Etude des fonctions techniques FT23 et FT241

eDrawings - [Moto-reducteur vertical] Internet Explorer 5.5 (ou une version ultérieure) est requise pour visualiser ce fichier eDrawings. D'autres navigateurs peuvent être utilisés, si est correctement configuré. Généré avec eDrawings 2006 sp4. OzsgSFNGIFYxMi4wMCAKSQAAAABCAJY3p7xokW28CtcjvJY3pzzNzEw8CtejPFp42t1beXzTVba/SX6/7Ev3hVKabtBIl6xN06ZQRJZSRKEEWQoYaEoD3WiLtCDyk3EdFBGFwsAghUFniug8QRBEwgDjzFMWRYVnoYLKQ2F8/TjAYKXy8s65NylpkZnhPeafF8zvd37nd++553zvufecc1OnpYsI2a80G425WUZTttGYWPqQ5/7ack9VQ5bJmm3NBp7JaMrCBiajlRByfnOW7/W//G5I42eDfPBIvn9pV+Hx/Kqhh//qG4LPhj35Q3/79OghyqPsffK16fte7+fe80n7bCchwtBk4In8fj8J/ehzvDWzqxaUe/RV3ln17vrmnGrUYaZxZoAfV//Tf1nTDjZfe3Hyfzc87DxdNu6ViWm+1dveCuvYUCyeZV4Rd7BuadZ9i8RW+fDamgrvnCyjiEgslgJRXLDBs08YXl9+QmY4WTDo6uzdr2y6cOE0McLYcfCN3T3eEbv7Y8eE4sT82ghJvlWww/0XcN+NzwUAEpm+hHz31oH3EoonF56Yt+s9VLsq4hd7lae2FCAeiAHavfW5mYUnfj+kUFbuqXAvqGrMkNV7HvF6FjYYMhT1ngpPvadmtgeZFTXuas8kP/HnAGjzM7g6d2Nlz6MhQzab2mHMkDZUejyNxgwepRgzZJZyik2GPABNQ4bCW9PQ6AaxxgxTdnbOrf/1ATOnodJd7ynPmVVb3mzMUNBbw4JZ5tKVYkLm//PXFJHIWO6tqFjQ4NHPrq2qrS/MqC80ZpttRkeeUT/nJjmrhzQYbo5nutPx7vQaMpbxLtlmt5kdVhO1LUCibUb6MRjuqBMjDQbnnc9ZOi6kXgvoHzwbRnOEIyLDJI6AZ5kDHiSrcjd76rNMGRwgZIFro7u+SGGYX4jdtXh57JU6QRAmnZ2kSxaJDLSduddbQvy93poypBXeqipP+aSzD/mT/yrqIyyk+Xza3tjnNQm+NmSoK2urPPpqd/08T31DBu9u8jbYburoCiflXlhAjZ56OgEWmIAsv9ZTvjCrrtZb0whKXPRo+jIe43w+HwxNpVlvL81259Ist5eWe+fSzHdVN9NdlWa8rTTzHUkLbnYhU063usB+OUmAQEHIBHCKx8NE1I1FeN8khDGnPnrkSKEYN5Rqd0NDXX1tXYPrDxKkURWTMS/PaM81m3JNNqPZYjdlPlJbtaDaUwgBrc8bTxbAkAmryx3wpDybw+Sw2iwmi9Fkdtgz59S7H5k521MDVs5sKsyyZlssubk2k91kMRutIA0lmBy9mjUXZtFtwWG12CxWk8Vht1kcFluupVerRXRAh91qNlksMFIeaGOx2DKrmmAcI96aoYXDYXfAcCaTzWGzG+0WC75YRAfItYAhFqvRDF3htcmSWddUmJcNs4raOQAE6GujFtozq5pRexPem1F6M46fWddc6EBBlrw8m8kK9uY6cnMDHRYxNRZRNX5mMHiz6GcVrFsEQq12a645z2a0OSwg2GYLCG1q6jUgLtzcvOC75kJzNkBvtFvzrBY7Qme3wzsz2ryoEJCHYXE9mey5uKqsgXfNTbfv19xMEbE5cs12k81sB9cwmoOIAIyojNUEQMHM26wWRy6FywHGNd1+wEXNf68jtT43D6czz2S3GfOMQeu9YL0JNM2zGx02i9lqNoJK1PpceNdcaIEBjWaHyWbPs+dZzXmmwIBesD7LDGbkmq1WgNgOypit2NFszfSC+bftCOabsvMseeY8I3JNFkA9NzAgmg/rwYEKwrzC7ANuloCmYP7tR0T7b98T7bflgi9Y8hxmsNNhMgfeVbvB773uqsKU+92NF4FaoHfW1NboG+ouzvZWeC8OSTFkqFjmo++VHxnG9NlE0giuHRPMp762foG+3N1QmUmXXK7FRjmzqtw188ZEYq9qb1OjR+9p1Dd66z2NDTW0K7Tr07VHGO2a+fPy/xeNxih6lCi+e0MzQJhpVbU1c6hoi9Gad7cUplj3J2Z9XdM/A2+FtybnYp3b27D6LsKrr3PXuyGfqMrUm7Jt+oUe75zKxkw93eCNIV2DzW990eCZU427bflgCBlDK0UiUalOToMJB5cXDv7t3coXq/cRRhcg/fXW9c6wuEDmFFqo+OkHekrhQc6JJEQskqnVmG35dYIOLnDzk1Kd7Hby310619lbfu9R2AgB+SBdEpAPj/CPXUC+IlR+Qaj+dyI/VH8iF+QCyhdQvrRH/r7GyH0oM6i/8lRqqPybcoPf2+jvVxEVXOCG+Eh66R+UD2M5+8gPjhC83lZ/v0pQCSif4s/30h9lBuTvy9dr7wL+XKh8Z4h8553Ivz3+dEhRClxeXX/fvr8eHg42bHEC7QTaiXTYEXhZYahM7jBj27nxE52ZkZdHIt2pXjl+q7yrDOkyzl2ZLTY2BkZfSsjx5Yze2JItlm1hbWrf2CrX7GF9tx3KjEw5ymSuO1mZ3PIFoSOtvtBh/uQ7pCc6w69cHjn1B6RXjt/S3VX28Q2k3ZV+v7ExMFNL/f7jyxl/Y8uWbtkW1r72jfArmj1MzrZDqy+kHGXy150UlSAm/AClPilZIlOoJBpdrEQpj5UM6K+UJCYpJbFiIouJUkaow7Q8EcVKeD46NlIXzotjObmUj1HG9e/Hx8YrExJ5Xhar0gCwlSDRR7p8XXCB27+MhmG6YNK0dNLQjDX21/YFFyXQzqNHxjqRDjtM09iuBwupA33QuHreORWbjrhlJZUV0S9okL7a2LrkhIzxO1YufvYdviIa6T/Nr+/f9eDKUUi33XO10ZnIWrlWF9hXjmIyB290jBvg/BFdh7QuEW98QXMAD21ISaX7tXMqJiendfGzkenORKTFG12rf0xh/Db4HLDK3mQjv3d4gJPR9f3b7ql956XRSBd3FNhr31n7CNL2HZvee7sWfBc+lW9+/qGx+thkpAd87xj35aE5z7I2Ee1v145ZifSm9xafX/vI0A+ZPn/r3jWP9S359vMPj69i7Refj2iH1gJbLCWV6y4d+iqIibTju3ba5tk/zV93qfhlpP/WvXpe0lUms63tamPdZWkHw+S9w18eMr3G9Pmg8WB31W6mf+uSrC4mU7wxp3XdpVHXmcy4ZX5/