SCIENCES PHYSIQUES Correction et barème sur 40 points CORRECTION BARÈME

A	Contrôle de la luminosité et tests de colorimétrie	7 Z
	Le nombre de pixels est 1600×1200=1 920 000.	1
Q26.	La dimension du capteur est approximativement : $S = 4,4.10^{-6} \times 4,4.10^{-6} \times 1920000 = 37 \text{ mm}^2.$	1
Q27.	Les photosites sont monochromes. Pour déterminer les coordonnées chromatiques, il est nécessaire de faire trois mesures pour trois couleurs différentes à l'aide de trois filtres de couleurs : rouge, vert et bleu.	1
Q28.	Cf. document réponse DR-SP1	1
Q29.	La teinte est jaune orangée avec une longueur d'onde de 592 nm	1
Q30.	La documentation technique de la del annonce une longueur d'onde de 590 nm et une couleur ambre, ce qui confirme les résultats obtenus.	1

B	La carte « contrôle de luminosité »	2 5
B.1	Capteur d'éclairement	
Q31.	$V_{e} = R_{1} \cdot V_{CC} / (R_{1} + R_{LDR})$	1,5
Q32.	Pour E = 200 lux, v_e = 3,4 V et R_{LDR} = 4,7 k Ω . (entre 4 et 5 k Ω)	2

Session 2016	BTS Système Numérique Option A Informatique et Réseaux Épreuve E4	Page Cor 1 sur 7
Code : 16SN4SNIR1	Corrigé Partie 2 Sciences Physiques	

B.2	Mise en forme du signal
B.2	Mise en forme du signal

Q34.	En BF, C est équivalent à un circuit ouvert et en HF, C est équivalent à un court-circuit. Ce qui implique qu'en BF, $v_f = v_e$ (i = 0) et en HF, $v_f = 0$. C'est un filtre passe-bas.	1,5
Q35.	ordre 1 car asymptote oblique de – 20 dB / decade à - 3 dB, f = f _C = 5 Hz ;	1 0,5
Q36.	$G_{0Hz} = 0$ dB. Donc $T_{0Hz} = 1$ et $V_{f_{moy}} = V_{moy} = 3.4$ V	1 0,5
Q37.	G_{50Hz} = - 20 dB, ce qui donne T_{50Hz} = $10^{-20/20}$ = 1/10. D'où $\hat{V_f}_{50Hz}$ = 0,04 V. L'amplitude de la composante à 50 Hz est égale à 0,004 V, il permet donc d'atténuer cette composante d'un facteur 10.	2,5

B.3 Numérisation du signal filtré

Q38.	T _E = 10 ms donc f = 1 / T _E = 100 Hz.	1
Q39.	$q = V_{PE}/2^n$ soit $q = 5/2^8 = 19,5 \text{ mV}$	1
Q40.	N = vf / q soit N = 3,4 / 19,5·10-3 = 174	1

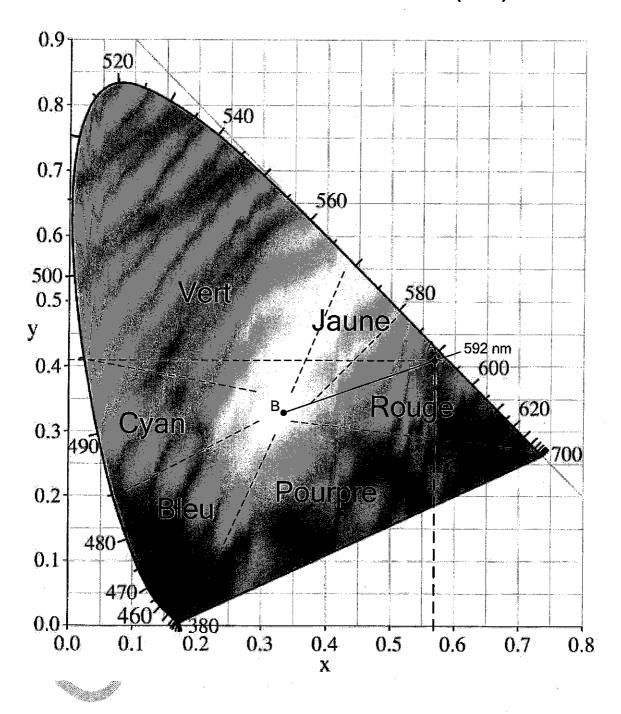
Session 2016	BTS Système Numérique Option A Informatique et Réseaux	
	Épreuve E4	Page Cor 2 sur 7
Code : 16SN4SNIR1	Corrigé Partie 2 Sciences Physiques	

