# Modélisation et Simulation des Systèmes Multi-Physiques avec MATLAB – Simulink (R2018a) pour l'étudiant et l'ingénieur Troisième édition

# **Introduction au Model Based Design**





- MATLAB
- Simulink
- Simscape
- Simscape Multibody
- Simscape Fluids
- Simscape Electronics
- Stateflow





# **Ivan LIEBGOTT**

# Modélisation et Simulation des Systèmes Multi-Physiques avec MATLAB/Simulink R2018a pour l'étudiant et l'ingénieur Introduction au Model-Based-Design

#### Auteur : Ivan LIEBGOTT

*Professeur de Chaire Supérieure en Classes Préparatoires aux Grandes Ecoles Lycée des Eucalyptus, Nice* 

Ingénieur diplômé de l'Institut National des Sciences Appliquées (INSA) de Lyon MASTER en conception de structures Aéronautiques et Spatiales (ISAE-SUPAERO) Agrégé de Sciences de l'Ingénieur Ancien élève de l'Ecole Normale Supérieure de Cachan

#### ivan.liebgott@gmail.com

Rejoignez-moi sur Linked in

Ce livre a été créé pour être librement partagé avec la communauté des utilisateurs de MATLAB. Vos remarques et vos suggestions seront les bienvenues et me permettront de faire évoluer et d'améliorer cet ouvrage. Cette version est la troisième écriture du livre et fait suite aux éditions de 2013 et 2015.

Toute utilisation, même partielle, du contenu de ce document devra obligatoirement faire référence à l'ouvrage et à son auteur.



**Ivan LIEBGOTT 2018** 

### Vous pouvez télécharger l'ensemble des modèles numériques utilisés dans ce livre en version MATLAB 2018b à partir du lien suivant :

https://www.dropbox.com/s/jwla2t2fg0zj5i6/Modeles%20livre%20Modelisation%20multiphysique%20MATLAB%202018a%20%28Ivan%20LIEBGOTT%29.zip?dl=0

Ivan LIEBGOTT - Modélisation et simulation des systèmes multi-physiques

#### Préface :

Les ingénieurs sont au cœur du processus de conception des systèmes complexes et doivent chaque jour relever les défis de la compétitivité, de l'innovation et de la performance. Cela ne peut se faire sans l'intégration de processus industriels structurés, ni sans la maitrise des outils modernes de modélisation et de simulation. A chaque étape du cycle de conception, les méthodes mises en œuvre doivent permettre de baisser les coûts, de réduire le risque d'erreur et d'en minimiser les impacts.

Au cœur de ce processus, la modélisation et la simulation numérique jouent un rôle majeur et permettent aux ingénieurs d'anticiper, de comprendre et de vérifier les analyses qu'ils mènent tout au long du projet.

Les démarches industrielles standards, comme le cycle en V intègrent pleinement la simulation numérique au travers de méthodes associées comme le « Model Based Design » (conception basée sur le modèle). Les outils modernes de simulation permettent de créer des modèles globaux complexes intégrant tous les comportements du système et prenant en compte l'ensemble des interactions, cette démarche est appelée modélisation multi-physique. Le système réel peut avantageusement être remplacé par son modèle numérique pour réaliser des tests qui auparavant mobilisaient des moyens matériels et humains importants. Cette démarche impose de disposer de modèle validés qui reproduisent fidèlement le comportement des systèmes réels.

Cet ouvrage vous présente une approche de la modélisation multi-physique qui exploite les fonctionnalités et les innovations des logiciels de simulation afin de rendre le processus de modélisation plus rapide et plus efficace. La plate-forme de simulation utilisée est le logiciel MATLAB/Simulink version 2018a.

L'ouvrage propose de donner les clés permettant d'aborder la modélisation globale d'un système en créant le lien entre les méthodes industrielles et les méthodes utilisées dans le cycle de formation des ingénieurs. Il est illustrée par de très nombreux exemples dans différents domaines de la technologie (électrique, hydraulique, mécanique...) et met en évidence l'interconnexion des domaines physiques.

