
BEP INSTALLATION DES SYSTEMES ENERGETIQUES ET CLIMATIQUES

EP1

PREPARATION D'ACTIVITES PROFESSIONNELLES

DOSSIER RESSOURCES

Ce dossier comporte 17 pages numérotées de 1 à 17/17.

EP1	Session	Code			
CF I	2014				
BEP Insta	BEP Installation des Systèmes Energétiques et Climatiques				
EP1 Prép	aration d'activités professionn	elles			
Durée Coefficient					
DOSSIER RESSOURCE	ES 3 h	4	1/17		

Documents remis au candidat

Documents du dossier sujet :

Document	Contenu	pages
Contexte	Contexte général de l'installation	4/11
Question n°1	Prise en charge du dossier	6/11
Question n°2	Identification du réseau	7/11
Question n°3	Raccordement électrique	8/11
Question n°4	Choix du circulateur	9/11
Question n°5	Choix des éléments du circuit	10/11
Question n°6	Bon de commande radiateurs	11/11

Documents du dossier réponses :

Q1	Document réponse n°1	3/14 et 4/14
Q2	Document réponse n°2	5/14 et 6/14
Q3	Document réponse n°3	7/14 et 8/14
Q4	Document réponse n°4	9, 10 et 11/14
Q5	Document réponse n°5	12/14
Q6	Document réponse n°6	13/14 et 14/14

Documents du dossier ressources :

	Coster resources .	0/47 - 1 4/47
N°1	Extraits du CCTP du pavillon	3/17 et 4/17
N°2	Plans	5/17
N°3	Documentation De Dietrich : la gamme des	6/17
	pompes à chaleur	
N°4	Schéma de principe	7/17
N°5	Documentation De Dietrich : Rappel	8/17
	concernant le calcul des déperditions d'une	
	maison individuelle	
N°6	Documentation De Dietrich :	9/17
	Dimensionnement d'une installation de PAC	
N°7	Documentation De Dietrich : Raccordement	10/17
	électrique	
N°8	Documentation De Dietrich : Tableau du MIT et	11/17
	raccordement électrique	
N°9	Documentation De Dietrich : Renseignements	12/17
	nécessaires à l'installation d'une Pac,	
	Raccordement hydraulique	
N°10	Documentation De Dietrich : Options des PAC	13/17
	ROE+ TH	
N°11	Documentation De Dietrich : Caractéristiques	14/17
	techniques des PAC ROE+ TH	
N°12	Documentation Thermics : tableau des	15/17
	puissances radiateurs Navaro horizontal NHR1	
N°13	Documentation Thermics : descriptif	16/17
	radiateurs Navaro horizontal NHR1	
N°14	Documentation Thermics : facteurs de	17/17
	correction	

EP1	Session	Code			
LF I	2014				
BEP Installation des Systèmes Energétiques et Climatiques					
EP1 Prép	EP1 Préparation d'activités professionnelles				
Durée Coefficient					
DOSSIER RESSOURC	ES 3 h	4	2/17		

EXTRAIT DU CCTP

COMMUNE DE CARCASSONNE **Département de l'Aude (11) Altitude 100m**

Projet De rénovation d'une habitation individuelle type RT2000

LOT 07 - CHAUFFAGE par PAC

7.2 GENERALITES

La prestation décrite dans la présente comprend le chauffage par radiateurs et plancher chauffant ainsi que l'appoint thermique de la piscine.

La production d'eau chaude sera prévue par une seule pompe à chaleur air /air. La prestation devra être conforme aux normes en vigueur et notamment la nouvelle réglementation acoustique. Le calcul de l'ensemble de l'installation ainsi que le calcul des déperditions est à la charge de l'entreprise. La puissance installée devra être obligatoirement au minimum de la somme des besoins en chauffe de la piscine (estimés à **5,5Kw)** et des déperditions estimées.

7.3 POMPE A CHALEUR

7.3.1 POMPE A CHALEUR AIR / EAU

Fourniture et pose d'une pompe à chaleur air - eau , marque DE DIETRICH **ROE+ TH** / 18TH +12 ou équivalent, COP supérieur à 3.3 en mode chaud , équipé du **module** hydraulique intérieur MIT-II/ E, circuit piscine, plancher chauffant et radiateur derrière bouteille de découplage et régulation diématic VM, ECS par préparateur mixte BEPC.

Caractéristiques techniques :

Poids : 330 Kg à vide Degré IP : IP 44

Température de départ maxi : 65° C

Fonctionnement de - 20 ° à + 35° extérieur

Niveau de pression acoustique à 10 mètres : 42 dB(A)

La prestation comprendra:

L'amenée des matériels dans le local technique Le raccordement électrique sur coffret du par l'électricien dans le sas technique. Le raccordement en eau sur attente due par le plombier à proximité avec réducteur de pression (avec vannes d'isolement avant et après), vanne d'isolement , traitement eau (avec vannes d'isolement avant et après), disconnecteur (avec vannes d'isolement avant et après), soupape de sécurité de décharge thermique. Le raccordement des condensats et du groupe de sécurité sur le réseau mise en place par le plombier dans les combles.

Mode de métré : à l'unité.

Localisation : dans le local technique.

7.3.2 BALLON TAMPON

Fourniture et pose d'un ballon tampon isolé d'une capacité adaptée ; cuve en acier, isolation polyuréthane, comprenant thermomètre à plongeur.

Localisation : dans le sas technique des combles.

7.3.3 POMPE CIRCULATEUR

Circulateur primaire (pompe) marque SALMSON ou GRUNDFOS ou équivalent, caractéristiques : 1 m^3/h à 4 mCE

7.3.4 RESEAU

Soupape de sécurité 3 bars, hauteur manométrique totale de l'installation **Hm = 5m.**

EP1	Session	Code			
	2014				
BEP Insta	BEP Installation des Systèmes Energétiques et Climatiques				
EP1 Prép	EP1 Préparation d'activités professionnelles				
Durée Coefficient					
DOSSIER RESSOURCE	ES 3 h	4	3/17		

7.4 RADIATEURS

7.4.1 RACCORDEMENT RADIATEUR

Raccordement des radiateurs en tuyau cuivre rouge écroui garanti 30 ans marque SANCO ou équivalent apparent. Prestation comprenant les percements de murs , fourreaux, fixations anti-vibratiles, soudo brasure, accessoires tels que coudes, tés, réductions, cintrage des tubes. En général, les points hauts seront équipés de purgeur automatique, les points bas de points de vidange avec robinets.

L'isolation des canalisations est comprise dans le prix. Le raccordements des radiateurs se fera en diagonale. Prestation chiffrée au mètre linéaire sans distinction du diamètre sachant qu'aucun diamètre ne devra être inférieur au diamètre 12/14. Dans ce poste, il sera prévu la bouteille de mélange.

