), for
synchronizing interface requirements and producing
the whole traceability analysis. Another interesting
property of this scheme is its ability to let people
working with their discipline specific tools (e.g.
Simulink for control design).
Classical requirement management approaches

requirements shall be written in
natural language inside a centralized database
(typically DOORS). Then, SysML modeling artefacts
are only considered as intermediary by-products that
need to be finally re-written into textual
requirements. This process makes sense in the
aerospace or railway transportation fields were
certification procedures are document-centric by
nature. However, in the automotive area, without any
constraints from certification procedures, a pure

centric approach is far more efficient.
In the Valeo approach, maximum benefits are taken
from expressive power and semi-formal verification
capability of the SysML modeling language.
Consequently, requirements or requirements-like

produced during system modeling activities
not reformulated in natural language into an

ERTS 2014 - Piques

external centralized database. On the contrary, the
model itself becomes the central reference
automatically generated documentation only an
illustration of this reference. This philosophy is also
used at implementation level, where requirements or
more exactly requirements-like artefacts
embedded into discipline specific native models (e.g.
Simulink models, for control design).
All the above mentioned principles are summarized
on the figure below, showing the typical mapping of
the tools used at Valeo.

Figure 20: Distributed requirement management

This approach optimises the requirement
management effort because requirements are
distributed among the tool locations where they have
been defined, at each stage of the engineering
process. As a counterpart, the consistency of the
distributed storage must be supported by powerful
traceability tools, with efficient mechanisms for
synchronizing requirements at the interfaces
between modeling layers.

5.2. Standardized interchange formats

The interface between the system modeling tool and
the implementation discipline ones (e.g. hardware,
software, mechanics, …) is a critical issue.
system modeling tool providing the component
specifications (CNDs) for the different disciplines
is crucial to avoid loss of information and
reworking of exchanged data. Among the possible
alternatives, the approaches independent
tools are preferred to those using tool
interaction protocols (e.g. specific APIs). From this
point of view, a file-based exchange mechanism
based on neutral format or standard interchange
format is a good answer.
Preferred relevant interchange standards are:
• RIF/ReqIF (Requirement Interchange Format) to

exchange requirements between requirement
management or traceability tools,

• XMI (XML Metadata Interchange format) to
exchange system models artefacts
SysML tools (with possible extension to other
modeling and simulation tools).

USER

Repository

Customer
Needs

Customer
Needs

User
Requirements

SYSTEM

Architecture Breakdown

COMPONENT Refined Requirements
Design/Validation Elements

Component
Requirements

Traceability
Results

Product

Discipline

Customer

Development
Tools

Architecture
Tools

external centralized database. On the contrary, the
model itself becomes the central reference, and the
automatically generated documentation only an
illustration of this reference. This philosophy is also

at implementation level, where requirements or
artefacts remains

embedded into discipline specific native models (e.g.

All the above mentioned principles are summarized
ow, showing the typical mapping of

: Distributed requirement management

This approach optimises the requirement
management effort because requirements are
distributed among the tool locations where they have

defined, at each stage of the engineering
process. As a counterpart, the consistency of the
distributed storage must be supported by powerful

t mechanisms for
at the interfaces

Standardized interchange formats

The interface between the system modeling tool and
discipline ones (e.g. hardware,

…) is a critical issue. The
the component

for the different disciplines, it
is crucial to avoid loss of information and manual

. Among the possible
approaches independent from the

tools are preferred to those using tool-dependent
(e.g. specific APIs). From this
based exchange mechanism

based on neutral format or standard interchange

interchange standards are:
(Requirement Interchange Format) to

quirements between requirement

(XML Metadata Interchange format) to
artefacts between

SysML tools (with possible extension to other

The maturity levels of these tw
different. RIF/ReqIF format is now mature enough to
allow roundtrip exchange with customers on Valeo
industrial projects, as illustrated by the figure below.
On the other hand, XMI
weaknesses, not being capable
diagram contents and some important properties of
SysML objects.

