DOSSIER RESSOURCES

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 1 / 15

CCTP: CONSTRUCTION DU NOUVEAU CENTRE TECHNIQUE MUNICIPAL

Traitement d'eau.

Fourniture et pose d'un traitement d'eau destiné à l'alimentation d'eau froide adoucie des systèmes de production d'eau chaude sanitaire et des remplissages chauffage de chaque sous station (dureté de l'eau 24°F)

En sous station centrale, mise en place d'un traitement d'eau de marque PERMO ou équivalent, comprenant :

- 2 filtres à tamis FCL
- Un adoucisseur électronique
- Compteur d'eau à émetteurs d'impulsions avec ses vannes d'isolement.
- Un bac à sel
- Coffret de commande électronique
- Un filtre à type simple
- Prises échantillons
- Tubes témoins amont/aval
- Vannes d'isolement et de by-pass
- Un chargement de sel
- Alimentation électrique
- Alimentation en eau froide dure de l'adoucisseur depuis la vanne en attente dans la sous station
- Mise en service par le fabricant

Production EAU CHAUDE SANITAIRE.

Les besoins en eau chaude sanitaire seront assurés en partie par une installation solaire de marque VIESSMANN, DE DIETRICH ou équivalent composée de :

- 16 capteurs solaires à tubes sous vide de type SD2A (2 m²)
- Tubes de liaison pour combinaison des capteurs et ensemble pour montage en batterie
- Kit de fixation pour montage pour terrasse
- Ensemble de circulation type DIVICON solaire
- Séparateur d'air
- Conduites de raccord y compris raccords spéciaux
- Vase d'expansion de 80L
- Fluide caloporteur
- Ensemble de régulation VITOSOLIC 200
- Ballon de stockage solaire capacité 2000L

L'ensemble de l'installation sera dimensionné pour assurer au moins 50% des besoins annuels en eau chaude sanitaire de l'ensemble de l'établissement. Les prestations comprendront tous les matériels et accessoires nécessaires à la parfaite réalisation de l'installation.

Chauffage:

Principe des installations :

Pour le chauffage, la production de chaleur sera complétée par une chaufferie utilisant l'énergie gaz naturel, avec une chaudière à condensation de 200 kW. Cette production assurera l'appoint en chauffage et l'appoint pour la production d'eau chaude sanitaire.

Pour les ateliers, le chauffage sera assuré par des panneaux rayonnants à eau chaude en acier à basse température.

Alimentation gaz:

Les installations de distribution gaz seront conformes aux normes en vigueur concernant la pression, le diamètre des conduits, les raccords et le mode de pose.

Il est rappelé que l'utilisation de la brasure tendre est interdite.

Les conduits de gaz doivent être au moins à 3 cm de distance des canalisations électriques et autre.

Chaudière gaz à condensation :

La production de chaleur sera assurée par une chaudière gaz modulante à condensation de marque REMEHA type gaz 210 Eco, fonctionnant au gaz naturel basse pression 21 mbars.

Puissance 200 kW

Pompe de circulation :

Pour les circuits chauffage secondaires, mise en place de circulateurs électroniques doubles, avec protection ipsothermique du moteur intégrée.

Distribution en chaufferie:

Les distributions de fluide caloporteur seront réalisées en tube acier noir tarif 1 jusqu'au Ø 40/49 et en tarif 10 au-delà.

Les radiateurs à eau chaude :

Pour le circuit radiateur, il sera prévu des radiateurs basse température. Les surfaces de chauffe devront assurer les besoins thermiques nécessaires au chauffage statique. Des radiateurs en acier marque ZENDER type panneau, déterminés pour une température d'eau de 55/45°C par -7°C extérieure.

Une sur puissance de 15½ sera prévue pour déterminer les radiateurs.

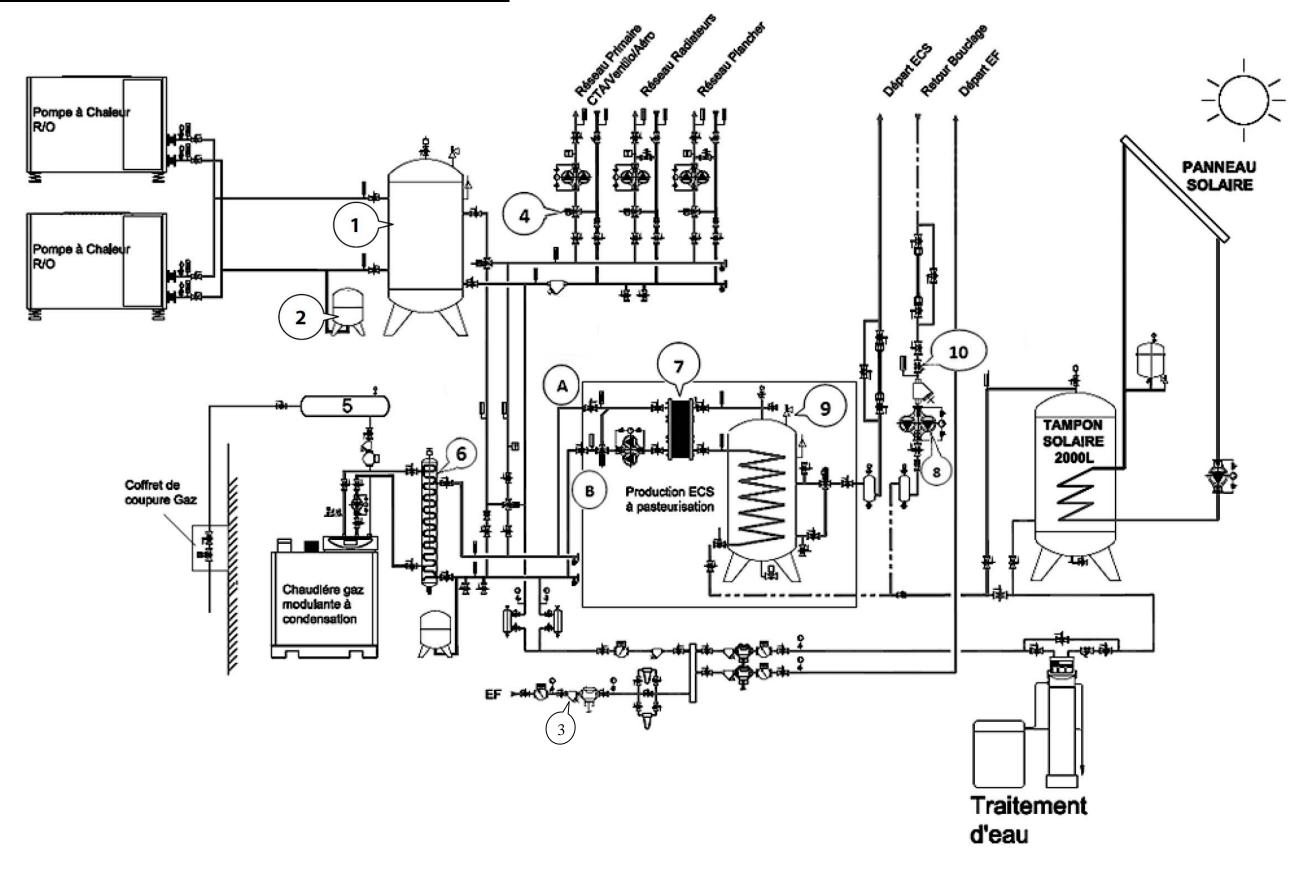
Pompes à chaleur

Il sera prévu deux pompes à chaleur réversibles air-eau de marque Carrier type Aquasnap pour effectuer la production d'eau glacée ou la production de chaleur.

Les puissances des P.A.C. devront couvrir les besoins du bâtiment. Les puissances nominales seront « standard ».

