BREVET DE TECHNICIEN SUPÉRIEUR MAINTENANCE DES SYSTÈMES

Option A : Systèmes de production

Session 2024

U 4 : Intégration d'un bien

Durée: 4 heures – Coefficient: 5

Matériel autorisé

L'usage des calculatrices est autorisé dans les conditions suivantes :

- l'usage de la calculatrice avec mode examen actif est autorisé,
- l'usage de la calculatrice sans mémoire, « type collège » est autorisé.

Dès que le sujet vous est remis, assurez-vous qu'il soit complet. Le sujet comporte 26 pages numérotées de la façon suivante :

Dossier de présentation : DP1 à DP4 de la page 3 à la page 4.

Dossier questions : DQ1 à DQ9 de la page 6 à la page 10.

Documents réponses : DR1 à DR5 de la page 12 à la page 14.

Documents techniques: DT1 à DT18 de la page16 à la page 26.

Les candidats rédigeront les réponses aux questions posées sur les feuilles de copie ou, lorsque cela est indiqué sur le sujet, sur les documents réponses prévus à cet effet.

Tous les documents réponses sont à remettre en un seul exemplaire en fin d'épreuve.

CODE ÉPREUVE : 24MSU4A		EXAMEN BREVET DE TECHNICIEN SUPÉRIEUR		SPÉCIALITÉ : MAINTENANCE DES SYSTÈMES	
SESSION: 2024	SUJET	ÉPREUVE : E4 I	NTEGRA	TION D'UN E	BIEN
Durée : 4h		Coefficient : 5		N° 01MS24	Page 1/26

BREVET DE TECHNICIEN SUPÉRIEUR MAINTENANCE DES SYSTÈMES

Option A : Systèmes de production

Session 2024

U 4 : Intégration d'un bienDurée : 4 heures – Coefficient : 5

DOSSIER DE PRÉSENTATION

Ce dossier contient les documents DP1 à DP4

CODE ÉPREUVE : 24MSU4A SESSION : 2024 SUJET		EXAMEN BREVET DE TECHNICIEN SUPÉRIEUR		SPÉCIALITÉ : MAINTENANCE DES SYSTÈMES	
		ÉPREUVE : E4 INTEGRATION D'UN BIEI		BIEN	
Durée : 4h		Coefficient : 5		N° 01MS24	Page 2/26

DP1 – Dossier de présentation

Présentation de l'entreprise et du système étudié

Avec cinq sites de production en Europe et un au Mexique, ALLTUB est le leader mondial du tube flexible en aluminium pour l'emballage de produits pharmaceutiques, cosmétiques, alimentaires et pour l'industrie. Il est également l'un des principaux producteurs européens d'aérosols, de cartouches en aluminium et de tubes laminés.

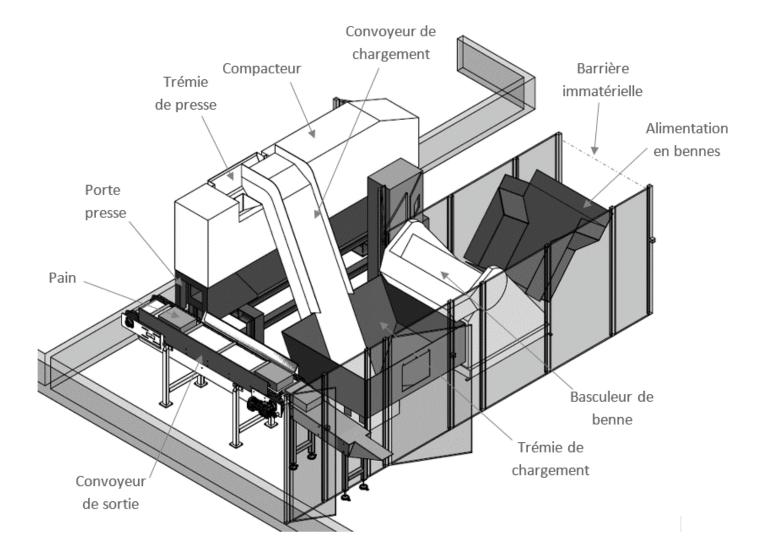
Sur l'ensemble de ses 6 sites industriels localisés partout dans le monde (France, Allemagne, Italie, République Tchèque, Mexique), ALLTUB possède plus de 75 lignes de production qui fabriquent plus de 1,6 milliard d'unités par an (tubes aluminium, tubes laminés, cartouches aluminium, et aérosols). ALLTUB emploie 1400 collaborateurs dans le monde et réalise un chiffre d'affaires de plus de 150 millions d'euros chaque année.

