	Académie :	Session:
	Examen:	Série :
Ħ	Spécialité/option :	Repère de l'épreuve :
CE CADRE	Epreuve/sous épreuve :	
C7	NOM:	
5 C	(en majuscule, suivi s'il y a lieu, du nom d'épouse)	
DANS	Prénoms :	N° du candidat
Ω	Né(e) le :	(le numéro est celui qui figure sur la convocation ou liste d'appel)
 ¤	Appréc	ciation du correcteur
NE RIEN ÉCRIRE	Note:	

Il est interdit aux candidats de signer leur composition ou d'y mettre un signe quelconque pouvant indiquer sa provenance.

DOSSIER RÉPONSES

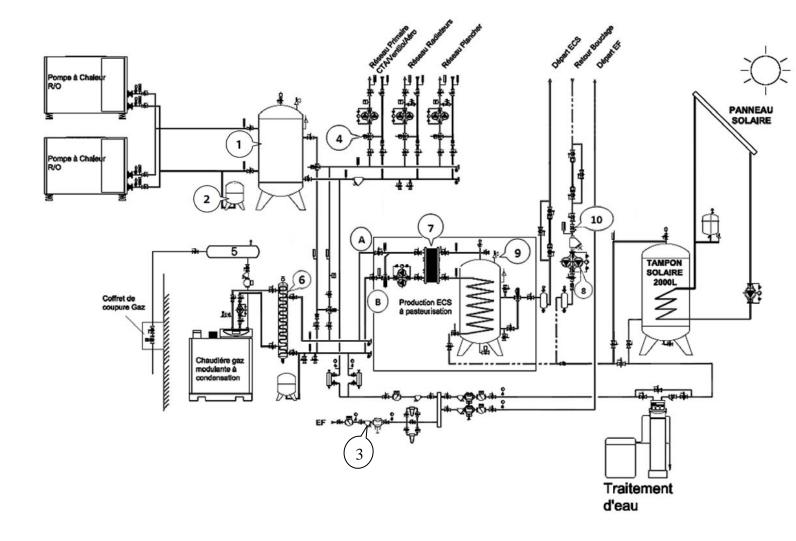
Le candidat doit rendre uniquement le dossier réponses.

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 1 / 11

NE RIEN ÉCRIRE DANS CETTE PARTIE

QUESTION 1 : ANALYSE TECHNIQUE DU SCHEMA HYDRAULIQUE (20 points)

a) Désigner le nom et la fonction des différents éléments repérés par les chiffres de 1 à 10 sur le schéma SG1 en complétant le tableau.
 10 points


N°	DESIGNATION	FONCTION
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

NE RIEN ÉCRIRE DANS CETTE PARTIE

- b) A partir de l'élément 7, indiquer en rouge le circuit Eau Chaude Sanitaire, en bleu le circuit Eau Froide et en orange le circuit Bouclage Eau Chaude Sanitaire. 7 points
- c) A partir de l'élément 7, indiquer par une flèche le sens de circulation du fluide.

3 points

Schéma SG1

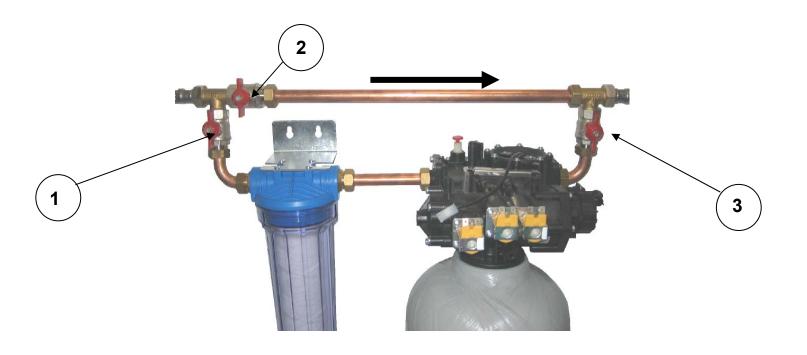
BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 2 / 11