Figure 21: Requirements

5.3. User requirements in

The initial stakeholder requirements (namely user
requirements) remain captured in text specifications
external to the SysML modeling tool, as in the
classical approach. Typically, these specifications
are stored in a DOORS database but may also be
described using classical word processing or table
editing softwares. The combination of the Reqtify
gateway and of Artisan Studio modeling tool
provides a mechanism to import external text
requirements by creating mirroring SysML
requirements directly into the S
later maintain these data synchronized. In fact, three
kinds of synchronization mechanisms are available:
• Synchronization with a DOORS database
• Synchronization with any kind of requirement file

captured with Reqtify,
• Synchronization with Excel files (feature added

by the Valeo Profile).
The SysCARS modeling activities performed to
analyze stakeholder needs can
updates to the user requirements baseline. However,
the textual requirements are formally upda
controlled in their native
repository and changes are propagated to the
SysML model thanks to the synchronization
mechanism.

5.4. System and component requirements
inside the SysML model

Requirements produced during SysML modeling
activities are not reformulated in natural language
into an external centralized repository. As a
consequence, system and component level
requirements are located inside the SysML model,

Design/Validation Elements

REQTIFY

Traceability
Results

Page 14/17

maturity levels of these two standards are very
format is now mature enough to

allow roundtrip exchange with customers on Valeo
industrial projects, as illustrated by the figure below.

 format suffers from many
weaknesses, not being capable of exchanging
diagram contents and some important properties of

: Requirements exchanges and analyses

requirements in external repositories

The initial stakeholder requirements (namely user
requirements) remain captured in text specifications
external to the SysML modeling tool, as in the
classical approach. Typically, these specifications
are stored in a DOORS database but may also be

ed using classical word processing or table
editing softwares. The combination of the Reqtify
gateway and of Artisan Studio modeling tool
provides a mechanism to import external text
requirements by creating mirroring SysML
requirements directly into the SysML model and to
later maintain these data synchronized. In fact, three
kinds of synchronization mechanisms are available:

Synchronization with a DOORS database,
Synchronization with any kind of requirement file

Synchronization with Excel files (feature added

The SysCARS modeling activities performed to
stakeholder needs can lead to propose

updates to the user requirements baseline. However,
the textual requirements are formally updated and

ir native external requirement
repository and changes are propagated to the
SysML model thanks to the synchronization

System and component requirements
inside the SysML model

Requirements produced during SysML modeling
ctivities are not reformulated in natural language

into an external centralized repository. As a
consequence, system and component level
requirements are located inside the SysML model,

ERTS 2014 - Piques

taking benefits from internal traceability with other
model artefacts.
The standard SysML requirement
mainly limited to an identifier and a description field,
it has been necessary to add complementary
attributes, for efficient requirement
figure bellow shows these additional fields added by
the Valeo profile, using tag definitions.

Figure 22: Stereotyped requirements

As already stated, the use of SysML requirements
limited to non functional requirements.
often as possible, requirements are represented by
SysML artefacts attached to blocks
operations, ports, and states. More than avoiding
reformulating model artefacts
requirements, this approach also saves the cost
declaring traceability relationships between structural
elements and related requirements.

5.5. SysCARS traceability model

The traceability model adopted in the SysCARS
methodology has been pragmatically defined taking
into account the features of the SysML modeling tool
and the kind of verification that could be later
performed.

Figure 23: SysCARS traceability

The main rules used for defining traceability
relationships are the following:
• Derive is used between two levels of

requirements,
• Refine is used between a use case

and the corresponding elicitated requirement

Stakeholders Needs
Definition

Requirements
Analysis

Physical Architecture
Design

Logical Architecture
Design

SCENARIOS (SD)

system
(context)

Mod1

Mod3

SCENARIOS (SD)

system

State1

State3

F
1

1

System
(physical)

B1 B2

B1.1 B1.2 B2.1 B2.2
Fc

Fd

FeFa

FbPBS (BDD)

System (physical)

INTERFACES (IBD)
n

B1.1

B1.2

B2.1
Fc
Fd

Fa

SCENARIOS (SD)