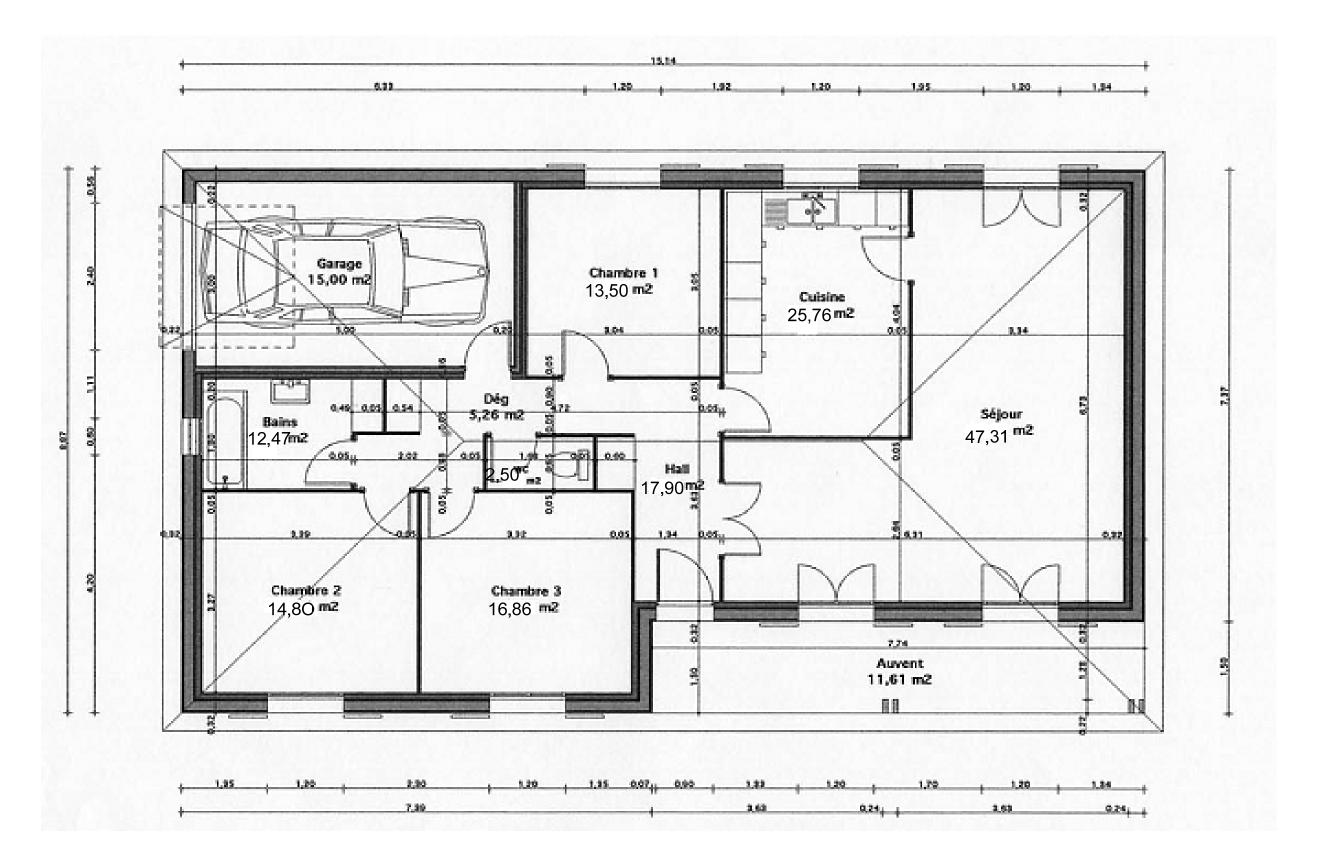
Régulation:

La régulation des réseaux primaires, radiateurs et plancher sera de marque Siemens type Synco 700. Elle permettra de moduler la température de départ en fonction de la température extérieure (courbe de chauffe) avec compensation de la température ambiante. Pour le réseau radiateurs, il sera prévu un appareil d'ambiance sur bus Konex.


Il sera possible d'effectuer des périodes d'abaissement de la température par souci d'économie de chauffage.

Raccordements électriques des installations :

Les différents organes électriques seront raccordés avec des conducteurs conformes aux normes en vigueur par chemins de câbles ou conduits IRL avec en amont une protection différentielle à la fois pour les personnes et le matériel. Les tableaux et armoires électriques seront installés et montés dans les règles de l'art avec des mises à la terre vérifiées avant le fonctionnement du matériel. Des liaisons équipotentielles seront réalisées sur les différentes parties des installations.


BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 2 / 15

ANNEXE 1 : SCHEMA DE PRINCIPE CHAUFFAGE SG1

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 3 / 15

ANNEXE 2 : PLAN SG2

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 4 / 15

ANNEXE 3: TRAITEMENT D'EAU

ADOUCISSEURS D'EAU AUTOMATIQUE AUTOMATIC WATER SOFTENER

DATA 7 & DATA 7 Bio-System

b) - l'adoucisseur

Quatre orifices sont à raccorder sur la tête de l'adoucisseur (figure 1) :

Important : afin de protéger votre appareil en cas de surpression ou de coup de bélier, nous vous conseillons le montage flexible. En option, un kit flexibles code P0001110 et un kit bypass code P0887528 sont disponibles.

- entrée eau de ville filtrée : embout fileté 1", situé à l'arrière gauche.
- sortie eau adoucie: embout fileté 1", situé à l'arrière droit.
- évacuation des eaux de régénération : embout plastique cannelé et coudé d'un Ø16 mm (à gauche).
- liaison avec le régulateur de saumure : (dans le bac à sel) embout avec écrou à ailettes (à doite).

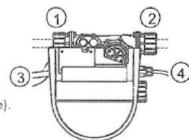
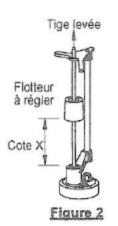


Figure 1

c) - bac à sel


Il doit être placé à coté de l'adoucisseur.

1/ Avec le tuyau gris souple diamètre 6/8, relier l'adoucisseur au régulateur de saumure (figure 2). Glisser l'écrou sur le tuyau gris, bien enfoncer le tuyau sur l'embout, puis serrer l'écrou à la main sans utiliser d'outil. Vérifier que les extrémités du tuyau gris sont coupées bien droite

2/ Régler le flotteur du régulateur de saumure (ligure ci-contre) suivant le tableau ci-dessous en prenant soin de tirer la tige du flotteur vers le haut.

A la mise en service, mettre un sac de 25 kg de sel en pastille spécial adoucisseur et vérifier que le couvercle de la cheminée est en place.

Ajouter de 10 à 30 litres d'eau (suivant les modèles) pour la préparation de la saumure; 30 minutes sont nécessaires pour la bonne dilution du sel, donc pour avoir une saumure efficace.

	C	otes X (en mil	limètres)		L. Deliver Marketina
type adoucisseurs	D10 DS10	D16 DS16	D28 DS28	D50 DS50	D75 D875
régime économique	40	70	100	100	non prévu
régime standard	60	100	135	160	140

Dureté de	Nombre de litres d'eau produit entre deux régénérations								
l'eau en °f	D10/0	OS10	D16 / DS16 D28 / DS28 D50 / DS50			OS50	D75 / DS75		
(TH)	Economique	standard	Economique	standard	Economique	standard	Economique	standard	Economique
18	2220	3330	3550	5330	6220	7700	11100	13850	20830
20	2000	3000	3200	4800	5600	7000	10000	12500	18750
22	1820	2720	2910	4360	5090	6360	9090	11350	17040
24	1660	2500	2660	4000	4660	5830	8330	10400	15620
26	1540	2300	2460	3690	4300	5380	7690	9600	14420
28	1430	2140	2280	3420	4000	5000	7140	8900	13390
30	1330	2000	2130	3200	3730	4660	6660	8300	12500
32	1250	1870	2000	3000	3500	5370	6250	7800	11710
34	1170	1760	1880	2820	3290	4110	5880	7350	11020
36	1110	1660	1770	2660	3100	3880	5550	6950	10410
38	1050	1570	1680	2520	2940	3680	5260	6500	9860
40	1000	1500	1600	2400	2800	3500	5000	6250	9370
42	950	1420	1520	2280	2660	3330	4760	5950	8920
44	910	1360	1450	2180	2540	3180	7540	5650	8520
46	870	1300	1390	2080	2430	3040	4340	5400	8150
48	830	1250	1330	2000	2330	2910	4160	5200	7810
50	800	1200	1280	1920	. 2240	2800	4000	5000	7500

Tableau «Cycle de l'adoucisseum

4 - CARACTERISTIQUES TECHNIQUES

		D10 DS10	D16 DS16	D28 DS28	D50 DS50	D75 DS75
Volume de résine	en litres	10	16	28	50	75
capacité d'échange standard	en degré m3	60	96	140	250	375
capacité d'échange économique	en degré m3	40	64	112	200	375
poids de sel par régénération standard	en kg	1,8	2,9	3,5	6,25	9,4
poids de sel par régé. économique	en kg	1	1,6	2,6	4,5	9,4
autonomie bac à sel standard	nombre régé.	50	26	43	25	22
autonomie bac à sel économique	nombre régé.	100	56	58	34	22
premier chargement de sel	en kg	75	75	150	150	200
poids d'expédition	en kg	27	34	52	79	110
dimensions emballage	en cm	46x46x96	46x46x125	49x49x163	49x49x180	46x46x164 75x75x85
Volume d'emballage	en m3	0,2	0,26	0,39	0.44	0,84
charge au sol en état de marche	en kg	120	130	150	300	350

Tension d'alimentation :

230 volts +10 -15% 50 ou 60 Hz

Consommation électrique :

en service 10 watts

en régénération 35 watts

pression maximale

7 bars en statique 1,5 bar en dynamique

pression minimale: débit minimal :

0.5 m3/h

température de l'eau :

35°C

température ambiante :

40°C

débit maximum :

D10, DS10, D16 & DS16 2 m3/h

D28 & DS28

2.4 m3/h

D50 & DS50

2.6 m3/h

D75 & DS75

3 m3/h (avec mitigeage à 40%)

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 5 / 15

ANNEXE 4 : TABLEAU DE DIMENSIONNEMENT DES TUBES EN CUIVRE

Dans une installation de chauffage, pour éviter les bruits, la vitesse est limitée dans les tuyauteries. **Croquelois** a défini une vitesse silencieuse en fonction du diamètre du tube.