Le process génère de la mise en œuvre défectueuse (MOD) qui se décompose en trois types :

- les déchets d'aluminium seul,
- les déchets d'aluminium avec revêtement (vernis, laque, encre, joint),
- les déchets d'aluminium avec des déchets plastiques (tubes avec bouchons).

Les déchets sont compactés par type, en pain de 400 x 400 x 100 mm et sont palettisés manuellement par un opérateur. Les palettes sont ensuite vendues par camion entier pour recyclage.

L'entreprise de Saumur vient de récupérer une presse à déchets sur le site de Bondoufle lors de sa fermeture.


La machine a déjà été transférée et stockée sur le site de Saumur en attente d'adaptation afin de venir en remplacement de celle déjà en place mais beaucoup plus vétuste.

ALLTUB souhaite mettre en production cette presse sur l'usine de Saumur pour les raisons suivantes :

- la presse à déchets actuelle est vétuste et n'a pas de marche automatique ;
- la machine est unique pour l'usine et son immobilisation impacte l'ensemble de la production.

DP2 – Dossier de présentation

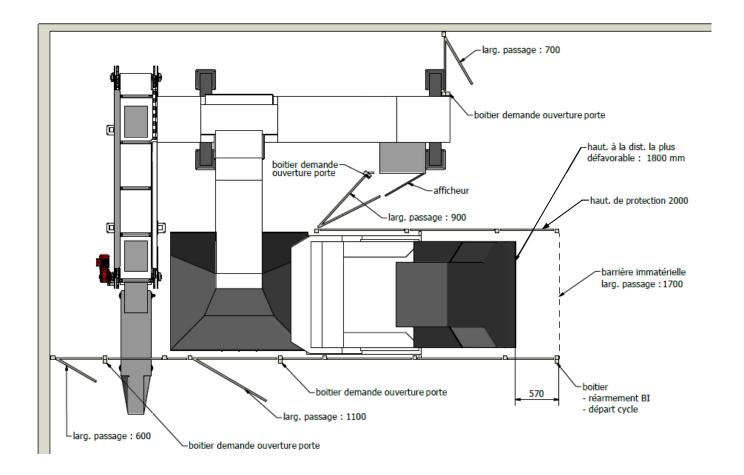
Vue en perspective de la nouvelle presse :

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 3/26

DP3 – Dossier de présentation

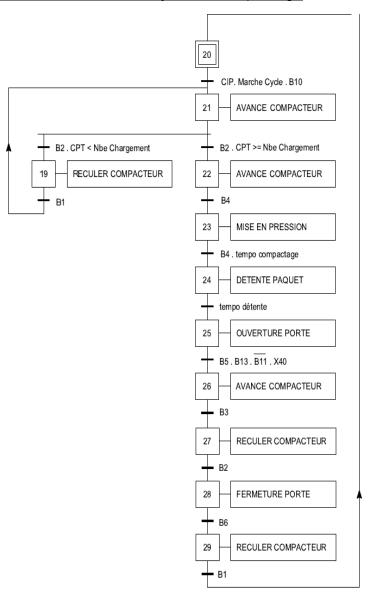
La presse fonctionnera en automatique avec un seul convoyeur pour des raisons d'encombrement.

L'opérateur pourra alimenter la trémie de chargement avec 2 bennes et laisser 2 autres bennes dans le basculeur pour alimenter automatiquement lorsque le niveau de la trémie le permettra (une porte grillagée interdira l'accès au basculeur lors des mouvements).


Le convoyeur de chargement alimentera la machine en fonction d'une détection de niveau de la chambre de compression.

Le tapis de sortie fonctionnera en continu afin d'évacuer les pains justes formés.

La machine possèdera un cycle de vidange permettant l'évacuation du dernier pain pour changer de type de déchets.

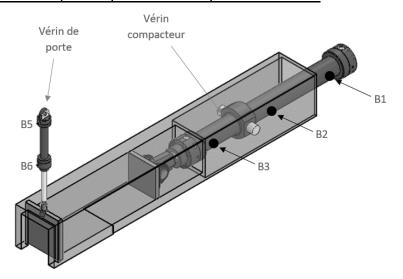

Le convoyeur de sortie disposera d'une marche arrière avec appui maintenu pour les bourrages éventuels.