B2.1 B1.2 B2.2

F
c

F
a

F
d

F
b

F1.1

DECOMPOSITIONS (AD)

1.2.1

Fa

Intent1

Intent2

USAGE (UCD)
n

system
(context)

CONTEXT (BDD)
n

system

INTERFACES (IBD)
n

UserReqs

Service1

SERVICES (UCD)
n

Service2

SysReqs
SATISFIES

CompReqs

ALLOCATION

1a 1b 1c

2a 2b 2c

3a

4b 4c 4d

DECOMPOSITION

SATISFIES

SATISFIES

SATISFIES

SATISFIES

REFINES

REFINES

DERIVES

DERIVES

SATISFIES

Stakeholders Needs
Definition

Requirements
Analysis

Physical Architecture
Design

Logical Architecture
Design

SCENARIOS (SD)

system
(context)

Mod1

Mod3

SCENARIOS (SD)

system
(context)

Mod1

Mod3

SCENARIOS (SD)

system

State1

State3

F
1

SCENARIOS (SD)

system

State1

State3

F
1

1

System
(physical)

B1 B2

B1.1 B1.2 B2.1 B2.2
Fc

Fd

FeFa

FbPBS (BDD)
1

System
(physical)

B1 B2

B1.1 B1.2 B2.1 B2.2
Fc

Fd

FeFa

FbPBS (BDD)

System (physical)

INTERFACES (IBD)
n

B1.1

B1.2

B2.1
Fc
Fd

Fa

System (physical)

INTERFACES (IBD)
n

B1.1

B1.2

B2.1
Fc
Fd

Fa

SCENARIOS (SD)

B2.1 B1.2 B2.2

F
c

F
a

F
d

F
b

SCENARIOS (SD)

B2.1 B1.2 B2.2

F
c

F
a

F
d

F
b

F1.1

DECOMPOSITIONS (AD)

1.2.1

Fa

F1.1

DECOMPOSITIONS (AD)

1.2.1

Fa

Intent1

Intent2

USAGE (UCD)
n

Intent1

Intent2

USAGE (UCD)
n

system
(context)

CONTEXT (BDD)
n

system
(context)

CONTEXT (BDD)
n

system

INTERFACES (IBD)
n

system

INTERFACES (IBD)
n

UserReqs

Service1

SERVICES (UCD)
n

Service2

Service1

SERVICES (UCD)
n

Service2

SysReqs
SATISFIES

CompReqs

ALLOCATION

1a 1b 1c

2a 2b 2c

3a

4b 4c 4d

DECOMPOSITION

SATISFIES

SATISFIES

SATISFIES

SATISFIES

REFINES

REFINES

DERIVES

DERIVES

SATISFIES

taking benefits from internal traceability with other

 object being
mainly limited to an identifier and a description field,
it has been necessary to add complementary

t handling. The
shows these additional fields added by

equirements attributes

requirements is
to non functional requirements. Indeed, as

requirements are represented by
blocks; typically by
More than avoiding

into textual
saves the cost of

declaring traceability relationships between structural

The traceability model adopted in the SysCARS
methodology has been pragmatically defined taking
into account the features of the SysML modeling tool
and the kind of verification that could be later

raceability scheme

The main rules used for defining traceability

is used between two levels of

use case or a scenario
requirement,

• Satisfy is used between a model artefact (
state, port, operation,
functional) requirement

• Trace is used between two representations of the
same item, either refined between modeling
levels or reformulated at the same level

Refine and Satisfy relationships shall connect
artefacts developed at the same modeling stage,
while Derive and Trace
capable of linking artefacts

5.6. Verification and validation of requirements

Verifications of requirement traceability
throughout the whole system engineering process. In
fact, two kinds of traceability
performed:
• Internal traceability analyses

model artefacts, directly generated using the
SysML tool,

• External traceability analyses
distributed requirement repositories, done using a
general purpose requirement traceability tool
such as Reqtify.

