BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l'Industrie et du Développement Durable

INGÉNIERIE, INNOVATION ET DÉVELOPPEMENT DURABLE SYSTÈMES D'INFORMATION ET NUMÉRIQUE

Coefficient 16

Durée : 20 minutes -1 heure de préparation Aucun document autorisé – Calculatrice autorisée

Constitution du sujet :

•	Dossier de PrésentationPage 2
•	Dossier de Travail DemandéPages 3 à 6
	■ Partie relative aux enseignements communs Page 3
	■ Partie relative à l'enseignement spécifique Pages 4 à 6
•	Dossier Technique et Ressource Pages 7 à 9

Rappel du règlement de l'épreuve

L'épreuve s'appuie sur une étude de cas issue d'un dossier fourni au candidat par l'examinateur et présentant un produit pluritechnologique.

Un questionnaire est remis au candidat avec le dossier en début de la préparation de l'épreuve. Il permet de résoudre une problématique technologique (sans entraîner le développement de calculs mathématiques importants) afin d'évaluer des compétences et connaissances associées, de la partie relative aux enseignements communs et propres à l'enseignement spécifique choisi par le candidat lors de son inscription.

Pendant l'interrogation, le candidat dispose de 10 minutes pour exposer les conclusions de sa préparation avant de répondre aux questions de l'examinateur, relatives à la résolution du problème posé.

Baccalauréat Sciences et Technologies de l'Industrie et du Développement	nt Durable – STI2D	Session 2023
Ingénierie, innovation et développement durable - oral de contrôle	Code: 2023-02-SIN	Page 1 / 9

DOSSIER DE PRÉSENTATION

Eclairage d'un nouveau chemin de la cité scolaire d'Amiens Mise en situation

La cité scolaire Sud d'Amiens (figure 1), créée dans les années 1970, ouvre un accès supplémentaire. Cela fait suite à la mise en service d'un nouvel arrêt de bus après l'implantation des nouveaux bus électriques dans l'agglomération. Pour sécuriser et faciliter ce nouvel accès, des candélabres (lampadaires) représentés sur la figure 2 doivent être implantés afin d'illuminer le nouveau chemin.

Problématique : sécuriser le chemin emprunté par les piétons à l'aide de candélabres autonomes en énergie, programmables et communicants.

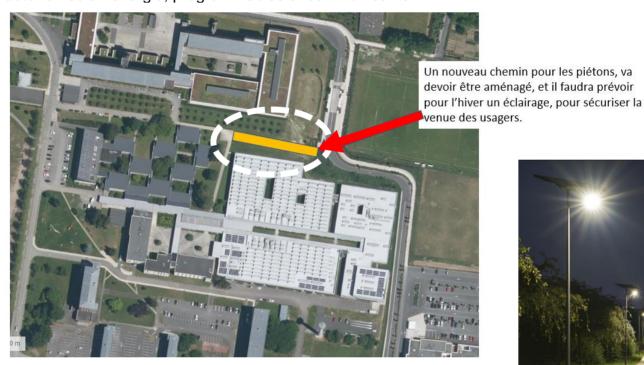


Figure 1 : vue aérienne du bâtiment et du nouveau chemin

Figure 2 : candélabre autonome

Baccalauréat Sciences et Technologies de l'Industrie et du Développer	ment Durable – STI2D	Session 2023
Ingénierie, innovation et développement durable - oral de contrôle	Code : 2023-02-SIN	Page 2 / 9

DOSSIER DE TRAVAIL DEMANDÉ

Partie relative aux enseignements communs

Dans un premier temps, l'objectif est de vérifier que les apports solaires vont permettre aux panneaux solaires de fournir suffisamment d'énergie aux 12 leds de très haute puissance de chaque candélabre. Afin de respecter le cahier des charges, un fonctionnement jusqu'à 10 heures en autonomie par nuit doit être garanti.

L'étude du système se fera avec un module photovoltaïque 12V / 85 Wc

Question 1	D'après le document DTR1, relever la source d'énergie primaire qui permet d'alimenter le système.
DTR2	À l'aide du document DTR2, déterminer le nombre de candélabres nécessaire pour éclairer le chemin.
Question 2 DTR3	À l'aide du document DTR3, calculer la surface S en mm² du panneau photovoltaïque associé à chaque candélabre.
Question 3 DTR4	À partir du document DTR4, relever pour le mois de décembre la valeur de l'irradiation IGP (rayonnement solaire) quotidienne moyenne en kW·h·m ⁻² ·jour ⁻¹ .
Question 4	Calculer l'énergie quotidienne théorique totale E_T en kW·h·jour ⁻¹ récupérable sur le panneau photovoltaïque. La surface de panneau considérée est $S=0,65~\text{m}^2$.
	En utilisant le rendement du panneau photovoltaïque, calculer l'énergie Es produite par le panneau.
Question 5	Chaque candélabre est composé de 12 Leds de 1 W. Le 21 décembre, la batterie a accumulé pendant la journée 85 W·h.
DINZ	Calculer la durée d'éclairage du candélabre ce jour-là.