Vue de dessus de la nouvelle presse :

DP4 – Dossier de présentation

Grafcet fonctionnel du cycle de compactage :

- CIP: Conditions Initiales Presse
- B1 : fdc arrière compacteur
- B2: fdc avant compacteur
- B3 : fdc éjection compacteur
- B4: pressostat compacteur
- B5: porte presse ouverte
- B6 : porte presse fermée
- B10 : cellule niveau trémie presse
- B11: détecteur pain sortie presse
- B13: fdc taquet convoyeur sortie
- CPT : Compteur de chargement


Nbe Chargement : réglage

tempo compactage : réglage

tempo détente : réglage

X40 : arrêt convoyeur de sortie

Implantation des 2 vérins hydrauliques et des capteurs associés :

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 4/26

BREVET DE TECHNICIEN SUPÉRIEUR MAINTENANCE DES SYSTÈMES

Option A : Systèmes de production

Session 2024

U 4 : Intégration d'un bienDurée : 4 heures – Coefficient : 5

DOSSIER QUESTIONS

Ce dossier contient les documents DQ1 à DQ9

CODE ÉPREUVE : 24MSU4A		EXAMEN BREVET DE TECHN SUPÉRIEUR	ICIEN	SPÉCIA MAINTENA SYSTÈ	NCE DES
SESSION: 2024 SUJET		ÉPREUVE : E4 INTEGRATION D'UN BIE		BIEN	
Durée : 4h		Coefficient : 5	SUJET	N° 01MS24	Page 5/26

DQ1 – Dossier questions

4	ANALYSE DE L'EXISTANT	
		Durée conseillée : 1h10

Le service maintenance souhaite connaître précisément le fonctionnement de la nouvelle presse à déchets installée afin d'organiser ses actions de maintenance futures.

1 - 1 Etude du schéma hydraulique

Q.1-1-1	Document à consulter : DT2	Répondre sur DR1

A partir du schéma hydraulique proposé, **donner** la désignation et le rôle des composants listés sur le **DR1**.

Q.1-1-2	Document à consulter : DT2	Répondre sur DR1
Q.1-1-2	Document à consulter : DT2	Répondre sur DR1

Relever la pression maximale dans les vérins lors :

- du compactage,
- de l'ouverture de la porte,
- de la fermeture de la porte.

Surligner en rouge le parcours du fluide lors de l'action « Avance compacteur ».

Surligner en vert le parcours du fluide lors de l'action « Mise en pression ».

Q.1-1-4 Documents à consulter : DT1 – DT2 Répondre sur cop	oie
--	-----

Le système est équipé de deux pompes de débits différents.

Déterminer les deux débits possibles dans le circuit de compactage.

Donner l'avantage d'une telle l'installation.

DQ2 – Dossier questions

Q.1-1-5	Document à consulter : Aucun	Répondre sur copie
---------	-------------------------------------	---------------------------

Donnée:

Caractéristique du vérin compacteur : Diamètre piston : \emptyset = 180 mm

A partir de la caractéristique du vérin compacteur et des 2 débits déterminés à la question précédente, **calculer** les 2 vitesses de sortie, V₁ en grande vitesse et V₂ en petite vitesse.

<u>Rappel</u>: $Q = V \cdot S$ avec $Q : débit du fluide (en <math>m^3 \cdot s^{-1}$)

V : vitesse de déplacement du piston du vérin (en m.s-1)

S: surface du piston du vérin (en m²)

1 - 2 Etude du cycle de la presse

Q.1-2-1	Documents à consulter : DT1 - DT2	Répondre sur DR1
---------	-----------------------------------	-------------------------

A partir du diagramme d'états-transitions du cycle de la presse ainsi que du schéma hydraulique, **associer** le nom du (ou des) pilotage(s) du (ou des) pré-actionneur(s) (Y10, Y11, ..., Y14) pour chaque action du cycle en cochant les cases nécessaires.

Q.1-2-2	Documents à consulter : DP4 – DT1	Répondre sur copie
---------	--	---------------------------

Identifier les conditions permettant de valider la formation du pain d'aluminium en fin de la phase de compactage.