Les fondamentaux de tous les outils nécessaires pour mener cette démarche sont présentés :

- MATLAB
- Simulink
- Simscape
- Fluids
- Multibody
- Electronics
- Stateflow

La démarche propose une introduction à leur utilisation et ne vous rendra expert dans aucun d'eux. Vous pourrez par contre en percevoir tout le potentiel et l'exploiter plus en profondeur en fonction des besoins spécifiques que vous rencontrerez dans votre démarche de modélisation.

Bonne lecture,

Ivan LIEBGOTT

#### Table des matières

### Chapitre 1 : Concepts et stratégies en modélisation

| I. Introduction                                                           |    |
|---------------------------------------------------------------------------|----|
| II. Industrialisation et cycle de conception d'un système                 |    |
| A. Les compétences de l'ingénieur                                         |    |
| B. Le triptyque des performances <sup>(*)</sup>                           |    |
| III. Mise en œuvre de la démarche- Introduction au « Model Based Design » |    |
| A. Architecture matérielle du projet                                      |    |
| B. La phase d'Expression et de Spécification du Besoin                    |    |
| C. La phase de Conception-Modélisation-Simulation                         |    |
| 1. La modélisation « white box »                                          | 20 |
| 2. La modélisation « Multi-Physique »                                     | 22 |
| 3. La simulation des modèles                                              | 23 |
| 4. La comparaison des performances simulées et mesurées                   |    |
| 5. La modélisation « gray box »                                           |    |
| 6. Le Model-in-the-loop (MIL)                                             |    |
| D. La phase de Codage Implémentation                                      |    |
| 1. Le Software-in-the-loop (SIL)                                          |    |
| 2. Le Processor-in-the-loop (PIL)                                         |    |
| E. La phase d'Intégration Vérification                                    |    |
| 1. Le Hardware-In-the-Loop (HIL)                                          |    |
| F. La phase de Validation Recette                                         |    |
| I. Le logiciel MATLAB-Simulink                                            |    |
| A. Description et hiérarchie des outils utilisés                          |    |
| 1. MATLAB                                                                 |    |
| 2. Simulink                                                               |    |
| 3. Simscape                                                               |    |
| 4. Stateflow                                                              |    |
| 5. Utilisation des outils de modélisation                                 |    |
| II. Présentation de l'environnement MATLAB – Simulink                     |    |
| A. Lancement du logiciel                                                  |    |
| B. La fenêtre de l'environnement MATLAB                                   |    |
| 1. La barre de commande MATLAB                                            | 43 |
| C. La fenêtre de l'environnement Simulink                                 |    |
| D. Configuration de MATLAB – Simulink                                     | 45 |
| 1. Nommer un fichier dans MATLAB/Simulink                                 |    |
| 2. Le « path » de MATLAB                                                  | 45 |
| 3. Ajout de dossiers dans le « path » pour toutes les sessions            | 45 |
| 4. Ajout de dossiers dans le « path » pour la session courante            |    |
| III. Stratégie de conception d'un modèle multi-physique                   | 47 |

| A. Lien avec le diagramme Chaîne d'énergie/Chaîne d'information                              | 47 |
|----------------------------------------------------------------------------------------------|----|
| IV. Application à un pilote hydraulique de bateau                                            | 49 |
| A. Diagramme présentant la chaîne d'énergie et d'information du pilote hydraulique de bateau | 50 |
| B. Modèle multi-physique du pilote hydraulique de bateau réalisé avec MATLAB - Simulink      | 51 |
| C. Chargement et simulation du modèle                                                        | 52 |
| D. Visualisation des résultats issus du modèle multi-physique                                | 52 |
| E. Exploration du modèle                                                                     | 58 |
| 1. Exploration du modèle de la chaîne d'information : Simulink et Stateflow                  | 58 |
| 2. Exploration du modèle de la chaîne d'énergie : Simscape Electric Library                  | 59 |
| 3. Exploration de la chaîne d'énergie : Fluids                                               | 60 |
| 4. Exploration de la chaîne d'énergie : Multibody                                            | 61 |
| 5. Exploration de la chaîne d'énergie : Simulink                                             | 62 |
| F. Pilotage interactif du modèle                                                             | 62 |
| V. Exemples de modèles multi-physique et exploitations possibles                             | 65 |
| A. Le robot Maxpid                                                                           | 65 |
| B. L'axe linéaire Control'X                                                                  | 69 |
| C. Comment faire un modèle multi-physique avec MATLAB-Simulink ?                             | 74 |