Départ prestation : Pompe à chaleur

7.4.2 RADIATEUR ACIER

Fourniture et pose de radiateur acier marque **THERMIC** référence **NHR1** basse température ou équivalent horizontal ou vertical suivant localisation comprenant fixations murales avec consoles.

Mode de métré : au radiateur.

Rappel : le calcul de la puissance est à la charge de l'entreprise. Les températures normalisées seront prises pour une température de base des pièces de 20 ° C sauf pour la salle de bains où elle est de 22°C.

Données thermiques :

Régime d'eau chauffage aller /retour 55/45°C

pièce	Déperditions	Température	Hauteur	Largeur
	à couvrir w	de base °C	maximum mm	maximum mm
Chambre 2	650	20	950	1280
mezzanine				
Chambre 3	800	20	750	2000
mezzanine				
Chambre 4	735	20	850	1450
Salle de bain	580	22	1050	1100

7.4.2.1 Robinet thermostatique

Robinet thermostatique NMG, SAR ou DANFOSS

Localisation : sur tous les radiateurs sauf radiateurs salle de bains et radiateur dégagement des logements.

7.4.2.2 Robinet simple réglage Localisation : 1 dégagement. 7.4.2.3 Coude et tés de réglage

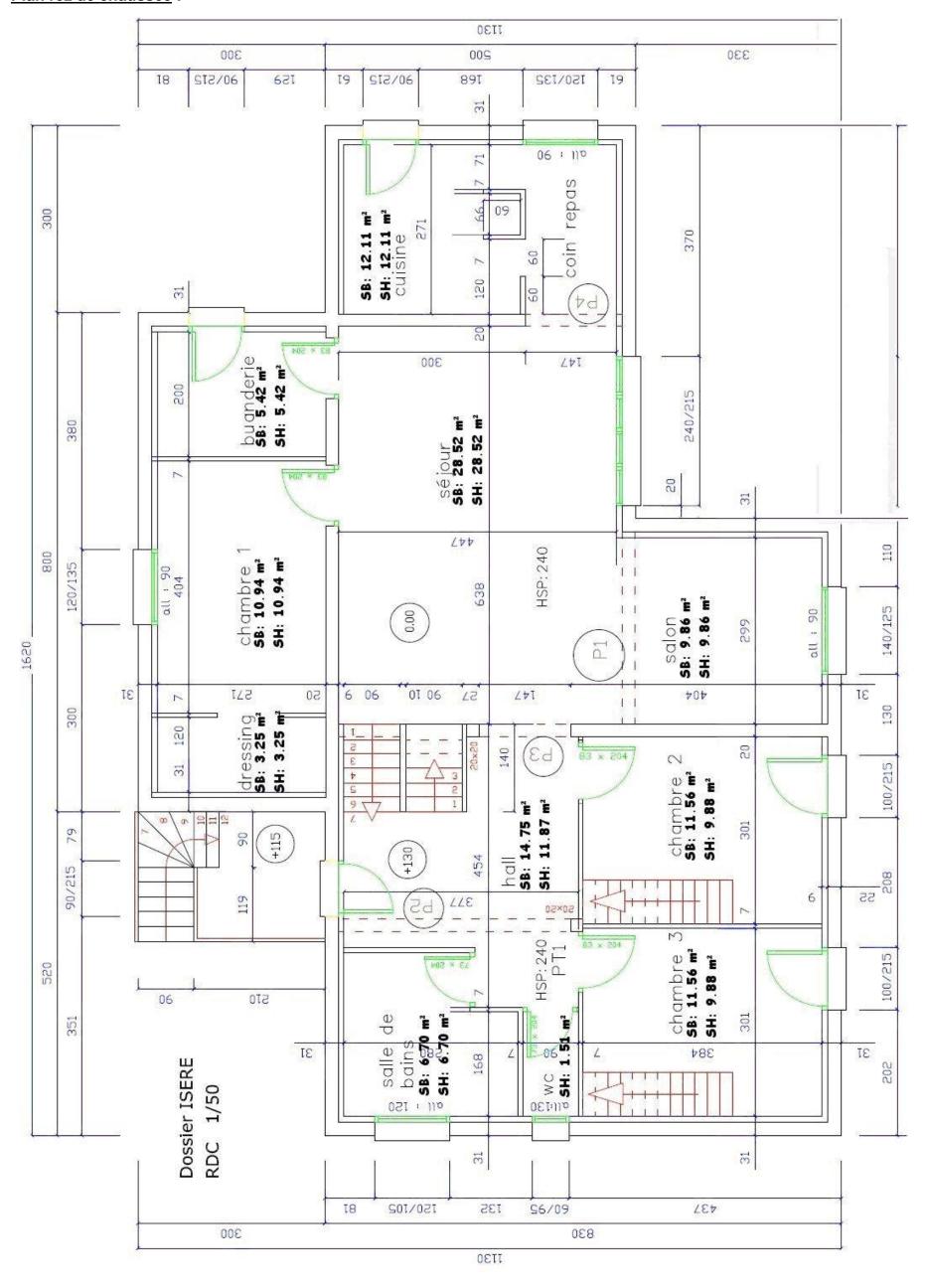
Localisation: 1 sur chaque radiateur.

7.4.2.4 Purgeur à volants

Localisation: 1 sur chaque radiateur.

7.4.3 RADIATEURS MIXTE SECHE SERVIETTE

Radiateur sèche serviette référence CALA mixte marque ACOVA puissance 600 W, 496 mm de largeur x 1771 de hauteur, classe II, IP 44 -IK 09.


Localisation : un dans chaque salle de bains.

7.5 REGULATION

La régulation comprendra une sonde extérieure générale raccordée sur la Pompe à chaleur ainsi que la fourniture et pose d'un thermostat d'ambiance avec programmation journalière et hebdomadaire pour chaque étage.

EP1	Session	Code			
LF I	2014				
BEP Insta	BEP Installation des Systèmes Energétiques et Climatiques				
EP1 Prép	aration d'activités professionn	elles			
Durée Coefficient					
DOSSIER RESSOURC	ES 3 h	4	4/17		

Plan rez de chaussée :

EP1	Session	Code			
LF I	2014				
BEP Insta	BEP Installation des Systèmes Energétiques et Climatiques				
EP1 Prép	EP1 Préparation d'activités professionnelles				
	Durée	Coefficient			
DOSSIER RESSOURCE	ES 3 h	4	5/17		

ROE..., SOLO, NAPO, CETD

POMPES À CHALEUR ET CHAUFFE-EAU THERMODYNAMIQUES

ROE-II: air/eau, de 6 à 17 kW (R) jusqu'à - 15 °C t° ext.

ROE+: air/eau, de 11 à 15 kW (R) iusqu'à - 20 °C to ext.

ROI+: air/eau, de 8 à 16 kW (R) jusqu'à - 20 °C t° ext.

