

Co-intervention : Mathématiques / Optique photonique

Seconde Pro OPTilLum

TP générateur sphérique - géométrie

Activité professionnelle:

- Lire des schémas et les relier aux spécifications données dans le contrat de phase
- Compléter le contrat de phase : Calculer la Flèche théorique sur le contrat de phase

Situation professionnelle problématisée :

En vue de l'usinage et du contrôle d'une lentille, vous devez calculer le paramètre théorique de contrôle (la flèche) permettant de valider votre usinage

Compétences mobilisées en optique - photonique :

C1.3

CONTRÔLER LES COMPOSANTS OPTIQUES PHOTONIQUES ET CONSIGNER LES CARACTÉRISTIQUES MESURÉES

Principales activités mettant en œuvre la compétence :

P1A2 - Réalisation de composants optiques photoniques

P1A3 - Contrôle de composants optiques photoniques

Compétences mobilisées en mathématiques :

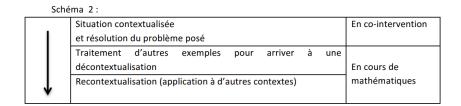
S: S'approprier

AR: Analyser Raisonner

R : Réaliser V : Valider

C: Communiquer

Capacité	Connaissances
Calculer des longueurs, des mesures d'angles dans les	Figures planes usuelles (triangle, quadrilatère, cercle)
figures	Le théorème de Pythagore


Automatisme:

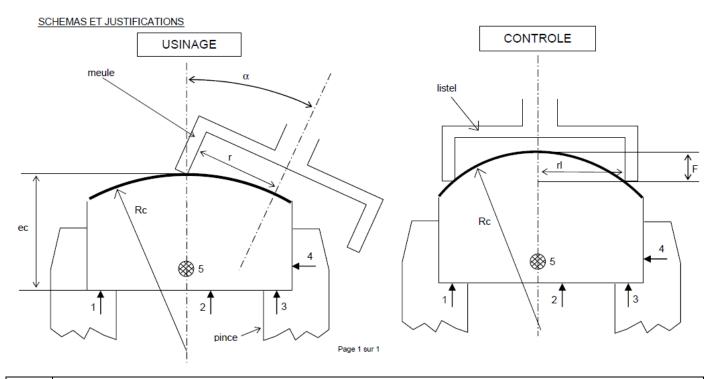
- Détermination d'un arrondi
- Expression d'un résultat dans une unité adapté

Modèle de co-intervention :


La situation professionnelle est la situation déclenchante, elle permet d'aborder les calculs de longueurs dans le triangle rectangle dans ce contexte particulier. Le professeur de mathématiques aide à résoudre le problème posé.

Il s'appuie sur la situation puis d'autres exemples pour faire émerger le modèle. Puis il pourra utiliser les connaissances dans de nouveaux contextes.

Modalité d'organisation au sein de la classe :


- Les élèves travaillent en îlot
- Les deux enseignants circulent dans la classe et peuvent aider les élèves qui en ont besoin
- Les deux enseignants peuvent ainsi intervenir sur un plus grand nombre d'élèves

Document élève :

AR

78	Ajustement inclinaison de la broche	Sphéromètre	Listel Øint 40mm Rayon de courbure Rc = 99,4 ^{00,8} et Flèche F =
79	usinage	Sphéromètre Calibre à coulisse	Listel Øint 40mm Rayon de courbure Rc = $99,4^{0/0,8}$ et Flèche F = $2.03^{-0,05/0}$ mm Profondeur de passe a = $0,1$ mm Epaisseur au centre ec = $6,6 \pm 0.1$ mm

- - 2. Proposer une stratégie mathématique pour calculer la flèche. Ici aucun calcul n'est demandé. Expliquer juste vos étapes pour la trouver.

Noter votre réponse	Réponse retenue par la classe

	3. Compléter le schéma ci-dessous en indiquant les mesures et les unités			
S	Iistel			
R	4. Calculer OH (arrondir le résultat au centième) Besoin d'aide : demander la fiche cours			
V	5. En déduire la valeur théorique de la flèche (justifier votre réponse)			
	6. Compléter le tableau ci-dessous			
V	Spécifications à contrôler Valeurs attendues Valeurs mesurées validation			
	La flèche F OUI NON			

Le théorème de Pythagore et sa réciproque

1. Vocabulaire dans le triangle rectangle :

Dans un triangle rectangle (un angle est droit 90 °), le côté opposé (en face) de l'angle droit s'appelle l'hypoténuse.

2. Carré d'un nombre et racine carrée :

> Le carré d'un nombre est égal au produit du nombre par lui-même :

$$a^2 = a \times a$$

La racine carrée d'un nombre est le nombre positif dont le carré est égal à ce nombre.

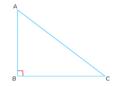
$$\left(\sqrt{a}\right)^2 = a$$

Exemple:

- on sait que $8^2 = 64$, donc $\sqrt{64} = \sqrt{8^2} = 8$
- $\sqrt{21}\approx 4{,}58$, ici la réponse est donnée par la calculatrice car 21 n'est pas la carré un nombre entier.

3. Théorème de Pythagore :

D'après le théorème de Pythagore : Dans un triangle rectangle le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.


⇒ Le théorème de Pythagore sert à trouver la longueur d'un coté d'un triangle rectangle connaissant les longueurs des 2 autres côtés.

Exemple:

$$BA = ?$$

$$AC = 8 mm$$

$$BC = 3 mm$$

D'après le théorème de Pythagore dans le triangle ABC rectangle en B.

$$AC^2 = BA^2 + BC^2$$

$$AC^2 - BC^2 = BA^2 + BC^2 - BC^2$$

$$8^2 - 3^2 = BA^2$$

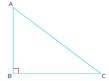
$$64-9 = BA^2$$

$$BA^{2} = 55$$

$$BA=\sqrt{55} \approx 7,42 \text{ mm}$$

4. Réciproque du théorème de Pythagore :

Dans un triangle si le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés alors le triangle est rectangle et l'hypoténuse est le plus grand des côtés.


⇒ La réciproque du théorème de Pythagore sert à prouver qu'un triangle est rectangle. Il faut connaître les longueurs des 3 côtés du triangle.

Exemple:

BA = 3 mm

AC = 5 mm

BC = 4 mm

 $AC^2 = 5^2 = 25$