Voici en fonction du diamètre des tubes cuivre les valeurs maximales à respecter :

Tube cuivre diamètre mm	Diamètre intérieur mm	Vitesse maximale m/s	Débit maximal m³/h
12 x 1	10	0,45	0,127
14 x 1	12	0,50	0,204
16 x 1	14	0,53	0,294
18 x 1	16	0,57	0,412
22 x 1	20	0,63	0,713
25 X 1	23	0,68	1,020
28 X 1	26	0,72	1,377
35 X 1	33	0,81	2,772
40 X 1	38	0,87	3,458
42 X 1	40	0,89	4,025
50 X 1	48	1,02	7,797

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 6 / 15

ANNEXE 5: PRODUCTION EAU CHAUDE SANITAIRE

Type SD2A		2 m ²	3 m
Nombre de tubes		20	30
Surface brute	m ²	2,88	4,32
Surface de l'absorbeur	m ²	2,05	3,0
Surface d'ouverture	m ²	2,11	3,17
(déterminante pour le dimensionnement de l'installation)			
Dimensions			
Largeur a	mm	1418	212
Hauteur b	mm	2031	203
Profondeur c	mm	143	143
Les valeurs suivantes se rapportent à la surface de l'absorbeur :			
Rendement optique	%	78,9	79,
 Coefficient de déperditions calorifiques k₁ 	W/(m ² · K)	1,36	1,14
− Coefficient de déperditions calorifiques k₂	W/(m ² · K ²)	0,0075	0,0070
Capacité calorifique	kJ/(m ² · K)	9,4	9,4
Poids	kg	51	76
Capacité	litres	4,2	6,2
(fluide caloporteur)			
Pression de service maxi. admissible	bars	6	.(
(les capteurs doivent présenter une pression minimale de 1 bar pour des			
systèmes en circuit fermé à froid)			
Température à l'arrêt maxi.	°C	295	29
Raccordement	Ø mm	22	22

Vase d'expansion circuit solaire (6 bar - 120 °C) 18 litres - Colis EG 14

25 litres - Colis EG 82

Dimensionnement du vase d'expansion
La dimension du vase d'expansion dépend
principalement du volume qui peut s'évaporer en
cas d'arrêt de l'installation. De ce fait, la dimension
du vase d'expansion sera déterminée en fonction
du nombre de capteurs. En cas d'installation d'un
nombre important de capteurs, plusieurs vases
pourront être raccordés en parallèle.
Remarque:

La pression de précharge du vase et la pression de l'installation seront à adapter en fonction des spécificités de celle-ci.

Kit d'accrochage au mur pour vase d'expansion jusqu'à 25 litres - Colis EC 118

40 litres - Colis EG 83

60 litres - Colis EG 84

Longueurs pour des

conduites < 30 m

18 litres 25 litres

35 litres

50 litres

80 litres

Superficie d'entrée

des capteurs

jusqu'à 5 m²

de 5 à 10 m²

de 10 à 15 m²


de 15 à 20 m²

+ de 20 m²

Feuille technique

Réf. et prix : voir tarif

Fluide caloporteur circuit solaire

- prémélange type LS "hautes performances", 20 litres (n° Afssa 2006-SA-0323) (-26 °C) - Colis EG 100 - pré-mélange BIO, type LR-25 agréé Afssa, 20 litres (-30 °C) - Colis ER 316

Le fluide caloporteur extrait la chaleur utile de Nota: le pré-

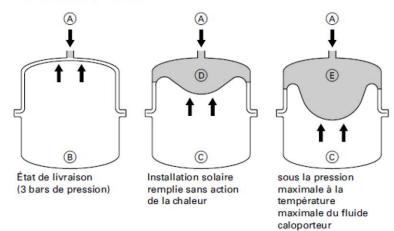
l'absorbeur et la transfère au ballon solaire. Les prémélanges sont composés d'eau et de propylène glycol dans des proportions 60/40 à 45/55.

Volume du fluide nécessaire pour l'installation Pour déterminer la quantité du fluide caloporteur il est nécessaire de calculer le volume global de l'installation. Celui-ci résulte de la somme des volumes des capteurs, **Nota:** le pré-mélange BIO est inclus d'origine dans nos systèmes certifiés NF CESI (voir p. 23).

de l'échangeur solaire, de la station solaire et des conduites correspondantes. La précharge du vase d'expansion est également à considérer.

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 7 / 15

			2,: 1,: 2,: 4,: 6,:
			6.
			6,:
			0,:
00.4	00.45	00.45	05.45
22 x 1	22 × 1,5		
	22.01		0.314 0.284 0.491


Ballon tampon solaire: 2000 l

Capacité de l'échangeur primaire : 15 l

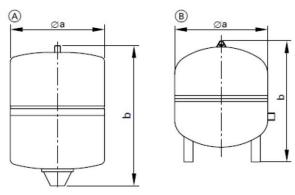
La longueur de tuyauterie est estimée à 10 mètres en tube cuivre Ø18x1

Vase d'expansion à membrane

Constitution et mode d'action

- A Fluide caloporteur
 B Charge d'azote
- © Tampon d'azote

- Volume d'eau de sécurité, 3 I minimum
- E Volume d'eau de sécurité


Un vase d'expansion à membrane est un vase d'expansion clos dont le volume de gaz (charge d'azote) est séparé du volume de liquide (fluide caloporteur) par une membrane et dont la pression de remplissage est fonction de la hauteur manométrique de l'installation.

Remarque

La pression de remplissage doit être impérativement adaptée:

1,0 bar + 0,1 bar x hauteur manométrique. La pression de remplissage de l'installation devra dépasser de 0,3 à 0,5 bar la pression de remplissage du vase d'expansion à membrane. Le volume d'eau de sécurité doit être de 0,005 x la capacité en liquide de l'ensemble de l'installation et au moins de 3 litres.

Caractéristiques techniques du vase d'expansion Viessmann

Vase d'expansion	Capacité litres	Pression de service bars	Øa mm	b mm	Raccord R	Poids kg
A	18	10	280	370	3/4	7,5
	25	10	280	490	3/4	9,1
	40	10	354	520	3/4	9,9
B	50	10	409	505	1	12,3
	80	10	480	566	1	18,4

Le volume nominal du vase d'expansion se calcule avec l'équation

$$I_N = \frac{(V_v + V_2 + z \cdot V_k) \cdot (p_e + 1)}{p_e - p_{st}}$$

οù

V_N = Volume nominal du vase d'expansion à membrane en litres

V_V = Volume d'eau de sécurité (fluide caloporteur dans ce cas) en litres V_V = 0,005 · V_A en litres (3 litres minimum)

V_A = Capacité en fluide de la totalité de l'installation (voir page 35) V₂ = Augmentation de volume à la montée de l'installation en température

 $V_2 = V_A \cdot \beta$

 β = Coefficient de dilatation (β = 0,13 pour le fluide caloporteur Viessmann de -20 à 120°C)

pe = Surpression finale admise en bars

 $p_e = p_{si} - 0.1 \cdot p_{si}$

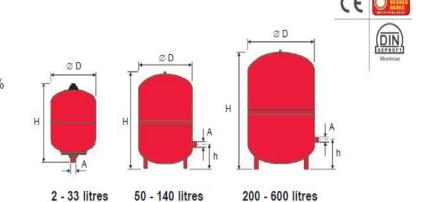
p_{si} = Pression de tirage de la soupape de sécurité Une surpression d'au moins 1,0 bar doit être présente à l'intérieur des capteurs à froid pour éviter efficacement la formation de vapeur pendant la phase de fonctionnement. La pression de remplissage du vase d'expansion sera alors supérieure de 0.1 x hauteur manométrique h. À chaud, la pression de l'installation augmente de 1 à 2 bars environ (température maximale à l'arrêt des capteurs, voir page 7). Pour éviter au fluide caloporteur de s'échapper par la soupape de sécurité, le vase d'expansion sera dimensionné de manière suffisante pour pouvoir absorber la capacité des capteurs en cas d'apparition de vapeur.