ROE H: air/eau haute temp., de 13 à 19 kW

jusqu'à - 20 °C t° ext. (NR)

ROE+ TH: air/eau haute temp., de 16 à 21 kW jusqu'à - 20 °C t° ext. (NR)

SOLO: sol/eau, de 6 à 16 kW (R)

capteurs enterrés horizontaux ou verticaux

NAPO: eau/eau, de 8 à 21 kW (NR)

puisage eau dans nappe phréatique

CETD: sur air ambiant, 300 litres

pour réchauffage ecs jusqu'à 60 °C

ROI+

ROE-II

ROE H

ROE+ ROE+ TH

SOLO NAPO CETD

Électricité (énergie fournie au compresseur)

Énergie renouvelable naturelle et gratuite

- Les pompes à chaleur ROE, ROI+... se distinguent par leurs performances élevées (COP de 3,5 à 4,2 à + 7 °C extérieur, selon modèle), la possibilité de faire du rafraîchissement (réversible, sauf les modèles ROE H et ROE+ TH haute temp.) ainsi que par leur construction compacte, fonctionnement silencieux et design moderne pour une intégration facile dans l'environnement.
- Les pompes à chaleur SOLO et NAPO permettent de réaliser d'importantes économies d'énergie toute l'année. Elles s'intègrent partout grâce à une construction compacte (0,37 m² au sol) et un fonctionnement silencieux.
- · Les chauffe-eau thermodynamiques CETD sont tout à fait adaptés pour le remplacement de chauffe-eau électriques avec, en plus, la possibilité d'être raccordé à une chaudière ou une installation solaire pour le CETD 300 EH.

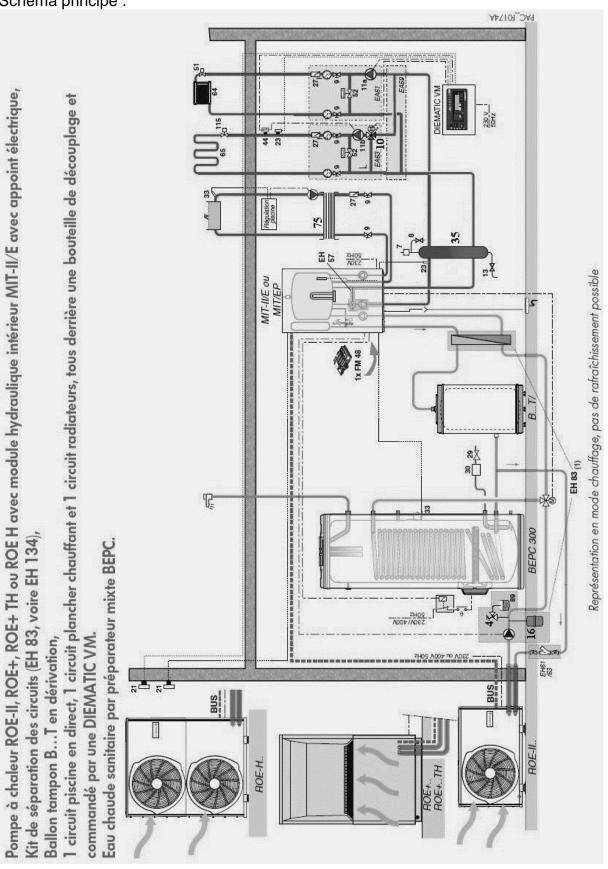
CONDITIONS D'UTILISATION

Températures limites de service en °C:

	en mode chaud		en mode froid	
	Eau	Air extérieur	Eau	Air extérieur
ROE-II (R)	+25/+54	-15/+30	+18/+22	+18/+42
ROE+ IRI	+18/+55	-20/+35	+18/+22	+15/+40
ROI+ (R)	+18/+55	-20/+35	+18/+22	+15/+35
ROE H (NR)	+25/+65	-20/+45		5:
ROE+ TH (NR)	+18/+65	-20/+35	- 2	2
SOLO (R)	+18/+55	Sol -5/+25	+18/+20	Sol +5/+25
NAPO (NR)	+18/+55	Nappe +7/+25	-	-

Pression maxi de service: 3 bar

(R): Réversible, (NR): non réversible


Temp. d'air pour fonctionnement groupe thermodynamique: +8/+35 °C Temp/Pression maxi de service: échangeur 90 °C/10 bar, cuve 95 °C/10 bar

ADVANCE

EP1	Sessi	on	Code		
CF I	2014	2014			
BE	BEP Installation des Systèmes Energétiques et Climatiques				
EP ⁻	EP1 Préparation d'activités professionnelles				
Durée Coefficient					
DOSSIER RESSOURCES 3 h 4 6/17			6/17		

Schéma principe:

EP1	Sessi	Session			
LF I	2014	2014			
BEP Installation des Systèmes Energétiques et Climatiques				es	
EP ⁻	EP1 Préparation d'activités professionnelles				
Durée Coefficient					
DOSSIER RESSO	3 h	4	7/17		

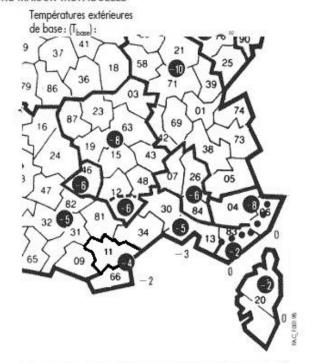
RAPPEL CONCERNANT LE CALCUL DES DÉPERDITIONS D'UNE MAISON INDIVIDUELLE

Les déperditions d'une maison individuelle peuvent être calculées de manière approchée par la formule suivante :

$D = G \times V \times \Delta T$

- où D Déperditions en W
 - V Volume habitable en m²
 - ΔT Différence entre la température intérieure et la température extérieure de base G – Coefficient fonction de l'isolation bâtiment en W/m² . °C

Type de maison	G en W/m³. ℃
Ancienne sans isolation	2
Ancienne avec isolation	1,5
Après 90	1,1
RT 2000	0,9
RT 2005	0,8
Très bonne isolation	0,0
Bioclimatique	0,4


Exemple: pour une maison individuelle de 150 m² (hauteur sousplafond de 2,5 m) dans le département 37 qui a été construite après 1990, les déperditions sont de :

D = 1,1 x [(150 m² x 2,5 m) x (20 °C - (-7 °C)] = 11138 W soit 11,1 kW

Nota: cette méthode de calcul est donnée à titre indicatif et ne remplace en rien une étude thermique. La responsabilité de De Dietrich ne peut en aucun cas être engagée.

