Modélisation et simulation des systèmes multi-physiques avec MATLAB – Simulink (R2013a)

pour l'enseignement des

Sciences Industrielles pour l'Ingénieur

Ivan LIEBGOTT

Ivan LIEBGOTT Professeur en Classes Préparatoires aux Grandes Ecoles Lycée des Eucalyptus (NICE)

ivan.liebgott@gmail.com

L'utilisation à caractère commerciale ou l'hébergement sur un site internet de ce document et des modèles associés sans autorisation écrite de l'auteur est interdite.

Ivan LIEBGOTT 2013

Table des matières

Chapitre 1 : Introduction et présentation des outils de modélisation

I. La modélisation multi-physique	8
II. Le logiciel MATLAB-Simulink	8
A. Description et hiérarchie des outils utilisés	9
1. MATLAB	9
2. Simulink	9
3. Simscape	10
4. Stateflow	12
5. Utilisation des outils de modélisation	12
III. Présentation de l'environnement MATLAB – Simulink	14
A. Lancement du logiciel	14
B. La fenêtre de l'environnement MATLAB	14
1. La barre de commande MATLAB	15
C. La fenêtre de l'environnement Simulink	15
D. Configuration de MATLAB – Simulink	17
1. Le « path » de MATLAB	17
2. Procédure d'installation d'un compilateur C	18
IV. Stratégie de conception d'un modèle multi-physique	19
A. Lien avec le diagramme Chaîne d'énergie/Chaîne d'information	19
V. Application à un pilote hydraulique de bateau	21
A. Diagramme présentant la chaîne d'énergie et d'information du pilote hydraulique de bateau	22
B. Modèle multi-physique du pilote hydraulique de bateau réalisé avec MATLAB - Simulink	23
C. Chargement et simulation du modèle	24
D. Visualisation des résultats issus du modèle multi-physique	24
E. Exploration du modèle	29
1. Exploration du modèle de la chaîne d'information : Simulink et Stateflow	29
2. Exploration du modèle de la chaîne d'énergie : Simscape Electric Library	30
3. Exploration de la chaîne d'énergie : SimHydraulics	31
4. Exploration de la chaîne d'énergie : SimMechanics 2G	32
5. Exploration de la chaîne d'énergie : Simulink	33
F. Comment faire un modèle multi-physique avec MATLAB-Simulink ?	34

Chapitre 2 : Prise en main de Simscape

I. Introduction à la modélisation acausale avec Simscape	35
A. Choix des composants	
B. Placement et assemblage des composants	
C. Les différents types de ports et de connexions	
D. Paramétrage des composants	40
E. Lancement de la simulation et analyse des résultats	
II. Comparaison avec l'approche causale	43
A. Equation de comportement du système	
B. Choix des composants	
C. Placement et assemblage des composants	
D. Paramétrage des composants	45
E. Lancement de la simulation et analyse des résultats	
F. Avantage et inconvénients des approches causale et acausale	
III. Les fondamentaux de la modélisation avec Simscape	
A. Notions de domaines physiques	
B. Les blocs importants de Simscape	50
C. Variables de type « Across » et « Throught » et positionnement des capteurs	51
D. L'orientation des composants	51
1. Utilisation de composants actifs	
2. Implantation et orientation des capteurs	55
3. Utilisation de composants dont la dynamique est orientée	57
4. Utilisation de composants passifs	57
5. Choix du solveur	58
6. Les problèmes que peut rencontrer le solveur	58
IV. Exemples de modélisation multi-domaine	59
A. Domaine électromécanique – Axe linéaire	59
1. Choix des composants	60
2. Placement et assemblage des composants	62
3. Paramétrage des composants	63
4. Simulation du modèle en boucle ouverte	69
5. Utilisation du Data-logger de Simscape	70
6. Création de sous-systèmes	74
7. Modélisation de l'asservissement en position de l'axe	
B. Domaines hydraulique-mécanique – vérin hydraulique simple effet	85
1. Choix des composants	
1. Placement et assemblage des composants	
2. Paramétrage des composants	
3. Simulation	94
4. Utilisation des fonctionnalités de routage des signaux	95
5. Remplacement de la source de pression par une source de débit	97
Ivan LIEBGOTT - Modélisation et simulation des systèmes multi-physiques	4

C. Domaine électrique –Commande PWM d'un moteur à courant continu	
1. Utilisation du composant « Controlled PWM Voltage »	
2. Commande PWM d'un moteur à courant continu	
3. Utilisation du composant « H-Bridge » (pont en H)	