VhfrK95Yd3ndJSazY6Xfn3SVOvhrgzce7Kaz/Bw6q9JeaBya7TQ4BqVKEhOIZKB+sCSSU0hG3jtKYrNGSvqlJHO2fgXDlHKZRhcRFR0f248bMbJ4lCotKSP9nswsU47dyDn6pSYrFBwvlorkEhkXFqlN5IkyUaXlh/W71zFKWzxmxOjh9xUNyc+D3HuwQqGODLfF9IuLlQ1I1EcOtlr4lH5p/ZPA28+DSkVEXiQvwm2k6P8nTej2K6ZzoAts6cGQ3Wv7pbsfcUW7qGef/MUf/gh+Rvv9uQu3qP6DkH60dcPcG+OZt51/aMNc8Rttl5j3P9r69X8wGvv6/TtvBPuyDU4Uix4gU2tUSoVcJtFq1AqFjEhFvFjCwWQY73TrYYbR5S8qo7Xt2H34ZXXuWLqFLNz/ijMsA4zIHHQqdWA47VNkKEvikyDeJWsMZWdnTOeQStYQ4eSWJJ496VuRHhgOXOL3LWtfkp5xBrtmDlqSviT9VGrtj7U/Zg46DLHkcDqa92E6yC7qMNf+6Pe3x2+EuFIVjvyUopXhw4ouj0R6nuYQxJizM/z+2h+nc19zXWUXZiD/KY6beZb7vJOCVPR5JynKFuNCXlT5HIEoJGB7Gu4wZMPnOfIcRKRz17G9oWxz99kZ564zW56E+LS52+9P1qBV+tb4VtTnKa5701lOtgX7fs05IW6hHBpf4a7Zk6xB3QaG+31V4di+w7cyfL9P34ptNne7IbaxsU5u0bdu7j53HbE6uaU9PuUo09nvgztghPgsay+A+LesHXVekp45KOPM4XSUaW3/ML2gveUL1OGwIZ3GRaQ3Oms7hxW91MmwevkyxkikD43vDzFS3400N7O5+8KMj28gvaiywc8w8fsbqP7HlzP6yZaPb7D23Zuau+Nbmb39u51vTP1Bswfply/Xdu73sbE6fO5Dn3yXchTp9AvW9qBuBSdFO6mTDisqhNovRyLjB0qUCqeEk8RIRgxPkDxgyZJMzLVLBmWXSPItLsmwwiGymH5cIq8fKBt4jyxTbpJyI0f3T1NFiiKIVqNTh4dF8VFh0bFxvCFjsDFHNnpM2tis+x/gH3JMLpjGJWWkGHhImSJjZM6hynv73zeSl5oUVievShgyfJgsJTlpQGx8HP/ABEupSzZxfO6D2eNK5AmpI9JHDSoukbkm5U8pmDqNtznsD02EFRSFofIbFVGQNuV8BZlPXAoCaZO8TUpWkBVSwhEX/41KCGSW32BmeYhM1BAl2aluU5ITxKWBvls1bVryJVmjRTnaNqXgItvEREe+l0Om/jQmXJi1z1cA7RIRGZmvcCkgkW/TClJov0YrtAkDpDQp26qBy0SNoBFcvEskuIQsnkiFFdIVUmizUy2IgU84YZvg5AhmoqDgN5iVSsgh1QmlUCK0iYkYbPlSIUwVvCIiAoO+l4OcJkLlN8GiEHQyQSS0Sb0of4AUZE4Vu3iQn8ULnFAicXI0O4zpyT4xI7z3Yc+7NNEYvpzS+LNFr+zzZu7M6Fuz2z7VS2xf+QUh8gv+WfliIhH1ZLdoHGFUqS6yRz7I3BeUj5nu3ZEf0Vf+uyHy7wI+Oip/Y2CXHvhfJftwZ8YdGmiWne+UsOz8cDpNjtLnxneYL+EvX8IZA2bqIy1I/xB/ZmgV7KnYJjY8efDY1D9E7uggwr85O9WXR1ZC4rajoynhTKYpfUq037+j443C5ZqiUVdsuFc8mYhZ/lOxqLNiaIEuZvRoBfb9aPwz4fnFXWVoSRn32AS56sIM4BO/5NyMs1zGdByX5+eVztO8Ph1lfibFCmHmDJQzTvF45WnxWxwRdnS0Q/ZsbMyVIb/U+3tS1FjdiPwXxEn87xoD1d5SlPZ7Cjxk/Evx3Y4OAJLWGb7l7O0L4lXLJy1HfhKPVcdpDMPCYy3pLW9xuTLkv77GL4lvPUsT2KTWMtjfT21men4mLd28qRXbjFNglTIaK18h543Ht8tV8zTIf/n1TrVmj+8d5C/XFOgu7v7jLuQ/E556oAr2foYtVjV/QL8Txh0af3BK9FOx2Obagbmw8+85wuaiKaHlQ/UHyH8yESsfNl+pJ7/4dGyqKR35qZ+0tB+GvZ/NaYWh5YvoL9icJg/eceZYO7Y5k4mVEptf+YWnz1dar9iQv+iric5PvhuClQ/Mr2Jo87evXmJz+i2NGijzzFCsrIowwRcaLy/szC+OGY1tDn+/cvzUH3ZfQ/5H4+eVvnz5h6vIf2wCVl9s7v7t2rkZ+m42v9evk58uzHh9OvrPPT+6Kz++8e9dbB4fr0y7cX83m1+s1thMnrv+gD84v3U3MJZiFMZ5xDqu7gbKQfoB/6Tl6HsYQ48vX7Uc+XU3HvD7loN8AedxI0QukA/89JbHWtIgiuGSTGolP8W3bmplemI1WLqZ6Xb9+qnNL1/Gvi+/XgvR7YeryH98e84bu6/9cRfyF3ZixXhxN/IPf9942fcOzCnI/Lbz2oHmb1+iUTv1wDaIgK9ewjbjDy76Sv3BkO/QinGHUj851o6RkZDVMBctHxa041poaV93suULNu/yC198uuNM9Be4dlJPiqZB2JGPLPdU1y5YuGTp08+ufGnNhpfXLn/+F082L57fMGfew+6HJt0/dsR9BfkmoyEjOalfTLhGLdepoiISE9JSszLtuUOHFI8unTB1WrlHEjkgTuLIMUoefWqZ5IX1LRBgnRKve57k12s3cGJeJOEfEx5pquLW/fpXqzirzTyY0/IyMTdl+uxZXLxWKeNcM8tm8EqoG1JUQwpHj5owftoUz+xaRVxYpFTBSYhI4Z45yTW25L7h+fJ7h48pGeeaWCYb9cD4B6dMns79Unj8Mdnql375rLC0Kd6YkzEoaUBMpEYhl6j4CG1CfGpK5uBc2xBZrD5l4OB7zLJlix5trK+bq1q7/vkVTz61+NGG+nmy9S+seO6pJ5bx8+q9cyuklVU1TQuX8oXDRo18QLpq9Yu/fOZx6b1Fwx35Rn7Vr1dveIl3e2dWzJDOqpxdU7uQH2IrtDpVRXkOS072oPQB/eP4tb9ev64FNtQzGNgPqYgaIndm9/md504oIWh/dRridds3Pu9HGuJti/nV0a0nIDU+0j5tHdye8H2pIPkfkK6N3ouQHHf54j5do4XA/t0JSAq6fBLN81PfJ77v5WTyJdK1UP7ZR76ndWTJ+6TrtXsOlmB7HUb6317y+8jkz4DuKnl+z9O+19rfg92tK+ehSzrfM7LPtMCH5KJtO0T9X+2R3IBuz1+E4B/7qbsC6MitkAHsffsJJ9BlGOt5yDDWbP0my/ebNSfU0PerhFd2+mKmwu5Juj65et7pK6r4CGnIAcj6Qyrh2TczVdDXd65EQlYfTfwU6ItrITPo8nnHTPNuJ8EEYfGh9qlgqk8hbLFtXLfmy21Ai8h3/wE3L9griMhP4nrX+y6wV/jtarC3