Corrections d'altitude :

	Tranche altitude	0	0	0	0	0	0	0	0	0	0
Di	stance cote <25km	-2	-2	-4	8 3	-7		3 3			3 8
	0 à 200 m	-2	-4	-5	-6	-7	-8	-9	-10	-12	-15
	201 à 400 m	-3	-5	-6	-7	-8	-9	-10	-11	-13	-15
	401 à 500 m	-4	-6	-7	-8	-9	-10	-11	-12	-14	-16
e l	501 à 600 m	-4		-7	-9	- 3	-11	-12	-13	-15	-17
Akitude	601 à 700 m	-5		-8	-10		-12	-13	-14	-16	-18
₹	701 à 800 m	-6		-8	-11		-13	-14	-15	-17	-19
	801 à 900 m	100		-9	-12		-14	-15	-16	-18	-20
	901 à 1000 m			-9	-13		-15	-16	-17	-19	-21
	1001 à 1100 m	- 3		-10	-14		-16	-17	-18	-20	-22

	Tranche altitude	0	0	0	0	0	0	0	0	0	9
\$19	1101 à 1200 m		8	-10	1 8		-17	-18	-19	-21	-23
Û	1201 à 1300 m			-11			-18	-19	-20	-22	-24
3	1301 à 1400 m			-11			-19	- 8	-21	-23	-25
	1401 à 1500 m			-12					-22	-24	-25
Nttude	1501 à 1600 m		8	-12	. 2		1 0	- 3	-23	2	3 1
#	1601 à 1700 m		_	-12			1		-24		
ী	1701 à 1800 m		3	-13	- 0		3 5	- 5	-25		10 M
33	1801 à 1900 m			-10			8 18	- 3	-26	8	8 8
1	1901 à 2000 m			-14					-27		
	2001 à 2100 m		ŝ.	-15	- 8		8 8	- 8	-29	8	8 8

■ DIMENSIONNEMENT ET RACCORDEMENT D'UNE POMPE À CHALEUR ROE-II/ROE+/ROI+ DANS LE CADRE D'UN SYSTÈME DIETRISOL QUADROPAC

Les pompes à chaleur Air/Eau doivent compenser à elles seules les déperditions d'une habitation même si leur puissance diminue quand la température extérieure diminue. Il est important de ne pas passer sous la température d'arrêt (-15 °C pour notre gamme ROE-II et -20 °C pour notre gamme ROE+/ROI+) et de s'assurer d'un fonctionnement continu de l'appareil même pour les températures les plus extrêmes d'une région. Les règles de dimensionnement données dans notre feuillet technique pompe à chaleur ne sont pas applicables au DUP.

EP1	Sessi	on	Code	
LF I	2014	4		
E	BEP Installation des Syst	tèmes Energétiq	ues et Climatiqu	es
E	P1 Préparation d'activit	és professionne	lles	
	_	Durée	Coefficient	
DOSSIER RES	SOURCES	3 h	4	8/17

DIMENSIONNEMENT D'UNE INSTALLATION DE PAC

DIMENSIONNEMENT DES PAC AIR/EAU HAUTE TEMPÉRATURE ROE H ET ROE+ TH

Pour qu'une PAC Haute Température puisse être installée en remplacement du générateur existant, il est impératif de vérifier que la température d'eau nécessaire aux émetteurs à la température extérieure de base est bien inférieure ou égale à la température maximale PAC T^o maxi émetteurs \le 65 °C

Tableau de sélection des modèles de la gamme ROE H et de leur appoint

Déperditions en kW	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
-1 -2							13MH+3	13MH+3 (1) 13MH+6	13MH+6 (1)	13MH+6		1311+12	1311+12	13TH+12	13TH+12	
-3 -4 -5					==		(1)	(1)	13MH+6		1311+12	13171112				1711+1;
-6 -7 -8				120	12	13MH+3 (1)	13MH+6 (1)			13TH+12					17TH+12	
-9		1961	=			101.01.7		13MH+6	1071 1. 10		1711+16			171H+12	0111112	C170 (v)
-10 -11 -12 -13					13MH+3 (1)	13MH+6 (1)			13TH+12			1711++12	17TH+12			1711H+
-14 -15 -16							13MH+6	1317++12		171H+6	1711H+12					
-17 -18 -19				13MH+3 (1)	13MH+6(1)	13MH+6		13171+12	1711H+6	1711H+12				1711H+13	1771++13	17TR+1
-20			13MH+3(1)		13MH +6		13TH+12						17TH+13		171H+14	171R+1

^{+.. :} appoint électrique ou hydraulique minimum nécessaire en kW

(1) installation de la PAC avec obligatoirement un ballon tampon B150T

avec appoint hydraulique uniquement

Tableau de sélection des modèles de la gamme ROE+ TH et de leur appoint

Dépe	erditions en kW	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	0 -1 -2 -3	R K						2	- 181H+6			18TH+12	18TH+12	18 TH +12		22 TH+1:	22 TH + 12	22 TH +12
	-4 -5 -6 -7		320	=	=1	8		18 TH +6	-18 TH +12	18 TH +12	18TH+12			22 TH +12	22 TH +12			
Thase en °C	-8 -9 -10 -11	V SĀR V R				18TH+6	18TH +6	18TH+12	2		22 TH +12	22TH+12	22 TH +12	2 22 TH +12			0071.0	22 TH +22
	-12 -13 -14 -15			18TH+6	18 TH +6	18 TH +12		22TH+12	22 TH +12	7////		22TH+12			22TH+18	22 TH +2	22 TH +2)	
	-16 -17 -18 -19 -20	18 TH +6	18TH+6	100000000000000000000000000000000000000	18TH+12	22 TH+12	22 TH + 12 22 TH + 12	22 TH +12	22 TH +12	22 TH +12	22 TH +12 22 TH +14	22 TH+15	22 TH +10	22 TH +17				

^{+.. :} appoint électrique ou hydraulique minimum nécessaire en kW

avec appoint hydraulique uniquement

Remarque

En dessous de la température extérieure d'arrêt de la PAC (-15 °C ou -20 °C) seuls les appoints fonctionnent.

EP1	Session	on	Code	
CF I	1			
BEI	Installation des Syst	èmes Energétiq	ues et Climatiqu	es
EP1	Préparation d'activité	és professionne	lles	
		Durée	Coefficient	
DOSSIER RESSO	DOSSIER RESSOURCES			9/17

RENSEIGNEMENTS NÉCESSAIRES À L'INSTALLATION D'UNE PAC

RACCORDEMENT ÉLECTRIQUE

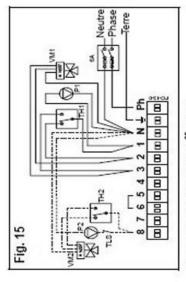
L'installation électrique des PAC doit être réalisée selon les Règles de l'Art et conformément aux normes en vigueur, aux décrets et aux textes en découlant et en particulier à la norme NF C 15 100.