Internal traceability analyses
performed at each stage of the workflow to veri
model consistency (refer to green
workflow diagram, [figure 1
tables and traceability matrices
coverage of all requirements by appropriate model
artefacts, in accordance with the traceability model
presented at the previous paragraph. These
matrices and tables are generated on demand at
Excel format.
By parsing the SysML database, external traceability
analyses (performed with Reqtify) can also
automatically verify the consistency and the
completeness of the model, in
SysCARS traceability scheme.
based on the analysis of SysML
related relationships and stereotypes, including
coverage links to external documents or requirement
repositories.

6. Coupling to control

The issue of coupling a SysML tool to discipline
related tools (and particularly simulation tools) is not
studied in general but limite
design environments, and particularly to
Matlab/Simulink.

6.1. Specification rather than co

Some approaches promote
as an integration framework for building a whole
executable system model, in order to
dynamics of the system.
system modeling environm
execution mechanisms, with closed connection to
discipline specific simulation tools.

MODES (STM)

Mod1

Mod2

Mod3

1n

STATES (STM)

State1

State2

State3

1n

n

F1.2 F1.2

DECOMPOSITIONS (AD)

1.2.3 1.2.4

n

Fb Fe Fd

DECOMPOSITION

ALLOCATION

1d

2d

DECOMPOSITION

SATISFIES

SATISFIES

MODES (STM)

Mod1

Mod2

Mod3

1
MODES (STM)

Mod1

Mod2

Mod3

1nn

STATES (STM)

State1

State2

State3

1
STATES (STM)

State1

State2

State3

1nn

nn

F1.2 F1.2

DECOMPOSITIONS (AD)

1.2.3 1.2.4

n

Fb Fe Fd

DECOMPOSITION

ALLOCATION

F1.2 F1.2

DECOMPOSITIONS (AD)

1.2.3 1.2.4

n

Fb Fe Fd

DECOMPOSITION

ALLOCATION

1d

2d

DECOMPOSITION

SATISFIES

SATISFIES

Page 15/17

is used between a model artefact (i.e.
, block) and a related (non

requirement.
is used between two representations of the

same item, either refined between modeling
levels or reformulated at the same level

relationships shall connect
developed at the same modeling stage,

Trace relationships are also
artefacts from different levels.

Verification and validation of requirements

equirement traceability are triggered
throughout the whole system engineering process. In
fact, two kinds of traceability analyses are

Internal traceability analyses between SysML
, directly generated using the

al traceability analyses, between the
distributed requirement repositories, done using a
general purpose requirement traceability tool

analyses are the ending activities
performed at each stage of the workflow to verify the

(refer to green states of the
16]). They use requirement

traceability matrices to check the
coverage of all requirements by appropriate model

with the traceability model
presented at the previous paragraph. These

es and tables are generated on demand at

By parsing the SysML database, external traceability
analyses (performed with Reqtify) can also
automatically verify the consistency and the

ss of the model, in accordance with the
traceability scheme. The verifications are
the analysis of SysML artefacts and

related relationships and stereotypes, including
coverage links to external documents or requirement

control design tools

The issue of coupling a SysML tool to discipline
related tools (and particularly simulation tools) is not
studied in general but limited to coupling to control

environments, and particularly to

rather than co-simulation

Some approaches promote to use the SysML model
as an integration framework for building a whole
executable system model, in order to analyze the

 To support this, the static
system modeling environment must be upgraded by
execution mechanisms, with closed connection to
discipline specific simulation tools.

ERTS 2014 - Piques

This way has not been chosen at Valeo’s
reasons:
• A higher degree of sophistication of the SysML

environment would go against a wide adoption b
(generalist) system engineers,

• Somehow, there is a contradiction between flat
deep detailed modeling and the layered
refinement approach promoted by system
engineering,

• Simulation and co-simulation capabilities of
SysML tools are quite limited compared to
of domain specific tools,

• For large scale system, a full integration
simulated model is practically intractable.

The final objective being the verification and
validation of the whole system model, a static
verification of traceability properties, as discussed in
previous paragraphs, has been preferred. The
purpose is then to gain maximal confidence in the
completeness of the intellectual progress which led
to the physical architecture solution.
In a second time, as explained in the next
paragraph, each component will be efficiently
(and possibly simulated) independently in its
discipline related development (and possibly
modeling) environment, based on input
system model.