QUESTION 2 : TRAITEMENT DE L'EAU

(Préciser les unités)

(10 points)

Suite aux résultats de l'analyse d'eau, l'installation d'un adoucisseur de marque PERMO modèle **DS16** a été retenue.


a)	Indiquer la capacité de résine contenue dans l'appareil.	2 points
	Capacité :	
b)	Indiquer la valeur de la cote de réglage à effectuer sur le flotteur pour la mise en service appareil pour un fonctionnement en mode standard.	e de votre 2 points
c)	Relever les caractéristiques techniques de l'adoucisseur. 2	2,5 points

Premier changement de sel	
Poids d'expédition	
Dimensions d'emballage	
Volume d'emballage	
Charge au sol en état de marche	

NE RIEN ÉCRIRE DANS CETTE PARTIE

d) Indiquer la position des vannes en fonctionnement normal.

1,5 point

	OUVERTE	FERMEE
Vanne 1		
Vanne 2		
Vanne 3		

e)	Indiquer la quantité d'eau produite entre deux régénérations en mode standard et ex principe de la régénération.	oliquer le 2 points

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 3 / 11

QUESTION 3: CHAUFFAGE LOGEMENT DE FONCTION

(20 points)

- a) Calculer le volume de chaque pièce. Pour le résultat des volumes, arrondir à deux chiffres après la virgule.
- **b)** Calculer les déperditions pour chaque pièce en prenant une majoration de 15% en plus ; arrondir à deux chiffres après la virgule.
- c) Calculer le ΔT du radiateur de la cuisine, du séjour et de la salle de bains.

E.2 – ÉPREUVE TECHNIQUE

Analyse scientifique et technique d'une installation

NE RIEN ÉCRIRE DANS CETTE PARTIE

- d) Déterminer le débit de chaque radiateur en m³/h.
- e) Déterminer le diamètre d'alimentation en cuivre pour le radiateur de la cuisine, du séjour et de la salle de bains en fonction du débit maxi, en vous aidant du tableau page 6/15 du dossier ressources.
- f) Calculer la puissance totale du circuit radiateurs.

			/6 points	/6 points		/2,25 points	/2,25 points	/2,25 points
Pièce	Surface (m²)	H.S.P. (m)	Volume (m³)	Calculs des déperdition + majoration 15½ en (W)	ons	Calculs des ΔT radiateurs (K)	Calcul du débit volumique radiateur en m³/h	Diamètre de raccordement radiateur
Cuisine	25,76m ²	2,50m						
Séjour	47,31m ²	2,50m						
Salle de bains	12,47m ²	2,50m						
Chambre 1	13,50m ²	2,50m						
Chambre 2	14,80m ²	2,50m						
Chambre 3	16,86m ²	2,50m						
Hall	17,90m ²	2,50m						
wc	2 ,50m²	2,50m						
Puissance				Total :	W			
à installer				Total :	kW	/1,25 poi	nt	
Techn			ESSIONNEL TISEC es Énergétiques et Climatiques	Session 2013	Dossier RÉPONSES	s		

Coefficient: 3

Page 4 / 11

Durée: 4h

Question 4: HYDRAULIQUE

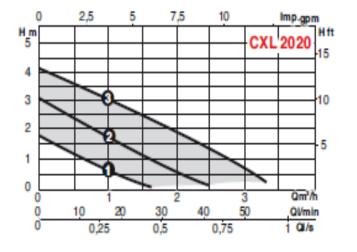
(15 points)

Déterminer la pompe double nécessaire à l'installation du circuit radiateur

a) Calculer le débit en fonction de la puissance du circuit radiateurs.

8 points

$$Qv = P / (\rho x C x \triangle T)$$


.....

.....

b) Tracer le point de fonctionnement théorique sur l'abaque.