Préconisation des sections de câbles et des disjoncteurs à mettre en œuvre :

PAC		Туре	Alimentation PAC							nteur communi-		
		phasé	SC:	Courbe D*	SC:	Courbe C DJ:	SC:	Courbe C	SC:		SC:	
ROE-II	6 MR	Mono	3x4	16 A	3x1.5	10 A	-		2x0.75		2x0.75	
	8 MR	Mono	3x4	20 A	3x1.5	10 A	120	-	2x0.75		2x0.75	
	10 MR	Mono	3x6	25 A	3x1.5	10 A	100	-	2x0.75		2x0.75	
	10 TR	Tri	5x4	16 A	3x1.5	10 A		-	2x0.75		2x0.75	
	13 MR	Mono	3x10	32 A	3x1.5	10 A	-	-	2x0.75		2x0.75	
	13 TR	Tri	5x4	16 A	3x1.5	10 A		-	2x0.75	1	2x0.75	
	17 TR	Tri	5x4	16 A	3x1.5	10 A	-		2x0.75		2x0.75	
ROE H	13 MH	Mono	3x10	40 A	3x1.5	10 A	-	-	2x0.75		2x0.75	
	13 TH	Tri	5x6	16 A	3x1.5	10 A	-	-	2x0.75		2x0.75	
	17 TH	Tri	5x10	20 A	3x1.5	10 A	100	-	2x0.75		2x0.75	
ROE+	11 MR	Mono	3x6	25 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
	11 TR	Tri	4x4	16 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
	16 TR	Tri	4x4	20 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
ROI+	8 MR	Mono	3x6	25 A	3x1.5	10 A	3x1.5	10 A (1)	3x0.14		2x0.75	
	8 TR	Tri	5x4	16 A	3x1.5	10 A	3x1.5	10 A (1)	3x0.14		2x0.75	
	11 MR	Mono	3X6	25 A	3x1.5	10 A	3x1.5	10 A (1)	3x0.14		2x0.75	
	11 TR	Tri	5x4	16 A	3x1.5	10 A	3x1.5	10 A (1)	3x0.14		2x0.75	
	16 TR	Tri	5x4	20 A	3x1.5	10 A	3x1.5	10 A (1)	3x0.14		2x0.75	
ROE+ TH	18 TH	Tri	4x4	20 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
	22 TH	Tri	4x4	20 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
SOLO	7 MR	Mono	3x4	16 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
	9 MR	Mono	3x4	20 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
	11 MR	Mono	3x6	25 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
	14 TR	Tri	5x4	16 A	3x1.5	10 A	3x1.5	10 A	4x0.14	Fourni	2x0.75	
	17 TR	Tri	5x4	16 A	3x1.5	10 A	3x1.5	10 A	4x0.14	Po	2x0.75	
NAPO	9 M	Mono	3x4	16 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
areamile)	14 M	Mono	3x6	25 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	
	22 T	Tri	5x4	20 A	3x1.5	10 A	3x1.5	10 A	4x0.14		2x0.75	

Λ	-	 álas	toins:	

App	oini elecirique	
MONO O OUMAN	SC	3 x 6 mm ²
MONO 2 x 3 kW**	DJ	C 32 A
TRI 2 x 6 kW***	SC	5 x 2,5 mm ²
IKI Z X O KVV	DJ	C 20 A


EP1	Sessi	on	Code	
EFI	2014	4		
	BEP Installation des Syst	èmes Energétion	ues et Climatiqu	es
	EP1 Préparation d'activit	és professionne	elles	
	-	Durée	Coefficient	
DOSSIER RES	SSOURCES	3 h	4	10/17

SC = section des câbles en mm²
DJ = disjoncteur
* protection du moteur par DJ courbe D avec protection différentielle en tête
** peut être bridé à 1 x 3 kW } par réglage de la DIEMATIC 3
(1) Alimentation TEM (régulateur thermodynamique)

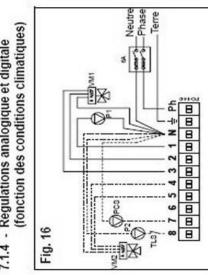
LE TABLEAU DE COMMANDE DU MIT... ÉQUIPANT LES PAC

RACCORDEMENTS ELECTRIQUES

7.1.3 - Thermostat d'ambiance (action sur la vanne mélangeuse)

TH1: Thermostat d'ambiance 1^{et} circuit P1 : Circulateur chauffage 1^{er} circuit

P2 : Circulateur chauffage 2ème circuit VM1: Vanne mélangeuse 1^{er} circuit


TH2 : Thermostat d'ambiance 2^{ème} circuit

TLS: Thermostat limiteur de sécurité si le 2ème circuit est VM2 : Vanne mélangeuse 2^{ème} circuit un plancher chauffant

Shunt 5/6: uniquement sur FONTALINE.C

Le thermostat d'ambiance, installé dans le volume habitable, contrôle la température ambiante de la pièce dans laquelle il se trouve en fonction du programme choisi. Il pilote automatiquement le moteur électrique de la vanne mélangeuse de l'installation.

7.1.4 - Régulations analogique et digitale

P1 : Circulateur chauffage 1^{er} circuit VM1: Vanne mélangeuse 1^{er} circuit

P2 : Circulateur chauffage 2^{ème} circuit VM2 : Vanne mélangeuse 2^{ème} circuit

TLS: Thermostat limiteur de sécurité si le 2^{ème} circuit est un plancher chauffant PCS : Pompe de charge sanitaire (FONTALINE.C + préparateur d'eau chaude sanitaire)

Shunt 5/6: à enlever

installation, la régulation de toute l'installation de par action automatique sur la vanne mélangeuse de chauffage en fonction des conditions climatiques-Les régulations analogique et digitale permettent, Se référer à la notice des régulations.

7.1.5 -	Raccordement du préparateur d'eau	chaude sanitaire (BS + FONTALINE,C)
	7.1.5 -	

₩ B	183 8 3 8 3	0	0 0	- 8	- B	<u>14 + 2</u> ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε	
THE B		6g 4 B	6g 4 B	4 e B B € B	4 9 B	\$ 7 8	800

TRS: Thermostat de réglage teméprature sanitaire du BS PCS : Pompe de charge sanitaire

Shunt 5/6: à enlever

Remarque: raccordement non compatible avec § 7.1.4 page 21

EP1	Session	Code	
EPI	2014		
BEP Insta	allation des Systèmes Energétion	ues et Climatiqu	es
EP1 Prép	aration d'activités professionne	elles	
	Durée	Coefficient	
DOSSIER RESSOURCE	ES 3 h	4	11/17

RENSEIGNEMENTS NÉCESSAIRES À L'INSTALLATION D'UNE PAC

RACCORDEMENT HYDRAULIQUE

Protection antige!

Les tubulures de raccordement entre le groupe intérieur MIT... et le module extérieur des ROE-II, ROE+, ROE H et ROE+ TH étant extérieurs, il est important de protéger le circuit hydraulique avec un mélange eau/antigel/inhibiteur de corrosion. Pour une protection optimale, nous préconisons d'utiliser soit un fluide caloporteur prêt à l'emploi à base de mono-propylène-glycol de 20 à 40 % (à adapter en fonction du lieu d'installation) et d'inhibiteurs de corrosion, soit un produit à diluer. Attention: Ne pas utiliser de produit à base de mono éthylène glycol (produit taxique). De même, les capteurs enterrés horizontaux ou verticaux raccordés à une pompe à dialeur SOLO, doivent être glycolés. La teneur en glycol préconisée sera comprise entre 25 et 30 %.