6.2. Transfer of structural description
Simulink

The problem of collaboration between SysML and
Simulink is not stated in terms of (co)simulation but
rather in terms of efficiently transferring
synchronizing modeling data be
environments. The synchronization at architecture
description level was proven to be an efficient way to
transfer information between system engineering
teams and control design teams.

Figure 24: Synchromization between SysML IBD and
Simulink MDL

As illustrated by the figure above, the approach
selected was to transfer the IBD structural
descriptions of control law components, from SysML
towards Simulink. The resulting Simulink models,

Valeo’s for several

higher degree of sophistication of the SysML
environment would go against a wide adoption by

Somehow, there is a contradiction between flat
deep detailed modeling and the layered

promoted by system

simulation capabilities of
mpared to those

For large scale system, a full integration
simulated model is practically intractable.

The final objective being the verification and
idation of the whole system model, a static

verification of traceability properties, as discussed in
previous paragraphs, has been preferred. The
purpose is then to gain maximal confidence in the
completeness of the intellectual progress which led

In a second time, as explained in the next
efficiently refined

(and possibly simulated) independently in its
discipline related development (and possibly
modeling) environment, based on input data from the

descriptions to

The problem of collaboration between SysML and
Simulink is not stated in terms of (co)simulation but

transferring and
synchronizing modeling data between both
environments. The synchronization at architecture
description level was proven to be an efficient way to
transfer information between system engineering

: Synchromization between SysML IBD and

, the approach
selected was to transfer the IBD structural
descriptions of control law components, from SysML
towards Simulink. The resulting Simulink models,

initially corresponding to empty structures are
afterward refined, and control algorithms
implemented, simulated and validated inside the
Simulink modeling and execution environment.
Artisan Studio natively provides the main features
required to synchronize and update SysML structural
models and Simulink models:
propagated in both directions. However, extensions
in the existing mechanisms would be necessary for a
full interoperability between both environments. The
suggested evolutions are presented in the next
paragraph. Moreover, using the XMI int
format would be preferred to Artisan Studio
proprietary mechanisms.

6.3. Mapping between SysML and Simulink
structural artefacts

The table below presents the detailed mapping for
an efficient synchronization of structural descriptions
between SysML Internal Block Diagrams and
Simulink Dataflow models.
verified thanks to a mock
Matlab/Simulink. Currently existing features of
Artisan Studio are written in standard font, while
suggested extensions are written with
characters.

SysML
Internal Block Diagram

Block

Flow port (in)
Flow port (in) + “control”

stereotype
Flow port (out)

Flow port (out) + “control”
stereotype
Connector
Item flow

Requirement with “Satisfy”
link to a block or a port

Block description

Block + “Mux/Demux”
stereotype

Statechart attached to a
block

Figure 25: Mapping between IBD and Simulink

The main mandatory evolution
the ability to deal with Simulink
with continuous flows. Indeed, events are
systematically used to specify control flow
mechanisms of algorithms.
was to add a “control” stereotypes to SysML
order to make a distinction between control flo
and data flows.
The ability to transfer names to Simulink
is also mandatory, because in most situations they
are used as variable names by

Page 16/17

initially corresponding to empty structures are
refined, and control algorithms

implemented, simulated and validated inside the
Simulink modeling and execution environment.

provides the main features
to synchronize and update SysML structural

models and Simulink models: changes can be
propagated in both directions. However, extensions
in the existing mechanisms would be necessary for a

between both environments. The
suggested evolutions are presented in the next

Moreover, using the XMI interchange
format would be preferred to Artisan Studio

between SysML and Simulink
s

The table below presents the detailed mapping for
an efficient synchronization of structural descriptions

ernal Block Diagrams and
Simulink Dataflow models. This mapping has been
verified thanks to a mock-up implemented under

Currently existing features of
Artisan Studio are written in standard font, while
suggested extensions are written with bold