## Prise en main de Simscape

| I. Introduction à la modélisation acausale avec Simscape                       | 75 |
|--------------------------------------------------------------------------------|----|
| A. Choix des composants                                                        | 76 |
| B. Placement et assemblage des composants                                      | 77 |
| C. Les différents types de ports et de connexions                              | 78 |
| D. Paramétrage des composants                                                  | 80 |
| E. Lancement de la simulation et analyse des résultats                         |    |
| II. Comparaison avec l'approche causale                                        | 85 |
| A. Equation de comportement du système                                         | 85 |
| B. Choix des composants                                                        | 85 |
| C. Placement et assemblage des composants                                      | 85 |
| D. Paramétrage des composants                                                  |    |
| E. Lancement de la simulation et analyse des résultats                         |    |
| F. Avantage et inconvénients des approches causale et acausale                 |    |
| III. Les fondamentaux de la modélisation avec Simscape                         | 90 |
| A. Notions de domaines physiques                                               | 90 |
| B. Les blocs importants de Simscape                                            | 91 |
| C. Variables de type « Across » et « Throught » et positionnement des capteurs | 92 |
| D. L'orientation des composants                                                | 92 |
| 1. Utilisation de composants actifs                                            | 93 |
| 2. Implantation et orientation des capteurs                                    | 96 |
| 3. Utilisation de composants dont la dynamique est orientée                    |    |
| 4. Utilisation de composants passifs                                           |    |
| 5. Choix du solveur                                                            |    |
| 6. Les problèmes que peut rencontrer le solveur                                |    |
| IV. Exemples de modélisation multi-domaine                                     |    |
| Ivan LIEBGOTT - Modélisation et simulation des systèmes multi-physiques        | 7  |

| A. Domaine électromécanique – Axe linéaire                                                             |                     |
|--------------------------------------------------------------------------------------------------------|---------------------|
| 1. Choix des composants                                                                                |                     |
| 2. Placement et assemblage des composants                                                              |                     |
| 3. Paramétrage des composants                                                                          |                     |
| 4. Simulation du modèle en boucle ouverte                                                              |                     |
| 5. Utilisation du Data-logger de Simscape                                                              |                     |
| 6. Création de sous-systèmes                                                                           | 119                 |
| 7. Modélisation de l'asservissement en position de l'axe                                               | 126                 |
| B. Domaines hydraulique-mécanique – vérin hydraulique simple effet                                     |                     |
| 1. Choix des composants                                                                                |                     |
| 1. Placement et assemblage des composants                                                              | 134                 |
| 2. Paramétrage des composants                                                                          | 135                 |
| 3. Simulation                                                                                          | 140                 |
| 4. Utilisation des fonctionnalités de routage des signaux                                              | 141                 |
| 5. Remplacement de la source de pression par une source de débit                                       | 144                 |
| C. Domaine électrique –Commande PWM d'un moteur à courant continu                                      | 147                 |
| 1. Utilisation du composant « Controlled PWM Voltage »                                                 | 148                 |
| 2. Commande PWM d'un moteur à courant continu                                                          | 151                 |
| 3. Utilisation du composant « H-Bridge » (pont en H)                                                   |                     |
| D. Rendre un modèle interactif, utilisation de la bibliothèque « dashboard »                           | 159                 |
| 1. Exemple de modèle interactif                                                                        |                     |
| 2. Utilisation des blocs de la bibliothèque                                                            |                     |
| V. Application pédagogique                                                                             |                     |
| A. Présentation du hacheur série                                                                       |                     |
| B. Objectifs pédagogiques                                                                              |                     |
| C. La construction du modèle                                                                           |                     |
| D. La didactisation du modèle                                                                          |                     |
| 1. Création d'un sous-système et ajout d'une image                                                     | 179                 |
| 2. L'instrumentation du modèle                                                                         |                     |
| 3. Conclusion sur la didactisation du modèle                                                           |                     |
| 4. Optimiser la didactisation du modèle en fonction de l'objectif d'apprentissage visé                 |                     |
| E. Exploitation des résultats issus de la simulation du modèle                                         |                     |
| 1. Objectif 1 : Comprendre la circulation du courant dans le circuit en phase active et en phase de    | e roue libre<br>189 |
| 2. Objectif 2 : Visualiser et évaluer l'influence du rapport cyclique sur le courant moteur            |                     |
| 3. Objectif 3 : Visualiser et évaluer l'influence de la fréquence de hachage sur l'ondulation du cour  | ant 193             |
| 4. Objectif 4 : Visualiser et évaluer l'influence de l'inductance de la charge sur l'ondulation du cou | rant 195            |
| F. Conclusion                                                                                          |                     |