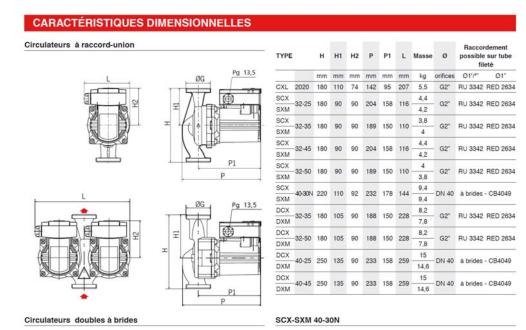
5 points

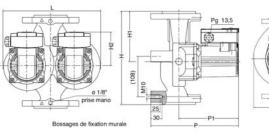
PERFORMANCES HYDRAULIQUES DU CXL 2020

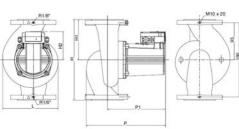
PLAGES D'UTILISATION

Débits jusqu'à :	14 m³/h
Hauteurs mano. jusqu'à:	7,5 m
Pression de service maxi:	10 bar
Plage de température :	–20° à +130°C*
Température ambiante maxi	: + 40°C
DN orifices:	32 et 40

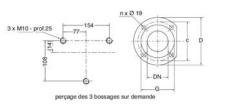
' sauf CXL 2020 : -20 à +110°C


c) Relever les caractéristiques de la pompe.


2 points


En vous aidant du tableau caractéristiques dimensionnelles du fabricant, compléter le tableau cicontre.

NE RIEN ÉCRIRE DANS CETTE PARTIE


Tableau caractéristiques dimensionnelles du fabricant (entourer les valeurs retenues)

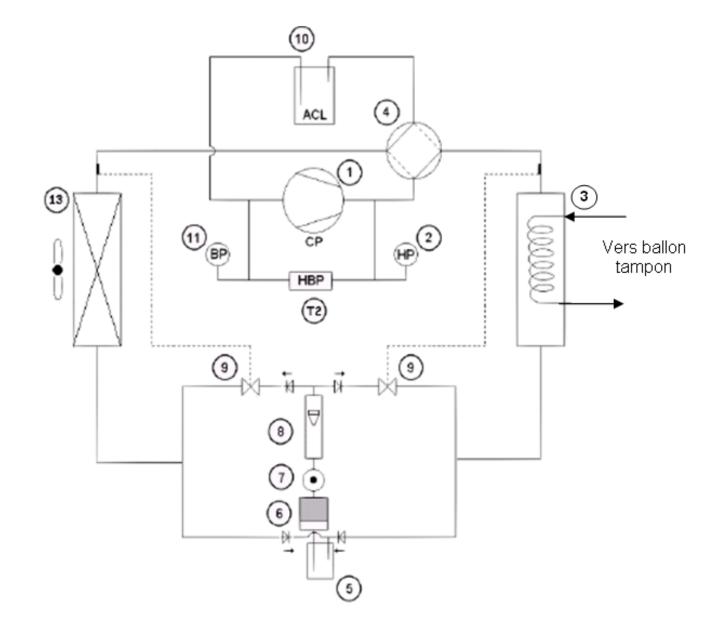
Brides

DN	D	С	G	nxo
	mm	mm	mm	mm
40	150	110	84	4 x 19

Référence de la pompe SALMSON	Ø de raccordement	Entre axe de la pompe [mm]	Température de fonctionnement [°C]	Pression de service [bar]
SALMSON			[*C]	

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 5 / 11

QUESTION 5: PRODUCTION EAU CHAUDE SANITAIRE (10 points) a) Calculer V_A la capacité de fluide caloporteur contenue dans l'installation. 2 points Déterminer V_V le volume d'eau de sécurité. 1 point c) Déterminer V₂ l'augmentation de volume due à la montée en température de l'installation. 1 point **d)** Déterminer Pe la surpression finale admise (en bar et en mCE). 2 points (avec Psi = pression maxi admissible capteur) e) Déterminer P_{st} la pression de remplissage de l'installation (en bar et en mCE). 2 points Déterminer V_N le volume nominal du vase d'expansion. 1 point g) Choisir le modèle du vase d'expansion. 1 point


BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 6 / 11

NE RIEN ÉCRIRE DANS CETTE PARTIE

NE RIEN ÉCRIRE DANS CETTE PARTIE

QUESTION 6: FROID (20 points)

a)	Donner deux avantages d'une pompe à chaleur réversible air/eau.	2 points
	Avantage 1:	
	Avantage 2 :	
b)	Déterminer la référence de la pompe à chaleur. On prendra en référence sur la notice technique les puissances nominales « star	1 point idard ».
c)	Identifier les éléments du circuit frigorifique de la pompe à chaleur.	7 points
1		
3		
4		
7		
9		
10		
13		

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 7 / 11

NE RIEN ÉCRIRE DANS CETTE PARTIE

d) Effectuer le tracé du cycle frigorifique sur le diagramme enthalpique et compléter le tableau de points.
 6 points

	,			
Valeurs mesurées	T surchauffe au bulbe °C	T surchauffe totale ou entrée comp. °C	T sortie comp. (évolution isentrope) °C	T entrée condenseur °C
Point N°	1	2	3	4
Valeurs relevées	-10	-5		
Enthalpies h Kj/Kg				
Valeurs mesurées	T sortie condenseur ou sous- refroidisse- ment	T entrée détendeur ou sous- refroidissement total	T sortie détendeur	
Point N°	5	6	7	
Valeurs relevées	25	20	-15	
Enthalpies h Kj/Kg				
Isotitre x				

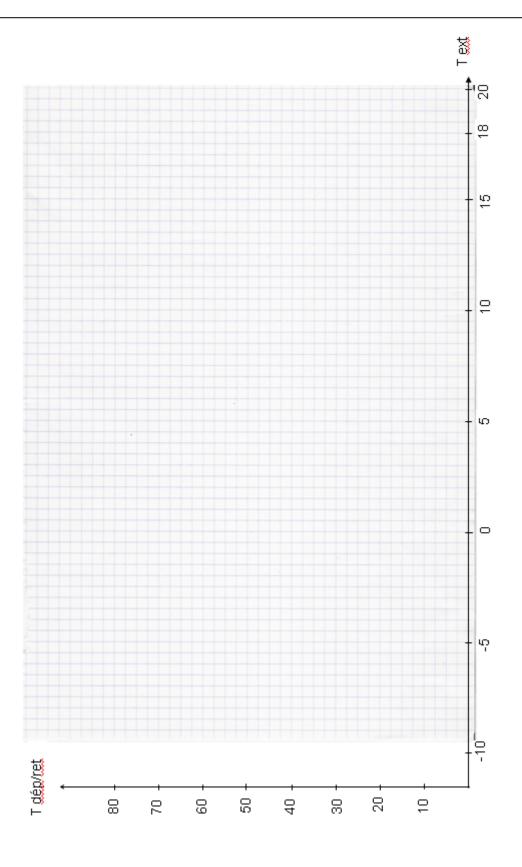
	140 180	220 	260	300	340	380 	400 	420 	440	460	480	500	520 	540 	mmlmmu	
[Σ _α] elinq θ 70	References (IIR): h = 200kJ/kg s = 1 kJ/kg.K pour un liquide saturé à Composition = R32/12!	i 0°C 5 (50/50)		v = 1.4	Cha	ingement d'échel	e R4	10A	001725 1750 V =	1775 1800 1	825 1850 18	75 1900 1	925 1950 9 \			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	P : [bar] T : [°C] h : [kJ/kg]		1.2	1.3			/)	50				X	1975	12.5		50 -
50 40 30	v : [dm³/kg] s : [J/kg.K]	4	1.1	40				40 -		XX		$\langle \chi \rangle$	X	2025 17.5 2050 20		40 -
			- 20 /	///	////			/	XX	XX			A	2075 25		30 -
20		0.9	_ 20	/ /	/ /		/	20 -		XX	XX	X	X	2125 35	i 0	20 -
10		# / P	//	-/-/				10				XX		2150	50	10 -
	#			/ /					XX	1		1	4	220	60 70	0 -
10 	0.8	-10'			/ /			10		AA	X	1	1	4/1/	90 50 100	-10 -
	-20/			///		1 /		A		4	XX			4//	275 125	-20 -
-30	-30/						-30 -3				#		1		175 -	-30 -
	-40/		///				-40	XX	1			1/2	1		1	-40 -
	<i>E</i> / /		/ /				<i>*************************************</i>		1	A	1		4		300 350 400	
50 	-50/	-/-/		+	-	-50) #			1		1			450 500	-50 -
	-60	/ /				-60 —	#	1/2	4/2	1	1	1			-	-60 -
=			/ /	/			XXA	4	1//	W,						
	0.1 0.2 0.3		0.5 0.6	0.7	8.0	0.9	-60 -50 -40	-30 -20 -1	0 10	20 30 4	0 50 60	70 80	90 100	110 120	130	
	et d'après tables Coolpack http://						<u></u>	<u></u>				lııımılının				
pie [kJ/kg]		220	260	300	340	380	400	420	440	460	480	500	520			560