q+0jHyQR9WDv5PSDO33o1KAP+W0blBeTV8Ni6Zr82XtNvp3L9siAfuaHNp2Q89pqTDRApmsPZBuXt9eDJN9P2yDpWLMm8hTQ7renigXL1i1vt4mFxdDNx4PRv6nYnrWWlixrRpRIIOZedL0FOQmXGPWKc33RU28S8gkHATKpJwBDMMz/wPpBAR6RIX1mBHG+uv7wu//U8ZtILPn547HkUPl7Q+TvvRP5IiIR//zxXjyVHx+SYGHSgCc5PQnK2oDkYbSmfFNBBLsuI8AsnjBi0oB6pE4YiRA1lvFXpT14bZh45vtIb1ejRub9rM2u7SMm1fwFaZOxeIKqnfXNOl59OmOt8zz7Nf+J2X6/igaeXduzjpv3M5l+/+INfj+TOeHKseNMighPduQJCo02IjwmMi4qNixap1TLpWJOxBOZRKXQgtlj7+LhGC4xgC28BzY8AAvC1iuvW0uNfDFqk4PB8MRsQk7NCcJ2Nf3oMAbJ4g2wRyQw01elnZrz5fNBqK6mvxiF9LHjWcePDtv7O9YToWAyJ1x5U7H/BpNZfZoIf9nB2iBsXz7P+Bgb/vz9flrSP3itp6RnsCmlsAcTXiSXKLSasIiYyNiouPBotU6pkv5rYItiv2yHwEZCUmMK28MUtp3m8BU3YdtpRkNMxu3q8BVBE5DPvB0BDB7IL95w7PhOM2t/7PiEK+ErUI7fP+FK8AcNuiri6KrQqnUaiUat1GiUKplCLIUsm+PlgSMNUo0F2S4N3NKEXVhg+XWnpSQNbgJHTktXcWQVKYYlIdALrqW4m9YFCpTgqWgv60JX6nZ15/zO+UhvV5uMJUdLjjJLcQ0EWyHNdMcVQEjnfLziGig5yixavGHClc75JbQsPnY8YB0m9RKlVqaRaVU6NYRDKc/RXcAYSPM1cNmlEXYJ1SpBARfgpglpCtjqTkuLxXBbxUFZhpYKxWCdkloXx3YKdHe0aC/QuCOxM188+sQDleCBDaOp7kWBoxBWufQcimB7v4+1xzv94sfHjlSQj3f8IpseXQgBbARGUzkCO85g7ZH6vJPJEfVHNPop1drwyKjY6JiwCI1OoeKl+IsEJ5Mr1YAIPe6FghrCshIK6ok4x7hHwu1mIcwDH6pqpbBNDHV1W6AQo/s0vAaktmEBuw2QUv1dpJC+BalNqW1jNqXSU9gxoUi5oumX0qFIud7elOp6m540p8480zZm5plA3xDU2i5BoL0UilRA5tszz7C+M8+EohZASq0Li4iOjYoJj9RoVXIpLT5lvFKh1gWQulsnnYBUvx6kAJl39zW+hEjhD28FX29NuIkU8yTCMGOl2C2IsDY45cE2zC8C3kOlMA9jbWjKH0CE+UtQTqivYZugnFt8KkIXHR4bFqONUkbyaomCwKYplnMaVUQQKfAXohPAseTEj36kJC4entrQv8R4wAPOhPkVoW3Aj7aJwb9cfNC/YBHKAz4V3YNU5YvV+DMc3VuwGEe06N7S16dYyRrAKgQdxv+/rj5AJsR3bq7EIJ+1DyAl16qjw2MiYiOjwnQalSIYnpVybQAptFzOoKCrSQ4MSm9jmWIQKViEGgDShQjChiQPotlDl+rCepACdPYFkcKT89siddOn/Et771lBP0L+P0aKYcX63vSvvkgFfcq/9Gd8Sq4DpGIhFEeFaQEpmYSH5E8qVsp1IUghREF/CaF7IaUBn6J7Vh+kNNTvgF+qS/hHq