

2- DONNÉES DISPONIBLES POUR REALISER LA TÂCHE

- Programme LabView : simulation borne de recharge et comptage de l'énergie.
- Charge d'environ 2-2,5 kW simulant le chargeur et la batterie du véhicule

3- SITUATION DE TRAVAIL

- Démarche retenue :
 - ☑ Investigation
 - Résolution de problème technique
 - Projet
 - ⊠ Créativité
- Type d'activité :
 - Analyse
 - Réalisation
 - Expérimentation
 - Conception
- Durée : 6 heures.

A- Problématique.

Un particulier souhaite investir dans l'achat d'une Renault Fluence ZE. Avant toute chose, il souhaite connaître le coût de sa consommation annuelle d'énergie.

La documentation technique du véhicule vous est fournie page 6.

Etant prêt à changer d'option tarifaire, il souhaite cependant garder son opérateur qui est EDF. Sa version actuelle tarifaire est Heures creuses avec une puissance souscrite de 9 kVA. Il est probable que la puissance souscrite devra être augmentée à 12 kVA en cas d'achat du véhicule afin de pouvoir effectuer la recharge sans risque de dépassement.

La distance quotidienne réalisée par la particulier est estimée à 65 kms (trajet travail, courses, loisirs, ...).

Il n'y a pas de possibilité pour le particulier de recharger son véhicule sur son lieu de travail. Le départ du domicile a lieu le matin au plus tôt à 7h00 et le retour au plus tard le soir à 19h30.

<u>B- Première partie de l'étude : tarifs du fournisseur d'énergie EDF.</u>

EDF est un fournisseur d'énergie qui peut proposer au particulier différents tarifs suivant leurs besoins quotidiens qui peuvent être très différents suivants les moments de la journée mais aussi de l'année (chauffage électrique, eau chaude sanitaire électrique et ... recharge des véhicules électriques).

Les différents contrats qui peuvent être souscrits par un particulier sont détaillés sur le site internet suivant :

http://particuliers.edf.com/abonnement-et-contrat/les-prix/les-prix-de-l-electricite/tarif-bleu-47798.html#acc52401

Afin de pouvoir conseiller efficacement le client, il vous est demandé de recenser les prix des abonnements et du coût du KWh pour les 3 options tarifaires proposées par EDF en tarif bleu.

1) Récapituler et présenter ces différentes information sous forme de carte mentale.

<u>C- Seconde partie de l'étude : estimation journalière des besoins de charge du</u> <u>véhicule.</u>

Avant de pouvoir commencer à estimer le coût annuel des recharges du véhicule, il est nécessaire de connaître l'énergie à stocker dans le véhicule quotidiennement.

2) Estimer l'énergie nécessaire à embarquer dans le véhicule permettant d'effectuer les trajets quotidiens. L'inclure dans la carte mentale.

<u>D- Troisième partie de l'étude : estimation du temps de la recharge du véhicule à</u> <u>l'aide de la simulation.</u>

💻 Ouvrir le programme LabVIEW intitulé « Accueil_borne_de_recharge ». L'écran suivant doit s'ouvrir :

💻 Ouvrir l'onglet « Simulation Transfert d'énergie lors de la charge ». L'écran suivant doit s'ouvrir :

🔜 **Démarrer** la simulation en cliquant sur l'icône « Executer » de l'écran LabVIEW.

Régler les paramètres, sur le panneau de simulation, afin d'obtenir un courant de charge pouvant être fourni de 10 A au niveau de la borne (on prend une hypothèse basse afin de pallier le cas où la capacité de charge au niveau de la borne serait réduite volontairement dans l'optique où plusieurs récepteurs fonctionneraient en même temps dans l'habitation : ballon d'eau chaude électrique, chauffage à accumulation, départ différé de machine à laver, ...). **Faire** l'hypothèse que le chargeur intégré dans le véhicule est à absorption sinusoïdale (donc facteur de déplacement égal à 1), que la tension monophasée simple disponible sur le secteur est de 236 V et que la charge s'effectuera à valeur constante sur toute sa période.

Mettre en fonctionnement la simulation avec une vitesse de simulation de 100 et un prix du kWh au minimum afin d'estimer uniquement le temps de recharge.

3) Indiquer dans la carte mentale le résultat de la simulation sur le temps de recharge estimé.

<u>E- Quatrième partie de l'étude : estimation du coût de la recharge du véhicule</u> suivant les différents contrats à l'aide de la simulation.

Vous allez utiliser l'écran de « Simulation Transfert d'énergie lors de la charge » afin d'étudier les différents cas possibles de coûts tarifaires. Le but est d'indiquer au client le plus avantageux.