B.4
B.4

Q41.	$s_n = a e_n + b s_{n-1} \text{ avec } a = \frac{T_E}{\tau + T_E} = 0,25 \text{ et } b = \frac{\tau}{\tau + T_E} = 0,75.$ $\tau \frac{du_S}{dt} + u_S = u_E \Leftrightarrow \tau \frac{s_n - s_{n-1}}{T_E} + s_n = e_n \text{ ;}$ $\text{ce qui donne} : \frac{\tau}{T_E} s_n + s_n = \frac{\tau}{T_E} s_{n-1} + e_n$	2
	Et $\frac{\tau + T_E}{T_E} s_n = \frac{\tau}{T_E} s_{n-1} + e_n$; soit: $s_n = \frac{\tau}{\tau + T_E} s_{n-1} + \frac{T_E}{\tau + T_E} e_n$ On a bien $a = \frac{T_E}{\tau + T_E} = \frac{10}{30 + 10} = 0.25$ et $b = \frac{\tau}{\tau + T_E} = \frac{30}{30 + 10} = 0.75$.	
Q42.	Le filtre est récursif car sa sortie est calculée à partir d'un échantillon antérieur de sortie (s _{n=1}).	1
Q43.	e _n × s _n	1,5
Q44.	Cf. document réponse DR-SP2	1,5 Par réponse
Q45.	Cf. document réponse DR-SP3	1
Q46.	$s_n = a \cdot e_n + b \cdot s_{n-1} \implies s_n - b \cdot s_{n-1} = a \cdot e_n$ Transformée en z : $S(z) - b \cdot z^{-1} \cdot S(z) = a \cdot E(z)$. Transmittance : $H(z) = \frac{S(z)}{E(z)} = \frac{a}{1 - b \cdot z^{-1}} = \frac{a \cdot z}{z - b}$.	1

Session 2016	BTS Système Numérique Option A Informatique et Réseaux Épreuve E4	Page Cor 3 sur 7
Code : 16SN4SNIR1	Corrigé Partie 2 Sciences Physiques	

Q47.	 Les valeurs des échantillons de sortie calculées, pour une entrée impulsion tendent vers 0. On a s_n → 0 quand n → ∞. Le filtre est stable. Ou encore le critère de Jury : pôle = 0,75 ≤ 1 : filtre stable. On peut aussi appliquer le théorème de la valeur finale. 	1
· ·	L'amplification à 50 Hz est égale à 0,15.	
Q48.	$\hat{V}_{f_{-50Hz}}$ = 0,15×0,4= 0,06 V. Le filtre ne permet pas d'atténuer	0,5
	l'amplitude de la composante d'un facteur 10.	1
	Ce filtre est moins efficace que le filtre analogique.	