p_{st} = Pression de remplissage d'azote du vase d'expansion à membrane

> $p_{st} = 1 \text{ bar} + 0, 1 \cdot \frac{\text{bar}}{\text{m}} \cdot \text{h}$ h = hauteur manométrique de

l'installation en m (voir figure page 34)

z = Nombre de capteurs


V_k = Capacité des capteurs en litres (voir page 35)

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 8 / 15

'reflex S'

- destinés aux circuits de chauffage, de climatisation et aux systèmes solaire
- résistant aux additifs antigel jusqu'à 50%
- mamelon raccordement à visser
- membrane selon DIN 4807 partie 3, non-interchangeable, température de service max. 70 °C
- ▶ 33 litres avec attache murale
- répond ou dépasse la norme Européenne 97/23/CE
- couleur: rouge ou blanc; enduit de finition en poudre (epoxy)

10 bar		/pe 0 °C	Réfé rouge	rence blanc	Poids kg	Code	Qpp*	Ø D mm	H	h mm	Α	Prégonflage bar
	S	2	720505		1.0	14	280	132	260		G 3/4	0.5
	S	8	9703900	9702600	2.4	14	96	206	315		G 3/4	-
	S	12	9704000	9702700	3.5	14	72	280	295		G 3/4	2
	S	18	9704100	9702800	4.5	14	56	280	370		G 3/4	1.5
	S	25	9704200	9702900	5.5	14	42	280	490		G 3/4	-
	S	33	9706200	9706300	6.3	14	24	354	490		G 3/4	
-												
	S	50	7209500		13.2	19		409	495	175	R 1	
	S	80	7210300		18.4	19		480	570	175	R 1	3
	S	100	7210500		22.7	19		480	680	175	R 1	
	S	140	7211500	***	29.0	19		480	890	175	R 1	₹8 -98
	S	200	7213400		40.0	19		634	785	235	R 1	3.0
	S	250	7214400		48.0	19		634	915	235	R 1	100
Ī	S	300	7215400		54.0	19		634	1085	235	R 1	-
	S	400	7219000		78.0	19		740	1075	235	R 1	-
	S	500	7219100		80.0	19		740	1295	235	R 1	-
	S	600	7219200		103.0	19		740	1530	235	R 1	

►V_n volume nominal / litre

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 9 / 15

ANNEXE 6: POMPE A CHALEUR CARRIER

Refroidisseurs de liquide à condensation par air Pompe à chaleur réversible air-eau

30RB 039-160 / 30RO 039-160

Puissance frigorifique nominale 30RB: 40-160 kW Puissance frigorifique nominale 30RQ: 40-150 kW Puissance calorifique nominale 30RQ: 40-160 kW

La nouvelle génération de refroidisseurs de liquide Aquasnap Puron est conçue pour les applications commerciales (climatisation de bureaux, hôtels, ...) ou industrielles (refroidisseur à basse température de

La nouvelle génération de refroidisseurs de liquide Aquasnap Puron intègre les dernières avancées

- Fluide frigorigène respectueux de la couche d'ozone
- Compresseurs Scroll,
- Ventilateurs à faible niveau sonore en matériau compo
- Régulation auto-adaptative par microprocesseur.
- Vanne de détente électronique
- Pompe à vitesse variable (option)

Aquasnap peut être équipé d'un module hydraulique intégré dans le châssis de l'unité limitant l'installation à de simples opérations de câblage électrique et de raccordement des tuyauteries de départ et de retour d'eau

Caractéristiques et avantages

Fonctionnement silencieux

- Compresseurs
- Compresseurs Scroll silencieux et à faible niveau de
- Ensemble compresseur monté sur chassis indépendant et supporté par des plots antivibratiles.
- Supportage dynamique des tuyauteries d'aspiration et refoulement limitant la transmission des vibrations (brevet Carrier).
- Section condenseur (30RB) / évapo-condenseur à air
 - Batteries de condenseurs verticales.
- Grilles de protections sur fixations antivibratile afin de
- protéger l'échangeur des chocs éventuels.
- Ventilateurs bas niveau sonore Flying Bird IV de dernière génération réalisé en matériau composite (brevet Carrier) encore plus silencieux et ne générant pas de fréquences désagréables pour l'oreille
- Montage rigide du ventilateur évitant les bruits au démarrage (brevet Carrier).

Facilité et rapidité d'installation

- Module hydraulique intégré (option)
 - Pompe à eau centrifuge basse ou haute pression (au choix) en fonction des pertes de charge de l'installation

Module hydraulique

- Pompe à eau simple ou double (au choix) avec équilibrage des temps de fonctionnement et basculement automatique sur la pompe de secours en
- Filtre à eau protégeant la pompe à eau contre les débris en circulation.
- Mesure de pression via 2 transducteurs de pression permettant à la régulation d'indiquer le débit d'eau, la pression d'eau et l'absence d'eau.
- Vase d'expansion à membrane de grande capacité assurant la pressurisation de la boucle d'eau.
- Soupape de surpression tarée à 4 bars.
- Variateur de vitesse sur les pompes (option), pour asservir le débit en fonction des besoins du système.
- Isolation thermique et protection antigel jusqu'à -20°C par résistance électrique (voir tableau des options).
- Intégration physique
 - L'unité occupe une faible surface tout en gardant une faible hauteur (1330 mm) ce qui lui permet de s'intégrer au mieux dans toutes les architectures.
 - Unité fermée par des panneaux facilement démontables occultant la totalité des composants (hors condenseurs
- et ventilateurs).

 Raccordements électriques simplifiés
 - Un seul point d'alimentation puissance sans neutre.
- Sectionneur général à fort pouvoir de coupure. Circuit de commande 24 V sans danger par transforma-
- teur inclus.
- Mise en service rapide
- Test de fonctionnement systématique en usine avant expédition.
- Fonction "quick test" pour la vérification pas à pas de l'instrumentation, des composants électriques et des

Fonctionnement économique

- La pompe à variation de vitesse (option) permet de réaliser des économies d'énergie.
- L'algorithme de régulation adapte le débit d'eau en fonction du besoin réel du système et rend inutile la vanne de réglage en sortie de l'unité.
- Efficacité énergétique élevée à charge partielle
- Circuit frigorifique comprenant plusieurs compresseurs en parallèle. A charge partielle, environ 99 % du temps de fonctionnement, seuls les compresseurs strictement nécessaires sont en marche. Dans ces conditions, les compresseurs en fonctionnement sont plus économes en

- énergie car ils utilisent la totalité de la puissance du
- condenseur et de l'évaporateur. Détendeur électronique EXV permettant un fonctionnement à pression de condensation plus faible (optimisation des EER, COP et ESEER).
- Gestion dynamique de la surchauffe pour une meilleure utilisation de la surface d'échange de l'évaporateur.
- Optimisation des cycles de dégivrage (30RQ).
- Frais de maintenance réduits
- Compresseurs Scroll sans maintenance.
- Diagnostic rapide des éventuels incidents et de leur historique par la régulation Pro-Dialog+.
- Fluide R410A plus simple à utiliser que les autres fluides frigorigènes mélangés.

Respect de l'environnement

- Fluide frigorigène R410A respectueux de la couche d'ozone
 - Fluide de la famille des HFC ne contenant pas de chlore, donc sans action sur la couche d'ozone.
- Très dense, il en faut moins que les autres fluides. Très efficace, il permet d'obtenir un rapport d'efficacité énergétique élevé (EER, COP et ESEER).
- Circuit frigorifique étanche
 - Connections frigorifiques brasées pour plus d'étanchéité.
 - Réduction des fuites par diminution des niveaux vibratoires et élimination des tubes capillaires (TXV)
- Vérification des transducteurs de pression et des sondes de température sans transfert de la charge de fluide

Vue partielle du circuit frigorifique

Fiabilité à toute épreuve

- Conception avancée
 - Partenariat avec des laboratoires spécialisés et utilisation d'outils de simulation de contraintes (calculs par éléments finis) pour la conception des composants critiques, par exemple : supports moteurs, tuyauteries d'aspiration/ refoulement etc...
- Régulation auto-adaptive
 - Algorithme de régulation évitant les cyclages excessifs des compresseurs et permettant de réduire la quantité d'eau du circuit hydraulique (brevet Carrier).
 - Module hydraulique intègrant des transducteurs de pression permettant à l'algorithme de mesurer la pression d'eau en deux points et ainsi de mesurer le débit d'eau et détecter le manque d'eau et de pression De fait, cela réduit considérablement les risques de défaillances sur l'eau comme le gel d'évaporateur.
 - Délestage automatique des compresseurs en cas de pression de condensation anormalement élevée. En cas d'anomalie (exemple : batterie condenseur encrassée, panne d'un ventilateur...). Aquasnap continuera à fonctionner mais à puissance réduite.