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES	
E.2 – ÉPREUVE TECHNIQUE	Durée : 4h	Coefficient: 3	Page 8 / 11	
Analyse scientifique et technique d'une installation	20100 1 411	Comment : 5	ruge o / 11	

e)	Calculer la puissance de l'évaporateur.	2 points
	ppelle la formule pour le calcul : P = Qm _{Ff} x (H ₁ – H ₇) Qm _{Ff} en kg/s H en kj/kg P en kW	
1	f) Calculer le coefficient de performance énergétique E.E.R.	2 points
	ppelle la formule pour le calcul : = (P fournie à l'évaporateur)/(puissance absorbée par le groupe)	

NE RIEN ÉCRIRE DANS CETTE PARTIE

Question 7	: REC	<u>GULATI</u>	<u>NC</u>								(1	5 points
a) Déte	rminer	· la référ	ence	du régul	ateur	Synco 7	700 et	son typ	e d'in	stallation		points
Référence r	égula	teur :										
Type d'insta	allation	1 (doc. p.	14/15	document	s ress	ources) :						
b) Donn	ier la r	référenc	e des	sondes	LG-N	li 1000 à	insta	ıller.			3	points
Référence s	sonde	extérieu	re:.									
Référence s	sonde	d'appliq	ue de	départ								
Référence a												
				(.,						
c) Etudi	er la s	sonde d'a	applic	ue de d	épart.							3 points
Donner la v	aleur	de la ten	npéra	ture de d	dépar	t pour 1	176 o	hms.				
Valeur de la	temp	érature	de dé	part :								
Type de sondes	θ	R	θ	R	θ	R	θ	R	θ	R	θ	R
	(°C)	(Ω)	(°C)	(Ω)	(°C)	(Ω)	(°C)	(Ω)	(°C)	(Ω)	(°C)	(Ω)
	Sond	es nickel (L	S-Ni100	0)								
QAA2427	-30	871.694	2	1008.875	34	1156.716	66	1316.317	98	1488.774	130	1675.187
QAA35	- 29	875.830	3	1013.328	35	1161.520	67	1321.506	99	1494.383	131	1681.249
QAA64	-28	879.976	4	1017.791	36	1166.335	68	1326.707	100	1500.005	132	1687.326
QAC22	-27	884.131	5	1022.265	37	1171.162	69	1331.922	101	1505.641	133	1693.418
QAD22	-26	888.296	6	1026.749	38	1176.001	70	1337.148	102	1511.290	134	1699.525
QAE22	-25	892.470	7	1031.244	39	1180.851	71	1342.388	103	1516.954	135	1705.646
QAM22	-24	896.654	8	1035.750	40	1185.713	72	1347.640	104	1522.631	136	1711.782
QAP22	- 23	900.847	9	1040.266	41	1190.586	73	1352.905	105	1528.322	137	1717.933