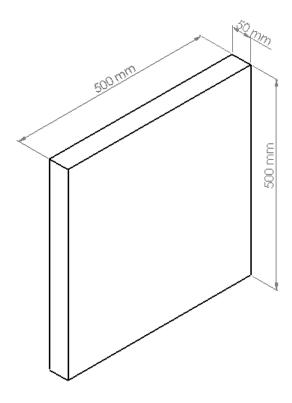
Q.1-2-3	Document à consulter : DT2	Répondre sur copie
---------	----------------------------	---------------------------

La force maximum de compactage est déterminée par le réglage du pressostat B4. Dans un premier temps, la pression de compactage sera limitée à 220 bars.

Proposer une procédure de réglage.

EXAMEN: BTS M.S. - Épreuve: E4 - Sujet N° 01MS24 - page 6/26

DQ3 – Dossier questions


2	MODIFICATION DE LA PORTE DE SORTIE DE PRESSE	
		Durée conseillée : 30 min

La porte actuelle de la presse présente de nombreux défauts de forme causés par les actions de compactage répétées. La société ALLTUB envisage de la remplacer par une nouvelle porte d'épaisseur supérieure.

Q-2-1	Document à consulter : Aucun	Répondre sur copie
		•

A partir du modèle simplifié ci-dessous, **déterminer** la masse de la nouvelle porte m_{porte}.

Rappel: masse volumique de l'acier: pacier = 7800 kg.m⁻³

Q-2-2	Document à consulter : Aucun	Répondre sur copie
-------	------------------------------	---------------------------

<u>Rappel</u>: accélération de la pesanteur: $g = 9,81 \text{ m.s}^{-2}$

Déduire de votre résultat précédent le poids de la porte P_{porte}.

DQ4 - Dossier questions

Q-2-3 Document à consulter : aucun	Répondre sur copie
------------------------------------	---------------------------

Pour la suite de l'étude et quel que soit le résultat obtenu à la question précédente, on utilisera $P_{porte} = 1000 \text{ N}$.

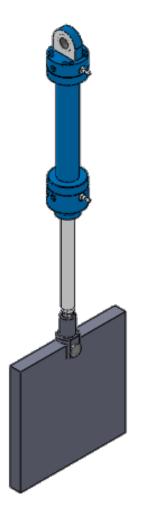
Les efforts de frottement entre le pain de déchets et la porte conduisent à estimer l'effort nécessaire au levage F_{levage nécessaire} à 10 fois le poids de la porte.

Calculer la force de levage nécessaire pour ouvrir (soulever) la nouvelle porte.

Q-2-4	Document à consulter : DT3	Répondre sur copie
-------	----------------------------	---------------------------

<u>Donnée</u> : le diamètre du vérin implanté est ØAL = 63 mm.

Relever le diamètre de la tige ØMM correspondant.


Q-2-5	Document à consulter : DT3	Répondre sur copie
-------	----------------------------	---------------------------

<u>Donnée</u>: la pression de service, dans cette partie du circuit hydraulique, est p_{levage} = 200 bars.

Le levage de la porte s'effectue en entrée de tige du vérin.

Déterminer la force développée par le vérin en entrée de tige.

Vérifier si le vérin initial CDH3 convient au levage de la nouvelle porte.

EXAMEN : BTS M.S. – Épreuve : E4 – Sujet N° 01MS24 – page 7/26

DQ5 – Dossier questions

3 ALIMENTATION ELECTRIQUE DE LA NOUVELLE PRESSE Durée conseillée : 1h10

Pour l'installation de la nouvelle presse, le service maintenance doit vérifier que le câble d'alimentation déjà en place est correctement dimensionné et que les protections sont réalisées.

3 - 1 Bilan des puissances électriques

Compléter le bilan de puissance de la nouvelle presse du DR3.

Rappel:
$$\eta = P_u/P_{abs}$$
 et $P_{abs} = Q/\tan \varphi$
 $P_{abs} = U.I. \sqrt{3}.\cos \varphi$ et $Q = U.I. \sqrt{3}.\sin \varphi$

Q.3-1-2	Document à consulter : Aucun	Répondre sur DR3
Q.3-1-2	Document a consulter : Aucun	Repondre sur DR3

En **déduire** la puissance active totale (Pt) et la puissance réactive totale (Qt) absorbées par la presse.

Q.3-1-3	Document à consulter : Aucun	Répondre sur DR3
---------	------------------------------	-------------------------

Pour la suite de l'étude et quels que soient les résultats obtenus à la question précédente, on prendra pour les calculs Pt = 22 kW et Qt = 14 kVAr.