Chapitre 3 : Prise en main de MATLAB

I. Introduction	112
A. Création de variable	112
B. Création de vecteur	113
C. Indexation des composantes d'un vecteur	113
D. Tracés de courbes	114
E. Mise en forme élémentaires des courbes	115
F. Annotation des graphiques	
G. Créer un script élémentaire	119
H. Les opérateurs de comparaison de MATLAB	122
I. Les structure de boucles usuelles	122
1. Syntaxe de la boucle if – else if – else	122
2. Syntaxe de la boucle for	122
3. Syntaxe de la boucle while	123
II. Exemple d'exploitations	123
A. Interpolation d'une série de données	123
B. Manipulation des fonctions de transfert	125
1. Création d'une fonction de transfert	125
2. Opérations sur les fonctions de transfert	126
3. Tracer les réponses temporelles d'un système	129
4. Tracer les réponses fréquentielles d'un système	130
5. Evaluer les marges de gain et de phase	132
6. Tableau récapitulatif des commandes utiles sur les fonctions de transfert	133

Chapitre 4 : Prise en main de Simulink

I. Introduction	134
II. Régulation en température d'un four	
A. Ouverture du modèle	135
B. Ouverture du script contenant la définition des variables	
C. Lancement de la simulation	137
D. Tracer un diagramme de Bode avec Simulink	
1. Tracer un digramme de Bode en boucle ouverte	
3. Tracer un digramme de Bode en boucle fermée	142
E. Tracer d'un diagramme de Black-Nichols	145

F. Ajout et paramétrage d'une saturation	145
G. Exportation des variables de la simulation vers le Workspace	148
1. Ecriture d'un script pour tracer une série de courbes	151

Chapitre 5 : Prise en main de Stateflow

I.	Introduction à Stateflow	153
	A. Modélisation d'une machine à état avec Stateflow	153
	B. Construction du diagramme d'état	153
	1. Ouverture du modèle	153
	2. Insertion d'un « chart »	154
	C. Création d'un diagramme d'état élémentaire	155
	1. Création des états	155
	2. Création d'une transition par défaut	156
	3. Création des transitions	156
	4. Création des actions dans les états	156
	5. Création des étiquettes de transitions	157
	6. Définitions des variables d'entrée et de sortie du diagramme d'état	158
	7. Simulation du diagramme d'états	160
	D. Architecture des machines à états	161
	1. La hiérarchie des états	161
	2. Etats parallèles	
	E. Ajout de niveaux hiérarchique et d'états parallèles dans un diagramme d'état	162
	F. Récapitulatif et complément des commandes utiles de Stateflow	

Chapitre 6 : Prise en main de SimMechanics

I. Introduction à SimMechanics	170
A. Analyse d'un modèle SimMechanics 2G	
B. Paramétrage de la gravité	172
II. Intégration d'un modèle SimMechanics dans un modèle multi-physique	173
A. Connexions du modèle	
B. Interfaçage entre Simscape et SimMechanics	175
1. Interfaçage entre Simscape et SimMechanics pour la translation	176
2. Interfaçage entre Simscape et SimMechanics pour la rotation	176
3. Ajout de ports sur une liaison	
4. Modélisation d'un effort extérieur variable	
C. Résultat de la simulation	
III. Importation d'un modèle SolidWorks dans SimMechanics	
A. Les principes	
B. Installation de « SimMechanics Link »	
C. Conversion d'un fichier assemblage de Solidworks en fichier xml	
Ivan LIEBGOTT - Modélisation et simulation des systèmes multi-physiques	6

Chapitre 7 : Le contrôle commande avec MATLAB et Simulink

I. Introduction	192
II. Réglages automatique d'un PID	192
A. Modélisation	192
B. Ouverture du modèle	193
1. Analyse de la réponse temporelle	195
2. Réglage sur la base de critères fréquentiels	197
3. Analyse de la réponse fréquentielle de la boucle fermée	197
4. Analyse de la réponse fréquentielle de la boucle ouverte	198
5. Importation dans Simulink	198
III. Réglage manuel d'un PID avec l'outil « compensator design »	
A. Ouverture du modèle	200
B. Réglage du PID	201
1. Placement des points de linéarisation	
2. Choix du bloc à régler	202
3. Choix des tracés à visualiser pour la boucle ouverte	203
4. Choix des tracés pour visualiser les performances de la boucle fermée	
5. Analyse des fenêtres graphiques de l'outil « compensator design »	
6. Réglage du PID	208
7. Définition et visualisation des critères de performance	209
8. Réglage du PID à l'aide des curseurs	212
9. Exportation du réglage dans le modèle Simulink	214
IV. Conception et réglage d'un correcteur de forme quelconque	215
A. Ouverture du modèle	215
B. Conception du correcteur	216
1. Choix du bloc à régler	217
2. Choix des tracés à visualiser pour la boucle ouverte	218
3. Choix des tracés pour visualiser les performances de la boucle fermée	219
4. Analyse des fenêtres graphiques de l'outil « compensator design »	219
5. Faire varier le gain de la fonction de transfert en boucle ouverte	
6. Ajout d'un intégrateur	223
7. Ajout d'un correcteur à avance de phase (Lead)	225
8. Ajout d'un filtre rejecteur (Notch)	228
9. Réglage d'un filtre rejecteur	230
10. Exportation de la fonction de transfert du correcteur vers le modèle Simulink	233