Remarque : le groupe ROI+ étant installé en intérieur, les tubulures de raccordement au MIT ne nécessitent pas systématiquement de protection antigel. En fonction du risque de gel, il pourra être préconisé l'emploi d'une solution antigel afin de protéger l'installation.

Concentration d'antigel en fonction de la temp. extérieure de base

Concentration en antigel mono-propylène glycol (%)	Température ext. de base (°C)
20	-5
30	- 10
40	- 15

Filtres

Afin de protéger les échangeurs du groupe thermodynamique des PAC, la mise en place de filtres est obligatoire. Pour les PAC ROE-II, ROE+, ROI+ et ROE+ TH, des ensembles "filtres + vannes d'isolement" (colis EH 61/63) sont livrables en option. Pour les PAC SOLO et NAPO, des filtres à monter côté captage sont livrés d'origine.

Vase d'expansion pour circuit de capteurs enterrés raccordé à une PAC SOLO

Le tableau suivant donne la contenance utile du vase d'expansion pour une pression de tarage de la soupape de sécurité de 3 bar en fonction du volume d'eau de l'installation et de la hauteur statique.

La contenance de l'installation peut se déterminer à l'aide du tableau ci-contre.

Tube	PE 20	PE 25	PE 32	PE 40	PE 50
Contenance en Vm	0,206	0,327	0,539	0,834	1,307

Ballon tampon

Le ballon tampon est destiné:

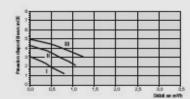
- d'une part à augmenter le volume d'eau dans une installation afin de limiter le fonctionnement en court cycle du compresseur. Plus le volume d'eau est important, plus le nombre de démarrages du compresseur sera réduit et plus sa durée de vie sera longue.
- d'autre part à assurer une réserve d'énergie pour les phases de dégivrage des PAC Air/Eau ROE-II, ROE+, ROI+ et ROF+ TH.

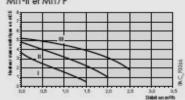
Contenance en eau de	Volume du vase	d'expansion en l statique jusqu'à	pour une hau
l'installation	5 m	10 m	15 m
2001	4	5	7
250 1	5	6	9
300 I	6	7	11
400	7	10	15
5001	9	12	19
6001	12	15	25

La mise en place d'un ballon tampon est donc recommandée, notamment pour les installations avec radiateurs et/ou ventiloconvecteurs.

Le volume préconisé est au minimum = 10 l/kW; par exemple pour une PAC de 11 kW, il faut un volume d'eau dans l'installation d'au moins 110 l. Nous proposons en option un ballon tampon de 80 et de 160 I - voir page 20.

COURBES CARACTÉRISTIQUES


Pression disponible circuit primaire (côté circuit PAC) MIT-II


Pression disponible circuit primaire (côté circuit PAC) MIT/P

Pression disponible circuit chauffage (côté circuit direct) MIT-II et MIT/P

Caractéristiques de la pompe du kit vanne 3 voies livrable en option (colis EH 57) MIT-II et MIT/P

- I petite vitesse

OB			

EP1	Sessi	on	Code	
EFI	2014	2014		
В	EP Installation des Syst	èmes Energétiq	ues et Climatiqu	es
E	P1 Préparation d'activite	és professionne	lles	
		Durée	Coefficient	
DOSSIER RES	SOURCES	3 h	4	12/17

LES OPTIONS DES PAC

Kit 2ºmº circuit (vanne 3 voies + pompe) - Colis EH 57

Si l'installation de chauffe comprend 2 circuits (1 circuit radiateurs basse température par ex. + 1 circuit plancher chauffant), cette option sera nécessaire pour raccorder le 2° circuit (avec vanne mélangeuse). Dans le cas d'une installation de pompe à chaleur avec MIT-II/H ou MIT/HP associé à un appoint hydraulique par chaudière, le raccordement d'un circuit plancher chauffant basse température se fera obligatoirement par l'intermédiaire de cette option. Ce kit s'intègre sous l'habillage du MIT...

Kit plots antivibratiles - Colis EH 78 pour ROE-II et ROE H
Ce kit permet de limiter les transmissions des
vibrations vers le sol.

Support de fixation mural + plots antivibratiles - Colis EH 95 pour ROE-II 6 a 10

Kit flexibles hydrauliques

Colis EH 19 : 1" pour ROI+, ROE 6 à 10, ROE+ 11 et 16 et appoint par chaudière Colis EH 59 : 1" 1/4 pour ROE 13 à 17 et ROE H 13 à 17, ROE+ 18 TH et 22 TH

Ces flexibles (longueur 1 m) permettent de limiter la transmission des vibrations entre le module thermodynamique extérieur des PAC et les tubulures de liaison avec le MIT... Le colis EH 19 peut également être utilisé pour le raccordement entre le MIT-II/H ou MIT/HP et les tubulures de liaison avec la chaudière d'appoint.

Filtre à tamis + vanne d'isolement

Colis EH 61 : filtre 400 µm pour ROI+, ROE 6 à 10, ROE+ 11 et 16 Colis EH 63 : filtre 500 µm pour ROE 13 à 17, ROE H 13 à 17, ROE+ 18 TH et 22 TH

Ces filtres permettent de protéger l'échangeur à eau de la pompe à chaleur contre les impuretés.

Platine de limitation du courant de démarrage - Colis EH 87 (pour ROE-II TR et ROE H uniquement)

Permet de limiter l'appel de courant au démarrage du compresseur de la PAC (limitation à 45 A). Cette platine est nécessaire afin de respecter la norme NF-C 15100

Ballon tampon

B 80T - Colis EH 85 B 150T - Colis EH 60

Ces ballons de 80 et 160 litres permettent de limiter le fonctionnement en court-cycle du compresseur et d'avoir une réserve pour la phase de dégivrage sur les pompes à chaleur Air/Eau réversibles. Il est également recommandé pour toutes les PAC raccordées uniquement sur des radiateurs ou des ventilo-convecteurs. Dimensions des ballons:

- B 80T: H 850 x L 440 x P 450 mm
- B 150T: H 1003 x Ø 601 mm

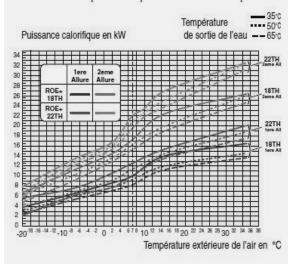
EP1	Session	Code	
CF I	2014		
BEP Insta	allation des Systèmes Energétiq	ues et Climatiqu	es
EP1 Prép	aration d'activités professionne	lles	
	Durée	Coefficient	
DOSSIER RESSOURCE	ES 3 h	4	13/17

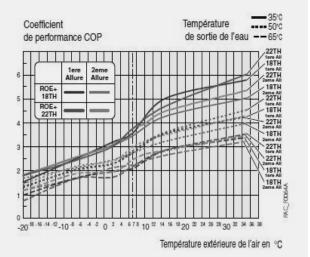
CARACTÉRISTIQUES TECHNIQUES DES PAC ROE+ TH