Rappel : puissance apparente en triphasé : $S = U \times I \times \sqrt{3} = \sqrt{(P^2 + Q^2)}$

Déterminer la puissance apparente totale absorbée par la presse.

En **déduire** le courant total absorbé.

3 - 2 Vérification de la section du câble d'alimentation.

L'ancienne presse à déchets était alimentée par un circuit triphasé 400 V en cuivre composé d'un câble multiconducteur U1000 R02V de section 6 mm². Ce câble, isolé en polyéthylène réticulé (PR) est posé seul sur des chemins de câbles perforés. La température ambiante ne dépasse jamais 35°C.

Afin de prévoir d'éventuelles modifications sur la ligne d'alimentation électrique de la presse, on souhaite vérifier que ce câble multiconducteur de 6 mm² pourra transporter le courant absorbé par la nouvelle machine.

On prendra comme valeur de courant absorbé par la presse I_b = 38 A.

DQ6 – Dossier questions

Le disjoncteur principal de protection de l'ancienne presse était un disjoncteur NS100 associé à un déclencheur électronique STR22SE – 40 A.

Q.3-2-1 Document à consulter : DT8	Répondre sur copie
------------------------------------	---------------------------

A partir de la documentation du disjoncteur, **justifier** que le disjoncteur pourra être conservé.

Q.3-2-2	Documents à consulter : DT8 – DT9	Répondre sur copie
---------	--	---------------------------

A partir des documentations du disjoncteur et du déclencheur, **justifier** que le déclencheur pourra être conservé.

Q.3-2-3	Documents à consulter : DT6 - DT7	Répondre sur DR4
---------	-----------------------------------	-------------------------

Compléter le tableau du DR4 afin de déterminer la section minimale à installer.

Justifier que le câble multiconducteur de 6 mm² par phase pourra être conservé.

3 - 3 Réglage du disjoncteur de protection.

Le disjoncteur de protection de l'installation a pour référence NS100. Il est associé à un déclencheur électronique STR22SE. Son courant assigné est I_n = 40 A

Afin de protéger correctement le circuit, il est nécessaire de vérifier le bon réglage du déclencheur électronique.

Q.3-3-1	Document à consulter : DT9	Répondre sur copie
Q.3-3-1	Document à consulter : DT9	Répondre sur copie

Les commutateurs de réglage I_o et I_r du déclencheur permettent de régler le déclenchement « long retard ».

Donner le type de défaut protégé par le déclencheur « long retard ».

Q.3-3-2	Document à consulter : DT9	Répondre sur copie
---------	-----------------------------------	---------------------------

<u>Rappel</u>: intensité absorbée par la presse en fonctionnement normal I_b = 38 A. Les commutateurs de réglage du déclencheur sont réglés à I_o = 0,63 et I_r = 0,8

Justifier que ces réglages ne sont pas compatibles avec la protection de la nouvelle presse.

Identifier les risques si l'on conserve ces réglages.

Proposer des valeurs de réglage de I_o et I_r correspondant à la nouvelle installation.

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 8/26

DQ7 - Dossier questions

Q.3-3-3 Document à consulter : DT9 Répondre sur copie

Le commutateur de réglage l_m du déclencheur permet de régler le déclenchement « court retard ».

Donner le type de défaut protégé par le déclencheur « court retard ».

Q.3-3-4 Document à consulter : DT9 Répondre sur copie

En schéma de liaison à la terre IT, il est indispensable de vérifier que les longueurs de câble ne sont pas trop importantes et en adéquation avec le courant de déclenchement court-retard du disjoncteur afin d'assurer une coupure instantanée du circuit lors d'un deuxième défaut.

Un calcul a déjà été réalisé par le service maintenance et a permis de déterminer que, pour la longueur de ligne considérée, la valeur maximale de déclenchement court retard (I_{mag}) est de 310 A.

Le commutateur de réglage I_m du déclencheur est réglé sur 8.

Justifier que ce réglage permettra bien d'assurer la protection des personnes en toute circonstance.

4 ÉTUDE DE LA MISE EN PLACE DE LA BARRIERE IMMATERIELLE Durée conseillée : 50 min

Afin de faciliter l'alimentation en benne de la presse tout en assurant un niveau de sécurité optimal, le service maintenance a décidé de mettre en place une barrière immatérielle permettant l'arrêt du mouvement du basculeur en cas de passage devant la barrière.