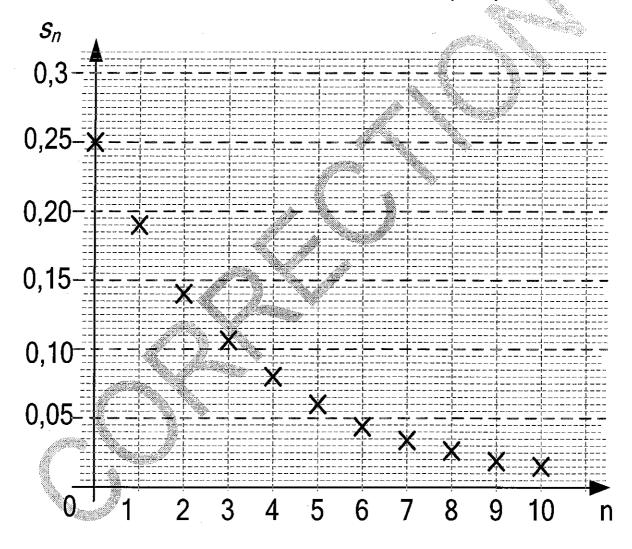

C / Transmission numérique série	e R\$485	64

Q49.	Si la ligne est adaptée, alors les impédances en bouts de ligne ont la même valeur que l'impédance caractéristique de la ligne, soit $Z_C = 100 \Omega$.	1,5
Q50.	$c = 0.54 \times c_0 = 0.54 \times 3.10^8 = 1.62 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$	1
Q51.	Il s'agit d'un défaut de court-circuit car l'onde réfléchie revient inversée. Δt = 4×25 = 100 ns.	1
Q52.	$2d = c \times \Delta t$ ce qui donne : $d = (1,62 \cdot 10^8 \times 100 \cdot 10^{-9}) / 2 = 8,1 \text{ m}.$	1,5

D Réglage de l'intensité lumineuse du panneau PMV	2
Pour E = 200 lux, on lit I_{OUT0} = 25 mA. Donc DC ₀ = 63 soit	
Q53. [DC ₀] = [011 1111]. Voir document réponse DR-SP4.	2
Voir document réponse DR-SP4.	
	•

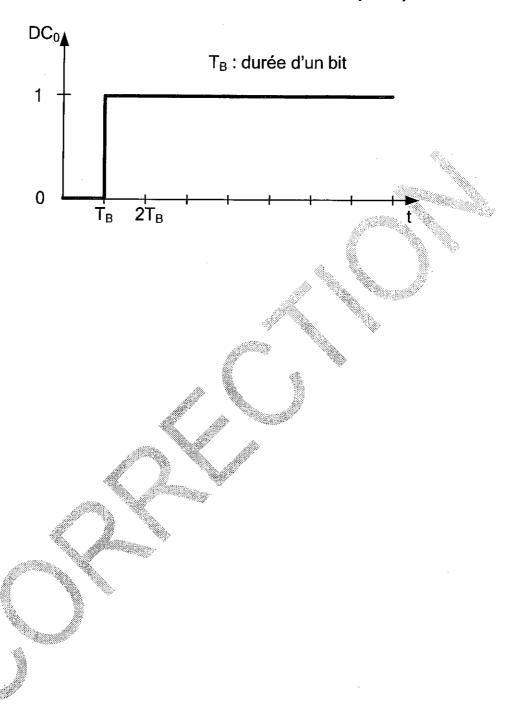
Session 2016	BTS Système Numérique Option A Informatique et Réseaux Épreuve E4	Page Cor 4 sur 7
Code : 16SN4SNIR1	Corrigé Partie 2 Sciences Physiques	

DOCUMENT RÉPONSE DR-SP1 (Q28)



Session 2016		BTS Système Numérique Option A Informatique et Réseaux Épreuve E4	Page Cor 5 sur 7	
	Code : 16SN4SNIR1	Corrigé Partie 2 Sciences Physiques	·	

DOCUMENT RÉPONSE DR-SP2 (Q44)


n	-1	0	1	2	3	4	5	6	7	8	9	10
e _n	0	1	0	0	0	0	0	0	0	0	0	0
Sn	0	0,25	0,19	0,14	0,11	0,083	0,062	0,047	0,035	0,026	0,020	0,015

DOCUMENT RÉPONSE DR-SP3 (Q45)

Session 2016	BTS Système Numérique Option A Informatique et Réseaux Épreuve E4	Page Cor 6 sur 7
Code : 16SN4SNIR1	Corrigé Partie 2 Sciences Physiques	

DOCUMENT RÉPONSE DR-SP4 (Q54)

Session 2016	Option A Informatique et Réseaux Épreuve E4	Page Cor 7 sur 7
Code : 16SN4SNIR1	Corrigé Partie 2 Sciences Physiques	