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 10 / 15

- Tests d'endurance exceptionnels
 - Test de résistance à la corrosion en brouillard salin en laboratoire
 - Test accéléré de fatigue sur les composants soumis à des efforts continus: tuyauteries compresseurs, support ventilateurs.
 - Test de simulation de transport en laboratoire sur table vibrante.

Régulation Pro-Dialog+

Pro-Dialog+ associe intelligence et simplicité d'utilisation. La régulation veille en permanence sur l'ensemble des paramètres de fonctionnement et gère avec précision le fonctionnement des compresseurs, des détendeurs, des ventilateurs et de la pompe à eau évaporateur afin d'optimiser le rendement énergétique.

Interface Pro-Dialog+

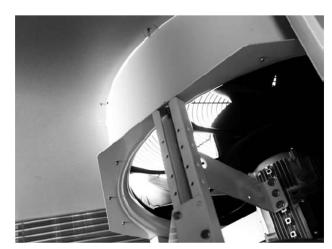
■ Gestion d'énergie

- Horloge interne de programmation horaire sur 7 jours: permet de gérer la marche/arrêt de l'unité et le fonctionnement sur un deuxième point de consigne.
- Décalage du point de consigne en fonction de la température d'air extérieur ou de la température de retour d'eau ou du Delta T sur l'échangeur à eau.
- Gestion maître/esclave de deux unités en parallèle avec équilibrage des temps de fonctionnement et basculement automatique en cas de défaut d'une machine (accessoire).
- Change-over en fonction de la température extérieure.
- Mode nuit: limitation de la puissance et de la vitesse ventilateur afin de réduire le niveau sonore.
- Avec option module hydraulique: affichage de pression d'eau et calcul du débit d'eau.

Facilité d'utilisation

- Cette nouvelle interface LCD rétroéclairée est équipée d'un potentiomètre de réglage manuel qui garantit une lisibilité dans toutes les conditions de luminosité.
- Les informations s'affichent en langage clair en français, anglais, allemand, italien et espagnol (pour les autres langues, nous consulter).
- La navigation Pro-Dialog+ se fait via des menus arboressants intuitifs similaires aux navigateurs Internet. Tout en étant très facile d'utilisation, les menus permettent d'accéder rapidement aux principaux paramètres de fonctionnement : nombre de compresseurs en marche, pression d'aspiration/ refoulement, temps de fonctionnement des compresseurs, point de consigne, température d'air, température d'entrée-sortie d'eau.

Mode d'exploitation à distance - "remote" avec contacts sec (standard)


Un simple bus de communication à deux fils entre le port serie RS485 d'Aquasnap et le système Carrier Comfort Network offre de multiples possibilités de gestion, surveillance et diagnostique à distance. Carrier dispose d'un vaste choix de produits de régulation spécialement conçus pour commander, gérer et superviser le fonctionnement d'un système de climatisation. Consulter votre représentant Carrier pour plus de renseignements sur ces

- Marche/arrêt : l'ouverture de ce contact provoque l'arrêt de l'unité.
- Double point de consigne : la fermeture de ce contact active un deuxième point de consigne froid (exemple : mode inoccupé).
- Commande pompe à eau 1 et 2* : ces sorties commandent les contacteurs d'une ou deux pompes à eau évaporateur.
- Indication d'alarme: ce contact sec indique la présence d'un défaut majeur ayant entrainé l'arrêt d'un ou des deux circuits frigorifiques.
- Limitation de puissance 1 et 2 : la fermeture de ces contacts limite la puissance maximum de l'unité à trois valeurs pré-définies.
- Sécurité utilisateur : ce contact peut être utilisé pour toute boucle de sécurité du client, la fermeture du contact génère une alarme spécifique.
- Hors service : ce signale indique qu'un circuit est hors

Interface déportée (Accessoire)

Cette interface permet d'accéder aux mêmes menus que celle de l'unité et peut être installée jusqu'à 300 mètres. Cet accessoire est constitué d'un boîtier pouvant être monté à l'intérieur d'un bâtiment. L'alimentation électrique se fait par tranformateur 220V / 24V fourni.

Ventilateur Flying Bird IV

Caractéristiques physiques des unités 30RBS

30RBS		039	045	050	060	070	080	090	100	120	140	160
Puissance frigorifique nominale unité standard*	kW	39,3	44,6	51,9	58,4	66,7	78,6	89,4	99,9	117,0	134,3	157,
Puissance électrique absorbée	kW	13,7	16,1	18,9	21,2	24,4	29,0	31,8	35,9	43,2	49,1	57,9
EER .	kW/kW	2,88	2,77	2,75	2,76	2,74	2,71	2,81	2,78	2,71	2,74	2,71
Classe Eurovent froid	-	Ċ	Ć	Ć	Ć	Ć	Ċ	Ć	Ċ	Ć	Ć	Ċ
Performances à charge partielle												
ESEER	kW/kW	4.04	4.09	4.07	4.06	4.04	4.04	4.22	4.20	4.12	4.14	4.13
IPLV	kW/kW	4,71	4,69	4,70	4,72	4,56	4,76	4,67	4,61	4.67	4,53	4,66
Puissance frigorifique nominale unité standard**	kW	52.6	59.2	72.7	80.2	81.8	107.0	120.1	133,1	154.6	184.2	218
Puissance électrique absorbée	kW	14,7	17,1	20,4	22,6	25,9	30.3	34,8	40,1	48.3	51.8	61.7
EER	kW/kW		3,28	3,42	3,42	3,12	3,31	3,31	3,19	3,10	3,36	3,37
Poids en fonctionnement***	KWKW	0,10	0,20	0,12	0,12	0,12	0,01	0,01	0,10	0,10	0,00	0,0
Unité standard (sans module hydraulique)	kg	458	466	489	515	502	533	835	845	876	982	104
Unité standard avec option module hydraulique	Ng	150	100	100	313	302	300	003	013	0,0	002	101
Pompe simple haute pression	kg	488	496	519	545	531	562	867	877	912	1021	108
	_	514	522	545		557	588	912	922	960	1058	112
Pompe double haute pression	kg	314	322	545	571	557	300	912	322	900	1036	112
Niveaux sonores												
Unité standard		••										
Puissance acoustique 10 ⁻¹² W****†	dB(A)	80	81	81	81	87	87	84	84	84	90	90
Pression acoustique à 10 m ††	dB(A)	49	49	49	49	55	55	52	52	52	58	58
Unité avec option 15LS (très bas niveau sonore)												
Puissance acoustique 10 ⁻¹² W****†	dB(A)	79	80	80	80	80	80	83	83	83	83	83
Pression acoustique à 10 m ††	dB(A)	48	48	48	48	48	48	51	51	51	51	51
Compresseurs		Hermé	tique Scr	oll 48,3 t	r/s							
Circuit A		2	2	2	2	2	2	3	3	3	2	2
Circuit B		-	-	-	-	-	-	-	-	-	2	2
Nombre d'étages de puissance		2	2	2	2	2	2	3	3	3	4	4
Fluide frigorigène		R-410/	4									
Circuit A	kg	8,5	9,0	12,5	15,0	12,5	15,5	19,0	20,0	25,0	12,5	16,
Circuit B	kg	-	-	-	-	-	-	-	-	-	12,5	16,
Régulation		Pro-Dia	alog+									
Puissance minimum	%	50	50	50	50	50	50	33	33	33	25	25
Condenseurs		Tube e	n cuivre	rainurés (et ailettes	aluminiu	m					
Ventilateurs		Axial à	volute to	urnante,	FLYING-	BIRD 4						
Quantité		1	1	1	1	1	1	2	2	2	2	2
Débit d'air total (grande vitesse)	l/s	3800	3800	3800	3800	5300	5300	7600	7600	7600	10600	106
Vitesse de rotation	r/s	12	12	12	12	12	16	12	12	12	16	16
Evaporateur			nte direct									
Volume d'eau	1	2.6	3.0	3.3	4.0	4.8	5.6	8.7	9.9	11.3	12.4	14.
Pression max. de fonctionnement côté eau sans module hydraulique	kPa	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	100
Module hydraulique (option)												
Pompe simple ou double (au choix)			e, filtre vio			ıpape de	sécurité,	vase d'ex	cpansion,	vannes (de purge	(eau
Volume vase d'expansion	1	12	12	12	12	12	12	35	35	35	35	35
Pression vase expansion‡	bar	1	1	1	1	1	1	1.5	1.5	1.5	1,5	1.5
Pression max. de fonctionnement côté eau avec module hydraulique	kPa	400	400	400	400	400	400	400	400	400	400	400
Connexions hydrauliques avec / sans module		Victaul	ic									
hydraulique		71010101	-									
Connexions	pouces	2	2	2	2	2	2	2	2	2	2	2
	mm	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.3	60.
Diamètre externe	mm				bu s	ยนจ	ยนอ	ยนอ	ยนอ			

Peinture carrosserie

Coefficient d'encrassement à l'évaporateur = 0,00018 m²K/W

Conditions EUROVENT LCP/A/P/C/AC normalisées mode froid entrée-sortie d'eau évaporateur = 12°C/7°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/CHF normalisées mode froid: entrée-sortie d'eau évaporateur = 23°C/18°C, température d'air extérieur = 35°C
Poids donnés à titre indicatif. Pour connaître la charge de fluide de l'unité, se réfèrer à la plaque signalétique de l'unité.
Etablis selon ISO 9614-1 et certifiés par Eurovent.
Données non contractuelles pour information et arrondies.
Pour information, calculé à partir de la puissance acoustique Lw(A)

A la livraison, le prégonflage standard des vases n'est pas nécessairement à la valeur optimale pour l'installation. Pour permettre une libre variation du volume d'eau, adapter la pression de gonflage à une pression proche de celle correspondant à la hauteur statique de l'installation.