#### Prise en main de MATLAB

| I. Introduction                            | 198 |
|--------------------------------------------|-----|
| A. Création de variable                    | 198 |
| B. Création de vecteur                     | 199 |
| C. Indexation des composantes d'un vecteur | 199 |
|                                            |     |

| D. Tracés de courbes                                                         |  |
|------------------------------------------------------------------------------|--|
| E. Mise en forme élémentaires des courbes                                    |  |
| F. Annotation des graphiques                                                 |  |
| G. Créer un script élémentaire                                               |  |
| H. Les opérateurs de comparaison de MATLAB                                   |  |
| I. Les structure de boucles usuelles                                         |  |
| 1. Syntaxe de la boucle if – elseif – else                                   |  |
| 2. Syntaxe de la boucle for                                                  |  |
| 3. Syntaxe de la boucle while                                                |  |
| II. Exemple d'exploitations                                                  |  |
| A. Interpolation d'une série de données                                      |  |
| B. Le calcul symbolique avec MATLAB                                          |  |
| 1. Résolution d'une équation algébrique                                      |  |
| 2. Développer ou factoriser une expression                                   |  |
| 3. Dériver une fonction                                                      |  |
| 4. Intégrer une fonction                                                     |  |
| 5. Utiliser la transformée de Laplace                                        |  |
| 6. Utiliser la transformée inverse de Laplace                                |  |
| 7. Décomposition en éléments simples                                         |  |
| 1. Résolution d'une équation différentielle d'ordre 1                        |  |
| 1. Résolution d'une équation différentielle d'ordre 2                        |  |
| C. Manipulation des fonctions de transfert                                   |  |
| 1. Création d'une fonction de transfert                                      |  |
| 2. Opérations sur les fonctions de transfert                                 |  |
| 3. Tracer les réponses temporelles d'un système                              |  |
| 4. Tracer les réponses fréquentielles d'un système                           |  |
| 5. Evaluer les marges de gain et de phase                                    |  |
| 6. Tableau récapitulatif des commandes utiles sur les fonctions de transfert |  |
|                                                                              |  |

### Prise en main de Simulink

| I. Introduction                                                 |  |
|-----------------------------------------------------------------|--|
| II. Régulation en température d'un four                         |  |
| A. Ouverture du modèle                                          |  |
| B. Ouverture du script contenant la définition des variables    |  |
| C. Lancement de la simulation                                   |  |
| D. Tracer un diagramme de Bode avec Simulink                    |  |
| 1. Tracer un digramme de Bode en boucle ouverte                 |  |
| 2. Tracer un diagramme de Bode en boucle fermée                 |  |
| E. Tracer d'un diagramme de Black-Nichols                       |  |
| F. Ajout et paramétrage d'une saturation                        |  |
| G. Exportation des variables de la simulation vers le Workspace |  |
| 1. Ecriture d'un script pour tracer une série de courbes        |  |
|                                                                 |  |

#### Prise en main de Stateflow

| I. | Introduction à Stateflow                                                        | 252 |
|----|---------------------------------------------------------------------------------|-----|
|    | A. Modélisation d'une machine à état avec Stateflow                             | 252 |
|    | B. Construction du diagramme d'état                                             | 252 |
|    | 1. Ouverture du modèle                                                          | 252 |
|    | 2. Insertion d'un « chart »                                                     | 253 |
|    | C. Création d'un diagramme d'état élémentaire                                   | 254 |
|    | 1. Création des états                                                           | 254 |
|    | 2. Création d'une transition par défaut                                         | 255 |
|    | 3. Création des transitions                                                     | 255 |
|    | 4. Création des actions dans les états                                          | 255 |
|    | 5. Création des étiquettes de transitions                                       | 256 |
|    | 6. Définitions des variables d'entrée et de sortie du diagramme d'état          | 257 |
|    | 7. Simulation du diagramme d'états                                              | 261 |
|    | D. Architecture des machines à états                                            | 261 |
|    | 1. La hiérarchie des états                                                      | 261 |
|    | 2. Les priorités de test des transitions                                        | 262 |
|    | 3. Etats parallèles                                                             | 262 |
|    | E. Ajout de niveaux hiérarchique et d'états parallèles dans un diagramme d'état | 263 |
|    | F. Récapitulatif et complément des commandes utiles de Stateflow                | 269 |
|    |                                                                                 |     |