Conclure et **argumenter** sur le respect de l'exigence ld 1.4 du document DTR2.

В	accalauréat Sciences et Technologies de l'Industrie et du Développeme	nt Durable – STI2D	Session 2023
Ir	ngénierie, innovation et développement durable - oral de contrôle	Code : 2023-02-SIN	Page 3 / 9

Partie relative à l'enseignement spécifique

Les candélabres à installer sont programmables à partir d'une télécommande à radiofréquence. Chaque candélabre dispose d'un numéro d'identification sur 4 caractères hexadécimaux (ex : ID=0401). Le technicien doit entrer le numéro d'identification sur la télécommande (figure 3) avant d'insérer les paramètres de programmation du candélabre.

La liaison entre la télécommande et le candélabre est de type liaison série asynchrone au format suivant :

- 1 bit de Start (à 0)
- 8 bits de données
- 1 bit de Stop (à 1)

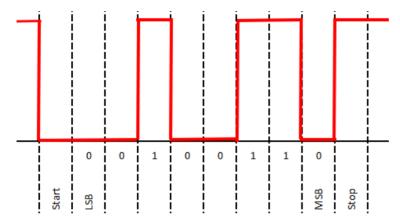


Figure 3 : télécommande de programmation des candélabres

Figure 4 : extrait de trame type d'une liaison série asynchrone

Sur l'exemple ci-dessus (figure 4), l'information envoyée correspond à : $0110\ 0100_{(2)}$ soit $64_{(16)}$.

La trame suivante (figure 5) est relevée pendant l'échange de données entre la télécommande et le candélabre :

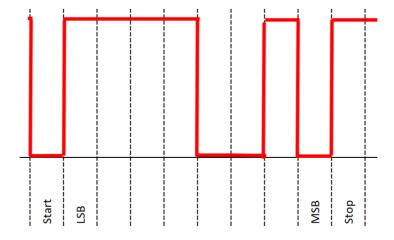


Figure 5 : extrait de la trame échangée entre la télécommande et le candélabre

Baccalauréat Sciences et Technologies de l'Industrie et du Développement	Session 2023	
Ingénierie, innovation et développement durable - oral de contrôle	Code : 2023-02-SIN	Page 4 / 9

Question 6 **Extraire** de la trame précédente (figure 5) la valeur en binaire de la donnée échangée.

DTR5

Convertir en décimal et en hexadécimal cette valeur.

À partir de la table ASCII du document DTR5, **déduire** des résultats précédents le caractère envoyé au candélabre.

À l'aide d'un oscilloscope, une trame a été capturée et une impulsion correspondant à un bit a été mise en évidence sur la figure 6 :

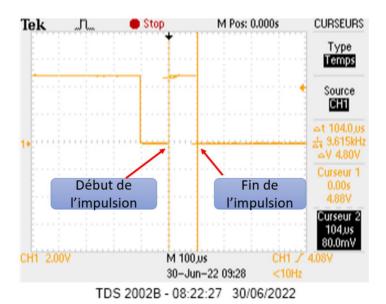


Figure 6 : trame relevée à l'oscilloscope

Question 7 **Exprimer** la durée de l'impulsion (du bit) encadrée par les deux barres verticales (figure 6). La valeur est indiquée en microsecondes (μs).

Calculer la vitesse de transmission des caractères entre la télécommande et le candélabre, la valeur est à exprimer en bits · s⁻¹.

La vitesse de transmission d'une liaison série est normalisée, les principales vitesses sont indiquées dans le tableau présent au DTR6.

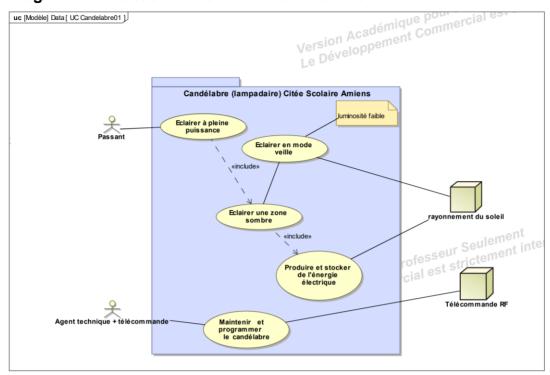
Question 8

DTR6

Indiquer, à partir du tableau en DTR6 la vitesse normalisée de transmission des caractères entre la télécommande et le candélabre, la valeur étant exprimée en bauds.

Calculer à partir du résultat obtenu précédemment, le nombre d'octets transmis par seconde.

Baccalauréat Sciences et Technologies de l'Industrie et du Développe	ment Durable – STI2D	Session 2023
Ingénierie, innovation et développement durable - oral de contrôle	Code : 2023-02-SIN	Page 5 / 9


Tous les candélabres sont connectés à un réseau Ethernet afin de pouvoir les contrôler à distance et de pouvoir suivre leur consommation.