Simulink
MDL File

Model Reference
Sub-system

Inport
Trigger port

Outport
Outport + Function-call

Connector
Signal name – connector

name
DocBlock inside the

corresponding sub-system
DocBlock inside the

corresponding sub-system
Mux/Demux

Stateflow attached to a
MDL

etween IBD and Simulink

The main mandatory evolution required is related to
the ability to deal with Simulink events and not only
with continuous flows. Indeed, events are
systematically used to specify control flow
mechanisms of algorithms. The solution selected
was to add a “control” stereotypes to SysML ports, in
order to make a distinction between control flows

The ability to transfer names to Simulink connectors
is also mandatory, because in most situations they
are used as variable names by automatic code

ERTS 2014 - Piques
 Page 17/17

generation tools. The selected solution was to use
the name of item flows, but this is not completely
satisfactory for exchanging Mux/Demux signals, and
evolutions of SysML 1.3 (and later) in this sense
would be welcome.
The possibility to transfer requirements from SysML
to Simulink could be emulated by creating Simulink
documentation blocks at the appropriate sub-system
level.
It would be also potentially very interesting to
transfer information related to the expected
behaviour of the algorithm. For that purpose, SysML
state machines could be translated into Simulink
Stateflows. Limitation of the semantics of
transferable state machines could be tolerated.

6.4. Necessary evolutions of XMI format

The efficient bi-directional synchronization between
a SysML model and a Simulink model is not only a
matter of tools. Indeed, there remains blocking
issues due to limitations and weaknesses of the XMI
format. Among possible good ideas, it would be
welcome to attach GUID to objects to allow unique
identification and synchronization between tools, or
to systematically store object description fields (with
possibly not only ASCII characters!).

7. Conclusion

As a conclusion, experiences from Valeo pilot
projects and more recently from industrial projects
have confirmed that the SysML language provides
an adequate lever to extend the modeling practices
to the area of System and Product Engineering.
Valeo’s experiences have shown that a successful
approach requires a precisely defined modeling
methodology (SysCARS) but also a solid training
course and the sponsoring of the organization.
Furthermore, the customisation of existing tools in a
workflow driven mindset is mandatory. Further
improvements remain necessary on commercial
tools regarding ergonomics and interfacing with
simulation and safety analyses tools. And last but
not least, we are convinced that the sharing of a
commonly agreed data model describing the System
Engineering concepts (such as “functions” or an
“interfaces”) independently from any language or
tooling solution, remains a key enabler for System
modeling adoption.

8. References

[1] Eric Andrianarison, Jean-Denis Piques: "SysML for
embedded automotive Systems: a practical
approach", ERTS 2010.

[2] Eric Andrianarison, Jean-Denis Piques: "SysML for
embedded automotive Systems: lessons learned",
ERTS 2012.

[3] Françoise Caron: "Exigences et ingénierie
système: Mise en œuvre avec SysML", EIRIS
Conseil, 2008.

[4] Françoise Caron: "A collaborative process based
on systems engineering and mechatronics
methods", 22th Annual International INCOSE
Symposium, 2012.

9. Acronyms

AD Activity Diagram
BDD Block Definition Diagram
CND Component Needs Document
COTS Commercial Off-The-Shelf
DSL Domain Specific Language
EIA 632 System Engineering Standard
GUI Graphical User Interface
GUID Globally Unique IDentifier
IBD Internal Block Diagram
IEEE 1220 System Engineering Standard
ISO 15288 System Engineering Standard
ISO 26262 Automotive Functional Safety Regulation
MBSE Model Based System Engineering
MDL Simulink file extension
MoE Measure Of Effectivness
MoP Measure Of Performance
OMG Object Management Group
REQ REQuirement Diagram
RIF/ReqIF Requirements Interchange Format
SD Sequence Diagram
SND Stakeholders’ Needs Document
STM STate Machine diagram
SyDD System Design Document
SyRD System Requirements Document
SysCARS System Core Analyses for Robustness

and Safety
SysML System Modeling Language
UCD Use case Diagram
XMI XML Metadata Interchange