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 11 / 15

^{*} contacts déjà utilisés en cas d'option module hydraulique

Caractéristiques physiques des unités 30RQS

30RQS		039	045	050	060	070	078	080	090	100	120	140	160
Puissance frigorifique nominale unité standard*	kW	38,4	43,7	49,9	58,4	63,9	73,9	77,7	85,8	96,2	113,2	131,6	149,
Puissance électrique absorbée	kW	13,0	15,7	18,4	20,8	23,1	28,1	27,4	31,1	34,8	41,3	46,6	56,9
EER	kW/kW	2.96	2.77	2.71	2.80	2,77	2.63	2.84	2.76	2.76	2,74	2.82	2,63
Classe Eurovent froid	KIIIKII	В	C	C	C	C	D	C	C	C	C	C	D,00
Performances à charge partielle				•	•	•	_			•	•	•	_
ESEER	kW/kW	4,00	4,01	4,00	3,80	3,83	3,75	4,00	4.06	4.03	4,04	4,00	3,91
IPLV	kW/kW	4,68	4,68	4,69	4,26	4,26	4,27	4,76	4,49	4,40	4,61	4,35	4,36
Puissance calorifique nominale unité	kW	41,6	46,4	53,0	61,0	69,1	77,0	79,2	92,3	100.3	116,2	136,9	157
standard*										,			
Puissance électrique absorbée	kW	13,3	15,0	17,3	19,8	22,3	26,5	25,5	30,2	32,2	37,5	44,2	52,2
COP	kW/kW	3,12	3,09	3,07	3,08	3,10	2,91	3,11	3,06	3,12	3,10	3,10	3,0
Classe Eurovent chaud		В	В	В	В	В	С	В	В	В	В	В	В
Puissance frigorifique nominale unité standard**	kW	48,1	55,0	63,8	71,5	79,6	93,9	95,2	107,4	118,4	142,2	163,9	188
Puissance électrique absorbée	kW	13,9	16,7	19,9	22,4	24,9	30,6	29,1	33,4	37,0	44,5	50,1	62,4
EER	kW/kW	3,45	3,29	3,20	3,20	3,20	3,07	3,27	3,22	3,20	3,20	3,27	3,02
Puissance calorifique nominale unité standard**	kW	42,4	46,5	54,2	62,3	71,1	79,3	82,2	94,4	102,5	120,2	140,6	161
Puissance électrique absorbée	kW	11,2	12,3	14,1	16,4	18,7	22.5	21,7	24,9	26,7	31,7	37,0	44,
COP	kW/kW	3.80	3.80	3.83	3,80	3,80	3,53	3.80	3.80	3.84	3,80	3.80	3,6
Poids en fonctionnement***		-,00	-,00	-,00	-,	-,55	-,00	-,50	-,50	-,	2,30	-,	5,5
Unité standard (sans module hydraulique)	kg	506	513	539	552	553	560	748	895	903	959	1060	107
Unité standard + option module hydraulique	Ng	300	510	300	332	550	500	7-70	003	000	000	1000	.07
Onite standard + option module nydraulique Pompe simple haute pression	ka	535	543	569	582	582	590	778	927	935	995	1099	111
Pompe simple naute pression Pompe double haute pression	kg ka	561	569	594	608	608	616	804	972	980	1043	1136	112
Niveaux sonores	kg	361	209	394	600	600	616	004	312	900	1043	1136	112
Unité standard													
Puissance acoustique 10 ⁻¹² W****†	dB(A)	80	81	81	86	87	87	84	84	84	84	90	90
Pression acoustique à 10 m ††	dB(A)	49	49	49	55	55	55	52	52	52	52	58	58
Unité avec option 15LS (très bas niveau son	ore)												
Puissance acoustique 10 ⁻¹² W****†	dB(A)	79	80	80	80	80	80	83	83	83	83	83	83
Pression acoustique à 10 m ††	dB(A)	48	48	48	48	48	48	51	51	51	51	51	51
Compresseurs		Hermé	étique Sci	roll 48,3	tr/s								
Circuit A		2	2	2	2	2	2	2	3	3	3	2	2
Circuit B		_	_	-	_	_	-	_	_	_	_	2	2
Nombre d'étages de puissance		2	2	2	2	2	2	2	3	3	3	4	4
Fluide frigorigène		R-410											
Circuit A	kg	12,5	13,5	16,5	17,5	18,0	16,5	21,5	27,5	28,5	33,0	19,0	18,
Circuit B	kg	-	-	-	-	-	-	-	-	-	-	19.0	18.
Régulation de puissance	ng .	PRO-I	DIALOG -	_								10,0	10,
Puissance minimum	%	50	50	50	50	50	50	50	33	33	33	25	25
Echangeurs à air	/0		en cuivre					30	33	33	30	23	23
Ventilateurs			volute to				um						
Quantité		1	1	umante,	1	1	1	2	2	2	2	2	2
Débit d'air total (grande vitesse)	l/s	3800	3800	3800	5300	5300	5300	7600	7600	7600	7600	10600	106
Vitesse de rotation	r/s	12 A dáta	12	12 to éabar	12	12	16	12	12	12	16	16	16
Echangeur à eau Volume d'eau	1		nte direc				F.C	0.7	0.7	0.0	11.0	10.4	44.
	1	2,6	3,0	4,0	4,8	4,8	5,6	8,7	8,7	9,9	11,3	12,4	14,
Sans module hydraulique	LD-	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	400
Pression max. de fonctionnement côté eau	kPa	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	100
Avec module hydraulique (option)						_							
Pompe simple ou double (au choix)		capte	e, filtre vio urs de pre		tamıs, so	upape de	e sécurité	, vase d'	expansio	n, vanne:	s de purg	e (eau et	aır),
Volume vase d'expansion	1	12	12	12	12	12	12	35	35	35	35	35	35
	bar	1	1	1	1	1	1	1	1,5	1,5	1,5	1,5	1,5
		400	400	400	400	400	400	400	400	400	400	400	400
Pression vase expansion ‡	kPa												
Pression vase expansion ‡ Pression max. de fonctionnement côté eau Connexions hydrauliques avec / sans	kPa	Victau	lic										
Pression vase expansion ‡ Pression max. de fonctionnement côté eau Connexions hydrauliques avec / sans module hydraulique		Victau	lic 2	2	2	2	2	2	2	2	2	2	2
Pression vase expansion ‡ Pression max. de fonctionnement côté eau Connexions hydrauliques avec / sans module hydraulique Connexions en pouces Diamètre externe en mm	kPa pouces mm			2 60.3	2 60.3	2 60,3	2 60,3	2 60,3	2 60,3	2 60,3	2 60,3	2 60,3	2 60,3

Caractéristiques électriques des unités 30RBS

30RBS sans module hydraulique		039	045	050	060	070	080	090	100	120	140	160
Circuit puissance												
Tension nominale	V-ph-Hz	400-3-5	50									
Plage de tension	V	360-44	0									
Alimentation du circuit de commande		24 V pa	r transfor	nateur inte	erne							
Intensité maximum au démarrage (Un)*												
Unité standard	Α	112,7	130,9	141,0	143,4	170,4	209,4	168,8	195,8	239,8	226,2	275
Unité avec option démarreur électronique	Α	74,7	86,5	93,8	96,2	114,4	139,8	-	-	-	-	-
Facteur de puissance de l'unité à		0,83	0,81	0,81	0,83	0,81	0,78	0,83	0,81	0,79	0,81	0,78
puissance maximale**												
Puissance absorbée fonctionnement max**	kW	18,8	20,8	24,4	27,8	31,2	35,8	42,2	45,5	52,4	62,3	71,5
Intensité fonctionnement nominal de	Α	25,7	30,6	34,9	38,3	45,6	55,8	57,8	67,1	82,7	91,2	112
l'unité***												
Intensité fonctionnement max (Un)****	Α	32,9	37,3	43,5	48,3	55,8	65,8	73,7	81,2	96,2	111,6	131
Intensité fonctionnement max (Un-10%) †	Α	38,1	49,1	51,3	57,9	74,6	81,2	88,3	108,1	118,0	149,2	162
Réserve puissance client sur unité	kW	Réserv	e client su	r le circuit	contrôle 2	24V						
Tenue et Protection des courts - circuits		Voir tab	leau corre	espondant	ci-après "	Tenue au	x intensité	s de court	-circuits"			