Utiliser les parties A, B et C de ce document afin de faire une étude tarifaire annuelle complète de la recharge du véhicule que souhaite acquérir le client. Les différents tarifs de l'opérateur choisi par le client seront à simuler. Un bilan chiffré TTC du coût annuel de chaque option (consommation + abonnement) sera à fournir. Le client attend une préconisation de votre part avec des élements lui permettant d'estimer les économies suite à un changement d'option éventuel.

4) Récapituler et présenter ces différentes information sur la carte mentale.

Fermer l'écran LabVIEW intitulé « Mesures transfert lors de la charge » en cliquant sur l'onglet « Fin du programme et retour sur la page d'accueil ». La page d'accueil soit alors s'afficher.

Schneider BORNE D	E RECHARGE VEHICULE	
Simulation Transfert d'énergie lors de la charge	Accès 1060	Staton decorectarge Schwader (Ruel-Malmason)
Simulation Signal PWM contrôle de la charge	Simulation Qualité de l'énergie	
Mesures Signal PWM contrôle de la charge	Mesures Qualité de l'énergie	Quitter le programme

F- Cinquième partie de l'étude : présentation orale de l'étude.

🔜 **Présenter** les résultats de votre étude sous forme numérique devant vos camarades et enseignants.

E- Sixième partie : validation pratique de la simulation.

Afin de valider les résultats de votre simulation, vous pouvez proposer à votre enseignant de faire un essai réel. Pour travailler en conditions réelles, il est proposé d'utiliser la centrale de mesures présente sur la maquette.

<u>Attention</u> cet essai sera particulièrement long et devra « peut-être » se poursuivre en dehors des heures allouées à la séquence : c'est l'inconvénient des essais réels ...

Le fichier pdf appelé « Réglages centrale de mesures » est fourni et va vous donne une procédure de paramétrages.

Demander à votre enseignant de réinitialiser la centrale de mesures.

Programmer la centrale de mesures avec les paramètres adéquats qui permettront d'effectuer les mesures désirées.

Faire vérifier les paramètres à votre enseignant.

A l'aide de la fiche correspondante, **mettre** en service la borne de recharge avec une charge simulée absorbant 10 A environ.

5) Relever les valeurs suivantes caractéristiques de la recharge.

Puissance active (W)	Tension d'alimentation (V)	
Puissance apparente (VA)	Courant consommé (A)	
	Facteur de puissance	

6) Relever une fois, les essais réalisés, la valeur du coût de la recharge. Comparer les essais réels à la simulation. Des écarts existent-ils? Si oui, tenter de trouver une explication que vous exposerez à votre enseignant.

-114	
	Z Z
ţĸ	
C A	D

VOLUME	
Du coffre (VDA) mini / maxi (dm3)	317
PLAN COTÉ (MM)	
A - Empattement	2702
B - Longueur hors tout	4748
C - Porte à faux avant	908
D - Porte à faux arrière	1140
E - Voie avant	1537
F - Voie arrière	1555
G - Largeur hors tout / sur baguettes	2041
H - Hauteur à vide	1458
J - Hauteur seuil à vide	698
K - Garde au sol en charge	120
K - Garde au sol à vide	142

M - Largeur aux coudes avant	1480
M1- Largeur aux coudes arrière	1475
N - Largeur aux bandeaux avant	1420
N1 - Largeur aux bandeaux arrière	1392
Largeur aux hanches avant	1320
Largeur aux hanches arrière	1291
Dist transversale axe siège avant / hanches	360
Dist transversale axe siège arrière / hanches	351
Hauteur ajustement siège	70
Longueur glissère siège	240
Angle inclinaison banquette arrière	23
P - Hauteur avant sous pavillon à 14°	892
Q - Hauteur arrière sous pavillon à 14°	848
Z2 - Hauteur sous tablette	549

Puissance administrative	1
Nombre de places	5
MOTEUR	
Technologie moteur électrique	Synchrone à rotor bobiné
Puissance maxi kW CEE (ch)	70 (95)
Régime puissance maxi (tr/min)	3 000 à 8 900
Couple maxi Nm CEE (m/kg)	226
Régime couple maxi (tr/min)	400 à 2500
BATTERIE	
Technologie	Lithium Ion
Tension Totale (volts)	398
Énergie embarquée (kWh)	22
Capacité nominale (Ah)	65
Autnomie - cycle NEDC (km)	185
BOÎTE DE VITESSES	
Туре	Réducteur
Nombre de rapports A.V.	1
PERFORMANCES	
Vitesse maxi (km/h)	135
0 - 100 km/h (s)	13,7
400 m D.A. (s)	19,2
1000 m D.A. (s)	35,8
DIRECTION	
Diamètre de braquage entre trottoirs (m)	11 à 11.3
ROUES ET PNEUMATIQUES	
Dimensions pneumatiques	205/55 R 16
MASSES (kg)	
Masse à vide	1 530
Maxi autorisé (MMAC)	2023

CARACTÉRISTIQUES TECHNIQUES