La remise en marche ne pourra s'effectuer qu'après dégagement de la barrière immatérielle et acquittement des sécurités par le bouton situé sur le pupitre de benne.

4 - 1 Choix de la barrière immatérielle

Le choix du service maintenance s'est porté sur une barrière immatérielle de la marque SICK référence C4C-SA18010A10000 et C4C-EA18010A10000.

Justifier ce choix en fonction des caractéristiques dimensionnelles (hauteur de détection et portée).

Q.4-1-2	Document à consulter : DT10	Répondre sur copie
---------	-----------------------------	---------------------------

Relever la résolution de la barrière immatérielle choisie.

DQ8 – Dossier questions

I - 2 Raccordement électrique de la barrière immatérielle

La barrière immatérielle sera associée à un relais de sécurité UE48-3OS de chez SICK afin de répondre aux exigences de sécurité (catégorie 4).

Q.4-2-1 Documents à consulter : DT15 à DT17	Répondre sur DR5
---	-------------------------

Sachant que l'on souhaite :

- une coupure automatique du basculeur en cas de passage devant la barrière ;
- une remise en marche après dégagement de la barrière et acquittement par bouton poussoir.

Compléter le raccordement de la barrière immatérielle et du relais de sécurité :

- Barrière immatérielle Emetteur : Bornes 1 ; 3
- Barrière immatérielle Récepteur : Bornes 1 ; 2 ; 3 ; 4
- Relais de sécurité : Bornes A2 ; S11 ; S12 ; S21 ; S22 ; S33 ; S34.

Q.4-2-2	Documents à consulter : DT4 – DT5	Répondre sur copie
---------	--	---------------------------

Indiquer sur quels composants le franchissement de la barrière immatérielle va agir.

En déduire l'influence du franchissement sur le basculeur.

4 - 3 Installation de la barrière immatérielle

Pour installer la barrière immatérielle, la distance maximale entre le basculeur (zone dangereuse) et l'environnement de la machine est 570 mm. Selon la configuration des lieux, l'approche se fera uniquement perpendiculairement au champ de protection.

Le temps d'arrêt du basculeur (hors temps de réaction de la barrière immatérielle) est estimé à 220 ms.

Q.4-3-1	Document à consulter : DT11	Répondre sur copie
---------	------------------------------------	---------------------------

Relever le temps de réaction de la barrière immatérielle.

En **déduire** le temps total d'arrêt de la machine T après franchissement du faisceau lumineux.

Q.4-3-2	Documents à consulter : DT12 à DT14 - DP3	Répondre sur copie
---------	---	---------------------------

Déterminer la distance minimale de la barrière immatérielle par rapport au point dangereux.

Préciser alors s'il est possible d'installer la barrière immatérielle sans modification de la configuration des lieux.

EXAMEN: BTS M.S. - Épreuve: E4 - Sujet N° 01MS24 - page 9/26

DQ9 - Dossier questions

5	ÉTUDE DU RACCORDEMENT DE LA PRESSE AU RÉSEAU INFORMATIQUE	
_		Durée conseillée : 20 min

L'entreprise souhaite étudier la possibilité de raccorder la nouvelle presse à déchets sur son réseau informatique.

Une représentation simplifiée du réseau est donnée. Les automates des différents équipements de production communiquent sur le réseau via le protocole ModbusTCP.

Les adresses IP du réseau de l'entreprise appartiennent à la classe C. Les adresses utilisées sont de type privé et ont la plage d'adressage suivante :

Plage d'adressage de l'entreprise

192.168.0.0 à 192.168.0.255

5 - 1 Etude du réseau de l'entreprise

En utilisant un masque de sous-réseau approprié, le réseau de l'entreprise est décomposé en plusieurs réseaux (Administration, Zone production 1, Zone Production 2...).

La nouvelle presse à déchets sera installée et raccordée dans la zone de production 1.

Q 5-1-1 Document à consulter : DT	Répondre sur copie
-----------------------------------	---------------------------

Déterminer l'adresse IP du réseau de la zone de production 1 d'après le câblage du réseau informatique donné.

Q 5-1-2	Document à consulter : DT18	Répondre sur copie
---------	-----------------------------	---------------------------

Déterminer le nombre d'adresses possibles pour ce réseau.