LES CARACTÉRISTIQUES TECHNIQUES

Conditions d'utilisation:

Temp. limites d'utilisation en mode chaud: Pression maxi de service: 3 bar


Eau: + 18 °C/+ 65 °C, Air extérieur: - 20 °C/+ 35 °C



Modèle	ROE+	18 TH	22 TH
Puissance calorifique - Allure 1/2 (1)	kW	9,6/16,2	12,0/20,3
COP chaud - Allure 1/2 (1)		3,4/3,4	3,6/3,5
Puissance électrique absorbée - Allure 1/2	kWe	2,82/4,76	3,33/5,80
Débit nominal d'eau	m³/h	3,0	3,7
Pertes de charge côté eau	mbar	100	153
Débit d'air	m³/h	5500	8000
Tension d'alimentation groupe extérieur	V	400 V Tri	400 V Tri
Intensité nominale - Allure 1/2	A	5,1/8,6	5,95/10,46
Intensité de démarrage	A	23	25
Niveau pression sonore (2)	dB(A)	42	46
Puissance acoustique (3)	dB(A)	64	68
Fluide frigorigène R 290	kg	1,8	2,2
Poids à vide groupe extérieur	kg	330	360
Poids à vide module intérieur	kg	72	72

⁽¹⁾ Temp. air ext. + 7 °C, temp. eau à la sortie + 35 °C. Performances selon la norme EN 14511-2.

Puissance calorifique et COP pour 3 niveaux de température d'eau à la sortie en fonction de la température extérieure

EP1	Sessi	on	Code	
EFI	201	2014		
	BEP Installation des Sys	tèmes Energéti	ques et Climatiqu	es
	EP1 Préparation d'activit	és professionn	elles	
		Durée	Coefficient	
DOSSIER RI	ESSOURCES	3 h	4	14/17

⁽²⁾ à 5 m de distance en champ libre

⁽³⁾ Essai réalisé selon la norme NF EN 12102

NAVARO HORIZONTAL (NHR1)

hme	tubes	largeur		10000			(H mm)		
type	(n)	(L mm)		400	500	600	700	800	900
Nº. D'ART.	12	540	75/65/20	330	396	460	523	587	651
12276	12	540	55/45/20	177	211	244	276	308	339
NHR1	14	630	75/65/20	385	461	536	611	685	759
	194	030	55/45/20	206	245	284	322	359	396
100	16	720	75/65/20	440	527	613	698	783	866
100	10	120	55/45/20	235	281	325	368	410	450
America	18	810	75/65/20	495	593	690	785	881	97
176/047	10	0.0	55/45/20	265	316	365	414	462	50
	20	900	75/65/20	550	659	766	872	978	108
	855	500	55/45/20	294	351	406	459	513	56
	22	990	75/65/20	605	725	843	960	1076	119
	277	0.000	55/45/20	324	386	446	506	564	62
	24	1080	75/65/20	660	791	920	1047	1174	130
		10000	55/45/20	353	421	487	552	615	67
	26	1170	75/65/20	716	857	996	1134	1272	141
	1000	3.119	55/45/20	383	456	527	597	667	73
	28	1260	75/65/20	771	923	1073	1221	1370	151
	1000	2000	55/45/20	413	491	568	643	718	79
	32	1440	75/65/20	881	1055	1226	1396	1565	173
			55/45/20	471	562	649	735	820	90
	36	1620	75/65/20	991	1187	1380	1570	1761	195
			55/45/20	530	632	731	827	923	101
	40	1800	75/65/20	1101	1318	1533	1745	1957	216
			55/45/20	589	702	B12	919	1026	113
	44	1980	75/65/20 55/45/20	1211 648	1450 772	1686 893	1919	2152 1128	238
	193.5	25000	75/65/20	1321	1582	1839			260
	48	2160	55/45/20	707	842	974	2094 1103	2348 1231	135
	40000	100000000	75/65/20	1431	1714	1993	2268	2544	281
	52	2340	55/45/20	766	912	1055	1195	1333	147
	100/07	1000000	75/65/20	1541	1846	2146	2443	2740	303
	56	2520	55/45/20	825	983	1136	1287	1436	158
	579000	5000000	75/65/20	1651	1978	2299	2617	2935	325
	60	2700	55/45/20	883	1053	1217	1379	1538	169
	0000	8/90/8/10	75/65/20	1761	2109	2452	2792	3131	347
	64	2880	55/45/20	942	1123	1298	1471	1641	180
	70.00	(229.2011)	75/65/20	1871	2241	2606	2966	3327	368
	68	3060	55/45/20	1001	1193	1380	1563	1744	192
		Watt	/él. (75/65/20°C)	27.52	32.96	38,32	43.62	48,92	54.
		1100	poids, kg/él.	0,71	0.85	0.99	1,13	1,27	1,4
			contenance, Vél.	0,22	0,25	0.29	0,33	0,37	0.4
			facteur n	1,21	1,22	1,23	1,24	1,25	1.2

C € 05 conforme EN442-1: radiateurs et convecteurs

H hauteur d'entraxe.

Pour la hauteur totale prendre H + 130mm
Les puissances indiquées sont données pour des températures aller/retour/ambiante de 75/65/20 et 55/45/20.
Pour d'autre températures aller retour chauffage ou température ambiantes voir les facteurs de correction.

																	- 31	NHR1 /	NHR2
Largeur (L)	540	630	720	810	900	990	1080	1170	1260	1440	1620	1800	1980	2160	2340	2520	2700	2880	3060
Pas entre les raccordements par le bas 18 (R1)	450	540	630	720	810	900	990	1080	1170	1350	1530	1710	1890	2070	2250	2430	2610	2790	2970
Hauteur (H)	400	500	600	700	900	900					1010000			20000				-	-
Pas entre les raccordements latéraux 23/67 (R2)	365	465	565	666	765	865													
Pas entre les fixations	H-40	-																	

EP1	Sessi	on	Code					
EFI	2014	4						
BE	P Installation des Syst	èmes Energétiq	•					
EP	EP1 Préparation d'activités professionnelles							
		Durée	Coefficient					
DOSSIER RESS	OURCES	3 h	4	15/17				

NAVARO HORIZONTAL (NHR1, NHR2)

TYPES

• Une série (NHR1) ou une double série de tubes (NHR2)

TUBES

Verticaux, ovales-aplatis 57,5 x 10 mm

COLLECTEURS

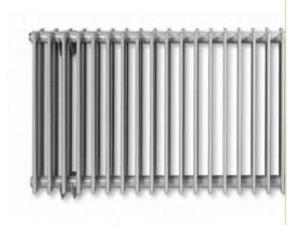
Horizontaux, à l'arrière, ronds Ø 35 mm

- Couleur standard blanc RAL 9016
- Couleur standard blanc MAL 5010
 Non réalisable en M350 (aspect acier inox)
 Non réalisable en S600 (texture fine blanche)
 Table of the Mandale Voir p. 6-7 Carte de couleur étendue voir p. 6-7