Intensité de démarrage instantané maximum (courant de service maximum du ou des plus petits compresseurs + intensités du ou des ventilateurs + intensité rotor bloqué du plus gros

Tenue aux intensités de court-circuits (schéma TN*) - Unité standard (sectionneur général sans fusible)

30RBS	039	045	050	060	070	080	090	100	120	140	160
Valeur sans protection amont											
Courant assigné de courte durée à 1s-lcw-kA eff	3,36	3,36	3,36	3,36	3,36	3,36	5,62	5,62	5,62	5,62	5,62
Courant assigné de crête admissible - Ipk-kA pk	20	20	20	20	20	15	20	20	15	20	15
Valeur avec protection amont par disjoncteur											
Courant assigné de court circuit conditionnel lcc-kA eff	40	40	40	40	40	40	40	40	40	30	30
Disjoncteur Schneider associé, gamme Compact type	NS100H	NS160H	NS160H	NS250H	NS250H						
Référence**	29670	29670	29670	29670	29670	29670	29670	30670	30670	31671	31671

Caractéristiques électriques des unités 30RQS

30RQS - Unité standard (sans module hydra	ulique)	039	045	050	060	070	078	080	090	100	120	140	160
Circuit puissance													
Tension nominale	V-ph-Hz	400-3-	50										
Plage de tension	V	360-44	0										
Alimentation du circuit de commande		24 V pa	ar transfo	rmateur i	nterne								
Intensité maximum au démarrage (Un)*													
Unité standard	Α	112,7	130,9	141,0	145,9	170,4	209,4	209,4	168,8	195,8	239,8	226,2	275,2
Unité avec option démarreur électronique	Α	74,7	86,5	93,8	98,7	114,4	139,8	-	-	-	-	-	-
Facteur de puissance de l'unité à puissance													
maximale **		0,83	0,81	0,81	0,82	0,81	0,78	0,78	0,83	0,81	0,79	0,81	0,78
Puissance absorbée fonctionnement max**	kW	18,8	20,8	24,4	29,0	31,2	35,8	35,5	42,2	45,5	52,4	62,3	71,5
Intensité fonctionnement nominal de l'unité***	Α	25,7	30,6	34,9	40,8	45,6	55,8	55,8	57,8	67,1	82,7	91,2	112,
Intensité fonctionnement max (Un)****	Α	32,9	37,3	43,5	50,8	55,8	65,8	65,8	73,7	81,2	96,2	111,6	131,0
Intensité fonctionnement max (Un-10%)†	Α	38,1	49,1	51,3	61,4	74,6	81,2	80,6	88,3	108,1	118,0	149,2	162,
Réserve puissance client sur unité	kW	Réserv	e client s	ur le circ	uit contrô	le 24V							
Tenue et Protection des courts - circuits		Voir tal	oleau cor	responda	ant ci-apr	ès "Tenu	e aux int	ensités d	e court-c	ircuits"			

Intensité de démarrage instantané maximum (courant de service maximum du ou des plus petits compresseurs + intensités du ou des ventilateurs + intensité rotor bloqué du plus gros

Tenue aux intensités de court-circuits (schéma TN*) - Unité standard (interrupteur général)

30RQS	039	045	050	060	070	078	080	090	100	120	140	160
Valeur sans protection amont												
courant assigné de courte durée à 1s-lcw-kA eff	3,36	3,36	3,36	3,36	3,36	3,36	3,36	5,62	5,62	5,62	5,62	5,62
courant assigné de crête admissible lpk-kA pk	20	20	20	20	20	15	15	20	20	15	20	15
Valeur avec protection amont par disjoncteu	r											
Courant assigné de court circuit conditionnel lcc-kA eff	40	40	40	40	40	40	40	40	40	40	30	30
Disjoncteur Schneider associé Gamme Compact type	NS100H	NS160H	NS160H	NS250H	NS250H							
Référence**	29670	29670	29670	29670	29670	29670	29670	29670	30670	30670	31671	31671

^{*} Type du schéma de mise à la terre
** Si un autre dispositif de protection limiteur de courant est utilisé, ses caractéristiques de déclenchement temps-courant et de contrainte thermique l²t doivent être au moins équivalentes à celles du disjoncteur Schneider recommandé. Contacter votre correspondant Carrier.

Les valeurs de tenue aux courants de court circuit données ci-dessus sont établis pour le schéma TN.

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 12 / 15

Code de Couleur HAL 7033

Coefficient d'encrassement à l'évaporateur = 0,000018 m²K/W

Conditions EUROVENT LCP/A/P/C/AC normalisées mode froid entrée-sortie d'eau évapo-condenseur = 12°C / 7°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/AC normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur ts/th = 7°C / 6°C

Conditions EUROVENT LCP/A/P/C/CHF normalisées mode froid entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur = 35°C
Conditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur ts/th = 7°C / 6°C

****Oditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur ts/th = 7°C / 6°C

***Oditions EUROVENT LCP/A/P/C/CHF normalisées mode chaud: entrée-sortie d'eau évapo-condenseur = 23°C / 18°C, température d'air extérieur ts/th = 7°C / 6°C

***Oditions EUROVENT LCP/A/P

Intensite de demarrage instantane maximum (courant de service maximum du de septide compresseur)

Puissance absorbée, compresseurs + ventilateurs, aux limites de fonctionnement de l'unité (température saturée d'aspiration: 10°C, température saturée de condensation: 65°C) et à la tension nominale de 400V (Indications portées sur la plaque signalétique de l'unité)

Conditions EUROVENT normalisées: entrée-sortie eau évaporateur = 12°C/7°C, température d'air extérieur = 35°C.

Intensité maximum de fonctionnement de l'unité à puissance absorbée maximum et sous 400V (Indications portées sur la plaque signalétique).

† Intensité maximum de fonctionnement de l'unité à puissance absorbée maximum et sous 360V.

miensité de demanagé inisantaire maximum (courain de service maximum du où des plus petits comprésseur)

**Puissance absorbée, compresseurs + ventilateurs, aux limités de fonctionnement de l'unité (température saturée d'aspiration: 10°C, température saturée de condensation: 65°C) et à la tension nominale de 400V (Indications portées sur la plaque signalétique de l'unité)

***Conditions EUROVENT normalisées: entrée-sortie eau évaporateur = 12°C / 7°C, température d'air extérieur = 35°C.

***Intensité maximum de fonctionnement de l'unité à puissance absorbée maximum et sous 400V (indications portées sur la plaque signalétique).

† Intensité maximum de fonctionnement de l'unité à puissance absorbée maximum et sous 360V.

ANNEXE 7: DOCUMENTATION REGULATEUR SYNCO 700

SIEMENS

3131

Svnco™700

KNX

Régulateur de chauffage

RMH760

- Régulateur de chauffage en fonction des conditions extérieures. Utilisation comme régulateur de circuit de chauffage ou comme prérégulateur.
 32 installations de chauffage pré-programmées.
- Régulation de la température de chaudière, d'un second circuit de chauffage et de la production d'ECS avec modules options
- Lecture et réglage avec appareil de service et d'exploitation embroché sur le régulateur ou à distance.

Domaines d'application

Types de bâtiments

- Immeubles de bureaux, immeubles administratifs
- Magasins, commerces
- Ecoles
- Hôpitaux
- Usines et ateliers
- Immeubles d'habitation

Types d'installation

- · Circuits de chauffage autonomes
- Préparation de l'eau pour installations de ventilation et climatisation
- Prérégulation pour sous-station
- Production de chaleur, chaudières ou échangeurs
- Production d'ECS

Siemens Building Technologies

HVAC Products

Fonctions

Remarque

La réalisation de certaines fonctions citées nécessite des modules d'extension.