#### Prise en main de Multibody

| I. Introduction à Multibody                                         | 271 |
|---------------------------------------------------------------------|-----|
| A. Analyse d'un modèle Multibody                                    | 271 |
| B. Paramétrage de la gravité                                        | 273 |
| II. Intégration d'un modèle Multibody dans un modèle multi-physique | 274 |
| A. Connexions du modèle                                             |     |
| B. Interfaçage entre Simscape et Multibody                          | 277 |
| 1. Interfaçage entre Simscape et Multibody pour la translation      | 277 |
| 2. Interfaçage entre Simscape et Multibody pour la rotation         | 278 |
| 3. Ajout de ports sur une liaison                                   | 279 |
| 4. Modélisation d'un effort extérieur variable                      |     |
| C. Résultat de la simulation                                        |     |
| III. Importation d'un modèle SolidWorks dans Multibody              |     |
| A. Les principes                                                    |     |
| B. Installation de « Multibody Link »                               |     |
| C. Conversion d'un fichier assemblage de Solidworks en fichier xml  |     |

### L'identification d'un modèle

| I. La modélisation black-box, l'identification                        | 293 |
|-----------------------------------------------------------------------|-----|
| A. Présentation de la méthode                                         | 293 |
| B. Mise en œuvre de la méthode en utilisant la toolbox Identification | 294 |
| 1. Analyse des données utilisées pour l'identification                | 294 |
| 2. Ouverture et présentation de la toolbox « SystemIdentification »   | 295 |
| 3. Importation des données                                            | 296 |
| C. Utilisation de la méthode en utilisant les lignes de commande      | 301 |

### Le contrôle commande avec MATLAB/Simulink

| I. Introduction                                                                  | 304 |
|----------------------------------------------------------------------------------|-----|
| II. Réglage automatique d'un PID                                                 | 304 |
| A. Modélisation                                                                  | 304 |
| B. Ouverture du modèle                                                           | 305 |
| 1. Analyse de la réponse temporelle                                              | 308 |
| 2. Importation dans Simulink                                                     | 312 |
| III. Réglage manuel d'un PID avec l'outil « Control System Designer »            | 313 |
| A. Ouverture du modèle                                                           | 313 |
| B. Réglage du PID                                                                | 314 |
| 1. Lancement de Control System Designer                                          | 314 |
| 2. Diagrammes de Bode et de Black de la FTBO                                     | 316 |
| 3. Visualisation des réponses temporelles                                        | 318 |
| 4. Réglage du PID                                                                | 323 |
| 5. Définition et visualisation des critères de performance                       | 324 |
| 6. Réglage du PID à l'aide des curseurs                                          | 326 |
| 7. Exportation du réglage dans le modèle Simulink                                | 329 |
| IV. Conception et réglage d'un correcteur de forme quelconque                    | 330 |
| A. Ouverture du modèle                                                           | 330 |
| B. Conception du correcteur                                                      | 331 |
| 1. Diagrammes fréquentielles de la FTBO                                          | 333 |
| 2. Visualisation des réponses temporelle et fréquentielle de la FTBF             | 336 |
| 3. Synthèse du correcteur                                                        | 340 |
| 4. Visualisation de l'influence du gain de la FTBO                               | 341 |
| 5. Ajout d'un intégrateur                                                        | 343 |
| 6. Ajout d'un correcteur à avance de phase (Lead)                                | 345 |
| 7. Ajout d'un filtre rejecteur (Notch)                                           | 347 |
| 8. Réglage d'un filtre rejecteur                                                 | 347 |
| 9. Exportation de la fonction de transfert du correcteur vers le modèle Simulink | 352 |