- Question 9 L'adresse IPv4 d'un candélabre est donnée sous la forme : 192.168.0.15. Sachant que le masque de sous-réseau est 255.255.255.0,
 - déterminer l'adresse du réseau,
 - **déterminer** l'adresse de diffusion (broadcast),
 - calculer le nombre maximal de candélabres qui peuvent être connectés sur ce réseau.
- Question 10 **Comparer** d'un point de vue économique, environnemental et sociétal l'utilisation d'un candélabre autonome par rapport à un candélabre relié au réseau électrique.

Baccalauréat Sciences et Technologies de l'Industrie et du Développeme	ent Durable – STI2D	Session 2023
Ingénierie, innovation et développement durable - oral de contrôle	Code : 2023-02-SIN	Page 6 / 9

DOSSIER TECHNIQUE ET RESSOURCE

DTR1 : diagramme des cas d'utilisation du candélabre

DTR2 : diagramme des exigences du candélabre

Baccalauréat Sciences et Technologies de l'Industrie et du Développemer	Session 2023	
Ingénierie, innovation et développement durable - oral de contrôle	Code: 2023-02-SIN	Page 7 / 9

DTR3 : document technique du panneau photovoltaïque

Puissance Max. (Pm)			80W	85W	90W
Tension à puissance Max.		17.6V	17.8V	17.9V	
Intensité à puissance Ma		4.55A	4.78A	5.03A	
Tension à circuit ouvert		21.6V	21.8V	21.9V	
Courant de court-circuit		4.93A	5.18A	5.46A	
Rendement du module			12.4%	13.1%	13.9%
Tolérance de puissance				+3%	
Température nominale				45°C ±3	
Tension maximale du sy				715V	
Cadre	Aluminiur				
Paramètres N	viecamiqu	IE			
Type de cellules Cadre	Aluminiur	n anodisé			
Boîte de jonction	IP-65 rate	d, PV-RH 7	01		
Connecteurs	Cixi Renhe	2			
Câbles	12 AWG/1	000mm (3	39.4 in)		
EVA	Bridgestor	ne Corpora	tion		
Backsheet	Krempel				
Dimensions		1 x 35 mm	1		
Poids	7.5kg				
D					
Paramètres d'e	essals				
**********************	************			*********	•••••
	nement	-40C to	+85C		
Température de fonction	Herrieric				
Essais à charge max (e	ex: vent, neige)				
	ex: vent, neige)	2700Pa diamètre vitesse:		n	

DTR4 : irradiation sur plan d'inclinaison (en kW·h · m-2 · jour-1)

Irradiation:	jan	fév	mars	avr	mai	juin	juil	août	sep	oct	nov	déc	année
Directe (IBP)	0.64	1.34	1.55	2.19	2.18	2.01	2.36	2.18	1.88	1.47	0.97	0.48	1.6
Diffuse (IDP)	0.48	0.85	1.31	1.88	2.3	2.49	2.4	2.06	1.54	0.99	0.59	0.39	1.44
Réfléchie (IRP)	0.02	0.05	0.07	0.12	0.14	0.15	0.16	0.13	0.09	0.06	0.03	0.02	0.09
Globale (IGP)	1.14	2.23	2.93	4.19	4.63	4.65	4.92	4.36	3.5	2.52	1.59	0.89	3.13

Baccalauréat Sciences et Technologies de l'Industrie et du Développeme	ent Durable – STI2D	Session 2023
Ingénierie, innovation et développement durable - oral de contrôle	Code : 2023-02-SIN	Page 8 / 9

DTR5: table ASCII

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	1
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[END OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A		90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

DTR6 : vitesse de transmission normalisée d'une liaison série

Vitesse normalisée de transmission série:							
Bauds	bits∙s ⁻¹	Durée d'un bit					
300 bauds	300 bits⋅s ⁻¹	3,333 ms					
600 bauds	600 bits⋅s ⁻¹	1,667 ms					
1200 bauds	1200 bits·s ⁻¹	833,33 μs					
2400 bauds	2400 bits s ⁻¹	416,667 μs					
4 800 bauds	4 800 bits s ⁻¹	208,333 μs					
9 600 bauds	9 600 bits s ⁻¹	104,167 μs					
19 200 bauds	19 200 bits s ⁻¹	52,083 μs					
38 400 bauds	38 400 bits s ⁻¹	26,042 μs					
57 600 bauds	57 600 bits·s ⁻¹	17,361 μs					
115 200 bauds	115 200 bits s ⁻¹	8,681 μs					
230 400 bauds	230 400 bits s ⁻¹	4,340 μs					

Baccalauréat Sciences et Technologies de l'Industrie et du Développeme	Session 2023		
Ingénierie, innovation et développement durable - oral de contrôle	Code : 2023-02-SIN	Page 9 / 9	