Régimes d'ambiance

- AUTO: Commutation automatique possible entre trois consignes selon programme horaire
- Confort : chauffage en permanence à la consigne de confort réglée
- Préconfort : chauffage en permanence à la consigne de préconfort réglée
- Economie : chauffage en permanence à la consigne d'économie réglée
- Protection antigel : en cas de besoin, chauffage à la consigne minimale réglée

Fonctions horaires

- · Horloge annuelle avec commutation automatique été/hiver
- Horloges pour programmes hebdomadaires autorisant jusqu'à 3 périodes par jour

Fonctions de vacan-

- Programme de vacances (16 périodes par an) et du jour d'exception
- Choix du régime d'ambiance pendant les vacances
- Choix du régime d'ECS pendant les vacances
- Programme horaire pour jour d'exception

Entrées à configuration fixe

2 entrées préconfigurées pour

- la température de départ (calcul de la moyenne possible)
- la température extérieure

Entrées à configuration libre

3 entrées pouvant être librement affectées :

- A la réception des signaux de mesure suivants :
- Température ambiante (calcul de la moyenne possible)
- Température de retour
- Vitesse du vent
- Intensité du soleil
- Au raccordement d'un potentiomètre de décalage de consigne à distance avec réglage de la consigne d'ambiance
- Au raccordement d'un contact externe pour :
- la commutation sur un régime choisi
- la fonction d'horloge
- la commutation sur le régime de vacances
- la commutation sur le jour d'exception
- la signalisation de dérangement

Remarque

Si l'on souhaite configurer plus de 3 entrées, il faudra utiliser des modules d'extension.

Commande à distance

Commande à distance par appareil d'ambiance multi-fonctions via le bus Konnex

Fonctions de régulation

- Régulateur de chauffage :
- Régulation de la température de départ en fonction des conditions atmosphériques par commande de la vanne mélangeuse, avec consignes réglables pour les régimes Confort, Préconfort, Economie et Antigel
- Réglage de l'influence du vent, du soleil et de la température d'ambiance
- Réduction et réchauffement optimisés
- Mise en température et abaissement accélérés
- Automatisme des limites de chauffe ECO jour et ECO nuit
- Commutation automatique sur le régime d'été (chauffage arrêté)
- Modèle d'ambiance pour régulation sans sonde d'ambiance
- Prérégulateur :

Prérégulation en fonction des besoins par commande d'une vanne mélangeuse dans le départ commun.

CE1N3131fr 07.2003

BACCALAURÉAT PROFESSIONNEL TISEC
Technicien en Installation des Systèmes Énergétiques et
Climatiques

E.2 – ÉPREUVE TECHNIQUE
Analyse scientifique et technique d'une installation

Durée : 4h

Coefficient : 3

Page 13 / 15

Veuillez indiquer dans votre commande la désignation de l'appareil conformément à la liste précédente.

L'appareil de service et d'exploitation et les modules d'extension doivent toujours être commandés séparément.

L'appareil d'ambiance, la sonde, le servomoteur et le corps de vanne font également l'objet d'une commande séparée.

Combinaisons d'appareils

s	o	n	d	es

Sondes	Elément de mesure / signal	Référence	Fiche produit
Sonde de température extérieure	LG-Ni 1000	QAC22	N1811
Sonde de température extérieure	CTN 575	QAC32	N1811
sonde d'applique	LG-Ni 1000	QAD22	N1801
Sonde de température à plongeur	LG-Ni 1000	QAE2	N1791
Sonde à câble	LG-Ni 1000	QAP21.3	N1832
Sonde d'ambiance	LG-Ni 1000	QAA24	N1721
Sonde de vent	010 V-	QAV92	N1946
sonde d'ensoleillement	010 V-	QLS60	N1943

Appareils d'ambiance

Appareil d'ambiance	Référence	Fiche produit
Sonde d'ambiance avec réglage de consigne	QAA25	N1721
sonde d'ambiance avec correction de consigne	QAA27	N1721
Appareil d'ambiance sur bus Konnex	QAW740	N1633

Potentiomètres de réglage de consigne

Potentiomètre de réglage de consigne	Référence	Fiche produit
Potentiomètre de réglage de consigne, signal 01000 Ω	BSG21.1	N1991
Potentiomètre de décalage de consigne, ±3 K	BSG21.5	N1991

Servomoteurs

Tous les servomoteurs électriques et hydrauliques de SBT HVAC Products

- avec tension d'alimentation 24...230 V~ pour commande 3 points
- avec tension 24 \forall pour commande progressive par signal 0...10 $\forall -$

Pour des informations détaillées sur les servomoteurs et les vannes cf. fiches produit N4000... N4999.

Documentation produit

Document	Numéro
Description de la gamme	S3110
Déclaration de conformité CE	T3110
Déclaration relative à la préservation de l'environnement	E311001

Technique

Principe de fonctionnement

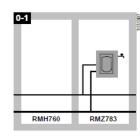
32 installations de chauffage de base sont programmées dans le régulateur. Elles couvrent la plupart des applications courantes et nécessitent en partie l'utilisation de modules d'extension.

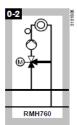
Lors de la mise en service, il convient de spécifier le type d'installation. L'ensemble des fonctions, branchements, réglages et affichages sont automatiquement activés, et les paramètres non utilisés sont inhibés.

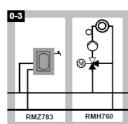
Types d'installation

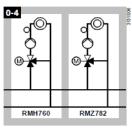
Remarque sur les schémas

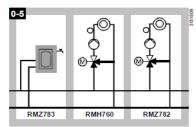
Dans les schémas de cette section, la prérégulation, la régulation de la température de chaudière et la production d'ECS sont représentées à l'aide des symboles suivants :

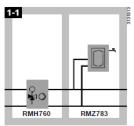


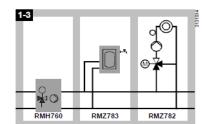

Prérégulation

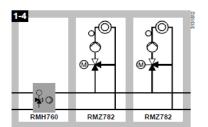

Régulation de la température de chaudière

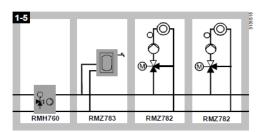

Production d'ECS


Installations 0-x






Installations 1-x


Il est possible de sélectionner les variantes de prérégulation $\lor 1$ et $\lor 2$ dans tous les types d'installation 1-x.

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 14 / 15

ANNEXE 8: DOCUMENTATION CIRCULATEUR / POMPE SALMSON ZOOM 300 NB

PLAGES D'UTILISATION

Débits jusqu'à :	40 m³/h
Hauteurs mano. jusqu'à:	6 m
Pression de service maxi:	6/10 bar
Plage de température :	+1° à 110°C*
Température ambiante maxi:	+40°C

/almson //

" -20" à +120°C : ZOOM 300 L et 300 NB -20° à +130°C : ZOOM 320 C.

ZOOM

CIRCULATEURS À BRIDE TÉLESCOPIQUE Marché du remplacement 50 Hz

SPÉCIFICATIONS TECHNIQUES PARTICULIÈRES

ZOOM 245 et 260 NS

Les seuls circulateurs du marché à variateur électronique de vitesse SALMSONIC.

Souplesse de réglage de la vitesse et meilleure adaptation aux caractéristiques réelles de l'installation.

ZOOM 225 et 245

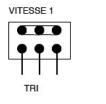
Les circulateurs domestiques ZOOM 225 et 245 sont fournis sans bride télescopique, celle-ci étant livrée en emballage séparé et est non comprise dans le prix du ZOOM.

Nous proposons le choix entre 2 brides télescopiques M 76 ou M 126 pour couvrir tous les cas de remplacement jusqu'à 245 mm entre-brides.

Bien préciser à la commande la bride télescopique M 76 ou M 126 correspondant à la hauteur entre-brides désirée.

NOTA

Les chiffres 1 à 5 mentionnés sur le variateur et sur les courbes hydrauliques n'ont pour but que de situer des positions intermédiaires sur la plage hydraulique.


Toutes les positions intermédiaires sont possibles pour ajuster le circulateur aux caractéristiques de l'installation.

ZOOM 300 NB

Moteur triphasé 230 V (T2) ou 400 V (T4), sélection des vitesses 1 ou 2 par barrettes de connection.

VITESSE 2

TRI

ZOOM 320 C

Sélecteur de vitesse embrochable (couplé à la tension d'utilisation).

APPLICATIONS

- · Circulation accélérée dans les boucles :
- -de chauffage individuel et collectif,
- -de conditionnement d'air.
- -de chauffage de serres, de piscines.
- · Gamme de circulateurs conçus spécifiquement pour le marché du remplacement.

AVANTAGES

- · Permet l'échange de tous circulateurs sans modification des tuyauteries.
- · Remplacement facile, rapide et esthétique.
- ·Gain de temps considérable au montage.
- · Etanchéité absolue entre le corps et la bride télescopique.
- · Arbre-rotor ingommable grace au fort couple de démarrage du moteur.
- Souplesse de réglage de la vitesse assurant una adaptation avanta du

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RESSOURCES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 15 / 15