- NHR1 / NHR2 aussi livrable en positionnement libre
 Lors du positionnement libre, indiquez la distance sol / radiateur (K) et la distance plafond / radiateur (B).
- NHR1 aussi livrable comme radiateur de toilettes (540 x 500 mm)

FIXATIONS

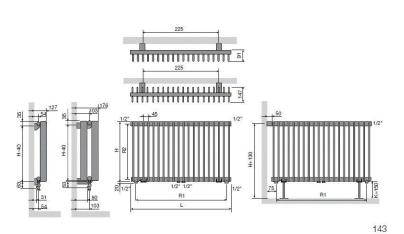
Fixations murales standard


- Assemblé automatiquement par des robots en soudure haute fréquence (soudures invisibles)
- Couche de base acrylique KTL et poudre d'époxy-polyester
- Pression de service: 4 bars (standard). Supplément de prix pour une pression de service plus haute (10 bar): +10%.
- Le délai de livraison d'un radiateur avec une pression supérieure est de 1 semaine supplémentaire.
- Température de service maximale: 110°C

ÉLECTRIQUE (voir chapitre radiateurs électriques)

Radiateur électrique prérempli	×
Radiateur électrique à remplir	×
Radiateur mixte	×
RACCORDEMENT	
Un seul raccordement pour un système monotube (radiateur à commander spécialement) (voir p. 194)	V
Un seul raccordement pour un système bitube (radiateur à commander spécialement) (voir p. 194)	V
Un double raccordement pour un système monotube (raccordement par raccordement central) (voir p. 194)	V
Un double raccordement pour un système bitube (standard) (voir p. 194)	V
Vanne intégrée	¥

DÉLAI DE LIVRAISON Le temps de transport n'est pas inclus!


15 à 30 journées ouvrables, suivant le type

EP1	Session	Code							
	2014								
BEP Insta	EP Installation des Systèmes Energétiques et Climatiques								
EP1 Prép	EP1 Préparation d'activités professionnelles								
	Durée	Coefficient							
DOSSIER RESSOURCE	ES 3 h	4	16/17						

TECHNIQUE FACTEURS DE CORRECTION

En partant de la température d'eau de 75/65/20 °C et du facteur n : 1,3 (nouvelle Euro-norme).

Exemple:

Puissance nécessaire : 1050 watts Température ambiante : Ti = 22 °C Régime d'eau : 70 / 50 °C à savoir Td = 70 °C (départ) = 70 °C Tr = 50 °C (retour) = 50 °C

Solution:

Le facteur de correction = 0,70 Exemple de type de radiateur 1050 : 0,70 = 1500 watts à un régime de $75/65/20 = \Delta T50$ (voir les tableaux pour le régime 75/65/20°C) Il s'agira donc du type HKM 37/900 d'une puissance de 1585 watts

		Tr °C					0.5	0.7			0.5	
		35	40	45	50	55	60	65	70	75	80	
Td °C	Ti °C	anno anno anno anno						100 Per (0.10)				Ti °C
	16	0,91	0,97	1,04	1,11	1,17	1,24	1,31	1,38	1,45	1,52	16
	18	0,86	0,92	0,99	1,05	1,12	1,19	1,25	1,32	1,39	1,46	18
90	20	0,81	0,87	0,94	1,00	1,07	1,13	1,20	1,27	1,34	1,41	20
	22	0,76	0,82	0,88	0,95	1,01	1,08	1,15	1,21	1,28	1,35	22
	24	0,71	0,77	0,83	0,90	0,96	1,03	1,09	1,16	1,23	1,29	24
	16	0,85	0,91	0,97	1,04	1,11	1,17	1,24	1,31	1,38		16
	18	0,80	0,86	0,92	0,99	1,05	1,12	1,19	1,25	1,32		18
85	20	0,75	0,81	0,87	0,94	1,00	1,07	1,13	1,20	1,27		20
	22	0,70	0,76	0,82	0,88	0,95	1,01	1,08	1,15	1,21		22
	24	0,65	0,71	0,77	0,83	0,90	0,96	1,03	1,09	1,16		24
	16	0,78	0,85	0,91	0,97	1,04	1,11	1,17	1,24			16
	18	0,74	0,80	0,86	0,92	0,99	1,05	1,12	1,19			18
80	20	0,69	0,75	0,81	0,87	0,94	1,00	1,07	1,13			20
	22	0,64	0,70	0,76	0,82	0,88	0,95	1,01	1,08			22
	24	0,59	0,65	0,71	0,77	0,83	0,90	0,96	1,03			24
2	16	0,72	0,78	0,85	0,91	0,97	1,04	1,11				16
	18	0,68	0,74	0,80	0,86	0,92	0,99	1,05				18
75	20	0,63	0,69	0,75	0,81	0,87	0,94	1,00				20
	22	0,58	0,64	0,70	0,76	0,82	0,88	0,95				22
	24	0,54	0,59	0,65	0,71	0,77	0,83	0,90				24
*	16	0,66	0,72	0,78	0,85	0,91	0,97	0,00				16
	18	0,62	0,68	0,74	0,80	0,86	0,92					18
70	20	0,57	0,63	0,69	0,75	0,81	0,87					20
70	22	0,53	0,58	0,64	0,70	0,76	0,82					22
	24	0,33	0,54	0,59	0,70	0,76	0,77					24
S.	16	0,48	0,66	2000	100000	1000000	0,77					16
	18	0,56	0,62	0,72	0,78	0,85						18
65	20		100		100							20
00	22	0,51	0,57	0,63	0,69	0,75						22
	24	0,47	0,53	0,58	0,64	0,70						24
		0,43	0,48	0,54	0,59	0,65			SWEET			
	16	0,55	0,61	0,66	0,72							16
	18	0,50	0,56	0,62	0,68							18
60	20	0,46	0,51	0,57	0,63							20
	22	0,42	0,47	0,53	0,58							22
	24	0,37	0,43	0,48	0,54							24
	16	0,49	0,55	0,61								16
	18	0,45	0,50	0,56								18
55	20	0,41	0,46	0,51								20
	22	0,36	0,42	0,47								22
	24	0,32	0,37	0,43								24
	16	0,44	0,49									16
	18	0,40	0,45									18
50	20	0,35	0,41									20
	22	0,31	0,36									22
	24	0,27	0,32									24
	16	0,39										16
	18	0,34										18
45	20	0,30										20
	22	0,26										22
	24	0,23							100			24

EP1	Session	Code						
EFI	2014							
BEP Inst	allation des Systèmes Energétic							
EP1 Prép	EP1 Préparation d'activités professionnelles							
	Durée	Coefficient						
DOSSIER RESSOURC	ES 3 h	4 17/17						