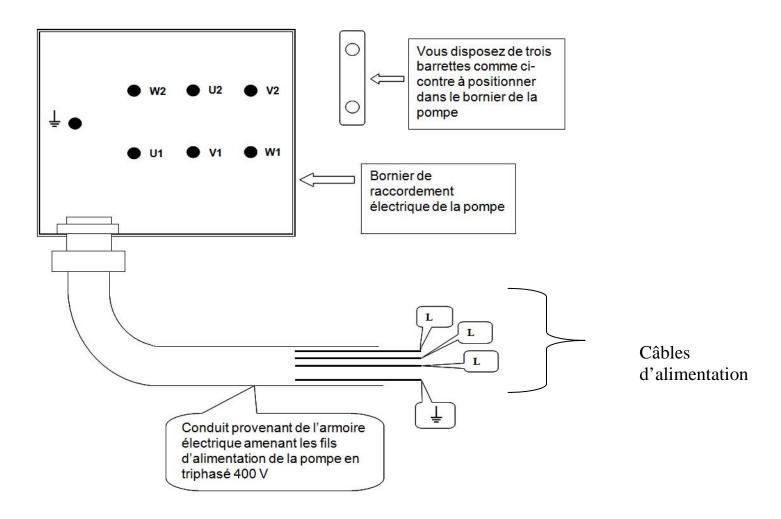

-22 905.050 10 1044.793 42 1195.471 74 1358.183 106 1534.026 138 1724.099

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 9 / 11

NE RIEN ÉCRIRE DANS CETTE PARTIE

c) Etudier la sonde d'applique de départ (suite).

<u>Déterminer les valeurs suivantes :</u>		
Valeurs du régime de fonctionnement	·	
Valeurs de la température relevée :		
<u>Cette valeur de température est-elle c Justifier.</u>	cohérente par rapport au régime de l'installa	ation ?
d) Effectuer le tracé de la courbe	de départ réseau radiateurs.	5 points
On rappelle les valeurs suivantes :	Température extérieure de base au point Température extérieure au point maxi : 2 Température de départ au point maxi : 2 Température de départ au point mini : 5	20°C 20°C
Sur le diagramme de courbe de chauf radiateurs :	ffe page ci-contre, tracer la courbe de chau	ffe départ
e) Effectuer le tracé de la valeur d	de la température de départ (à 0°C extérieu	ır). 2 points
Valeur trouvée :		



BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 10 / 11

QUESTION 8 : ELECTRICITE

(10 points)

- a) Positionner sur le schéma du bornier du circulateur / pompe provisoire, les barrettes de couplage de raccordement électrique (triphasé 400 V) pour la <u>vitesse 1</u>. 3 points
- b) Réaliser sur le schéma du bornier le branchement électrique du circulateur / pompe avec le câble d'alimentation (triphasé 400 V) avec les couleurs normalisées. 4 points

NE RIEN ÉCRIRE DANS CETTE PARTIE

c) Vous devez vérifier l'absence de tension aux borniers de l'armoire électrique avant de réaliser le câblage : indiquer les E.P.I. à utiliser pour cette mesure. 3 points

Equipements de Protection Individuelle	Oui	Non
Casque avec visière anti-UV		
Vêtements de travail		
Gants de manutention		
Masque anti-poussières		
Chaussures de sécurité		
Gants isolants de classe double 0		
Harnais de sécurité		
Lunettes de soleil		
Tapis isolant		

BACCALAURÉAT PROFESSIONNEL TISEC Technicien en Installation des Systèmes Énergétiques et Climatiques		Session 2013	Dossier RÉPONSES
E.2 – ÉPREUVE TECHNIQUE Analyse scientifique et technique d'une installation	Durée : 4h	Coefficient: 3	Page 11 / 11