+/dv7v6lhSum7KkkP6kOcVi8S+1WG5dlRWvLimseBXpJYXLDq6bsuwga9/Lv4QjR5jUI0eWHax4lbWpePV2K7RnnwqPwpQlLJruU0GX+pfsU/T3Q5Ge7uiH90527KRZOND5a4arGFIH8E8uHLBX9yCFMYnRB953RbOdeKiD2h34zQ/bDwzH3yKp3/hYmwPvIxqM7/dhX1IElJ95Ztslv7+tbaiDrW3mR4HetE3QM+GJ+l3bJfpb5/u9fHNpyHoNXa1D6SG6ShmfFDegv4QPj+YSYvvHcTJpYj9OKUtK5KPDE6JiZXy0JEKsE/FSrp82RqrVxKgjFTIikusUYZEAPk1yutnWB4vVL3A8uCYwwEnxJhbalBxua4Avz7ZETqBbJbyErRJoARc6wTNjDK2E46lbA4MHo8HrXTAp/emkKAOlUXBSsPTCSUE6zEkhJ4S5JnPfI0eCkxIslnBS0IHZpHzeCe7oZxMhiqC/1IulEpmck8h5BU84kRSTKP0/cDBaZ5Xq9FRHPuA4WL5hydarfNMH0rw/079EyFPjtDL6T1d68nUlOweWQCEngWpRpg7rMz7BS6luQM94wXIUx0BH7TMeIXZzcDy/n9E4HnsnklG7wViaMf7sYKIG/OV9cq8/vW7IxP9TALNf+hcQWEkGaPbaRPD0P+TDq+8jF0kFcZMFpBFbDArKvPfh/6TbUejDXkMD/mXT5NABJvcegdwyQvb9pBZk15IsUk88pBxGmg3PHrjXEz15BKh6ePYC102qUEZ2wIh9IUbsuzmE6JYh/psTDSf5pIzcB8PMBsHVILQGhDbAAG6gyuFeCrxGOlANmQNvysgY4ODbLDKWKlVG7gcO9im/RU4ZGU6K4X0ZyFlA5lJZDdDTA6q4A+2yetqMIHXU2AXUPD0824gZ+A/B0yxqaDVwqwPA1INODTANHqrBnYCVDdqMBasfJBMgogA2hj7Tt7fngWGXHvoel2jPA/qmoQFT4FH4J1M7j7XmB/HdeSw5H757Qmha/9KGAWZB4O7Q7rqcH6D3BGlDQwZOaahb9faqrIBX7Qv1qpApTwt2v6nSTfWqSJ9PUB1DgzH0NSZrvVfLPX202tsbrIGhr4N/eXUTq5zQ5YfCe69F0TT8AWF/ch/lpi/6H0jZNUAA

Il faut lier ce moto-réducteur à la pièce appelée "Base" .

Le FAST ci-dessous montre les solutions retenues.

Pour réaliser les fonctions "Convertir l'énergie" et "Adapter la vitesse" , la solution retenue a été l'utilisation d'un moto-réducteur pas à pas
Cliquer pour visualiser la page du GDI concernant les vis autotaraudeuses.

Couple maxi en sortie de moto-réducteur : 0,2 N.m

Fréquence angulaire de rotation en sortie de moto-réducteur : 10 min-1

Ce moto-réducteur se décline en 2 types qui se différencient par la valeur des cotes montrées ci-dessous.