Q 5-1-3	Document à consulter : DT18	Répondre sur copie
---------	-----------------------------	---------------------------

Proposer une adresse IP parmi celles disponibles pour intégrer l'automate de la nouvelle presse à déchets sur le réseau « Zone de production 1 ».

Proposer une adresse IP parmi celles disponibles pour intégrer son IHM sur le réseau « Zone de production 1 ».

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 10/26

BREVET DE TECHNICIEN SUPÉRIEUR MAINTENANCE DES SYSTÈMES

Option A : Systèmes de production

Session 2024

U 4 : Intégration d'un bienDurée : 4 heures – Coefficient : 5

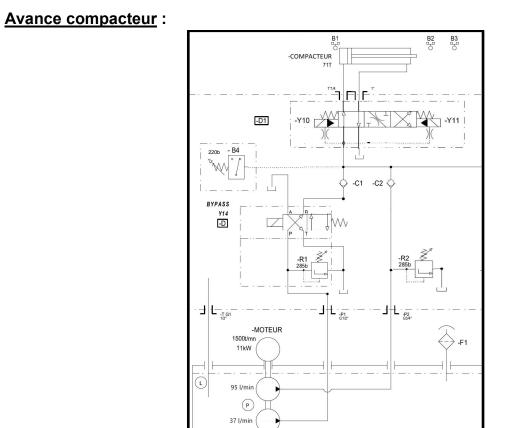
DOCUMENTS RÉPONSES

Ce dossier contient les documents DR1 à DR5

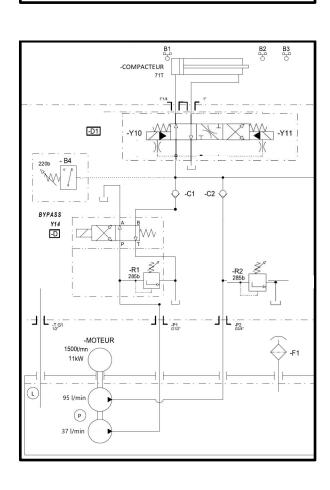
CODE ÉPREU 24MSU4A		EXAMEN BREVET DE TECHN SUPÉRIEUR	SPÉCIALITÉ : MAINTENANCE DES SYSTÈMES					
SESSION: 2024	SUJET	ÉPREUVE : E4	INTEGR	ATION D'UN	BIEN			
Durée · 4h		Coefficient : 5	SUJET	N° 01MS24	Page 11/26			

Q.1-1-1

Composant	Désignation	Rôle
D1		
R1		
B4		


Q.1-1-2

	Pression maximale dans le vérin (en bar)
Compactage	
Ouverture porte	
Fermeture porte	


Q.1-2-1

Actions	Pilotage des préactionneurs associés												
Actions	Y10	Y11	Y12	Y13	Y14								
Ouverture porte			X										
Fermeture porte													
Avance compacteur													
Recul compacteur													
Mise en pression													

Q.1-1-3

Mise en pression :

Modèle CCYC : ©DNE NOM DE FAMILLE : (en majuscules)																						
PRENOM: (en majuscules)																						
N° candidat :														N° c	d'ins	crip	tior	ı :				
	(Les nu	uméros	s figure	ent sur	la con	vocatio	on, si b	esoin (deman	der à u	ın surv	eillant.	.)									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/			/															1.2-	-A3

Q.3-1-1

Bilan des puissances électriques

Bilan des puiss	sances electriques			
		P _{abs} (W)	Q (VAr)	
Eléments	Caractéristiques	Puissance	Puissance	Calculs
		active	réactive	
	P = 11 kW			
Mataur	U = 400 V triphasé			
Moteur PRESSE	I = 21,5 A			
PRESSE	$\cos \varphi = 0.86$			
	η = 86 %			
	P = 1,5 kW			
Mataur	U = 400 V triphasé			
Moteur	I = 3,3 A			
BASCULEUR	$\cos \varphi = 0.82$			
	η = 96 %			
	P = 0,18 kW			
Moteur	U = 400 V triphasé			
CONVOYEUR	I = 0,55 A			
Sortie Presse	$\cos \varphi = 0.65$			
	η = 73 %			
	P = 0,75 kW			
Moteur	U = 400 V triphasé			
CONVOYEUR	I = 2,1 A			
Entrée Presse	$\cos \varphi = 0.77$			
	η = 67 %			
Divers		5500 W	4125 VAr	

Q.3-1-2

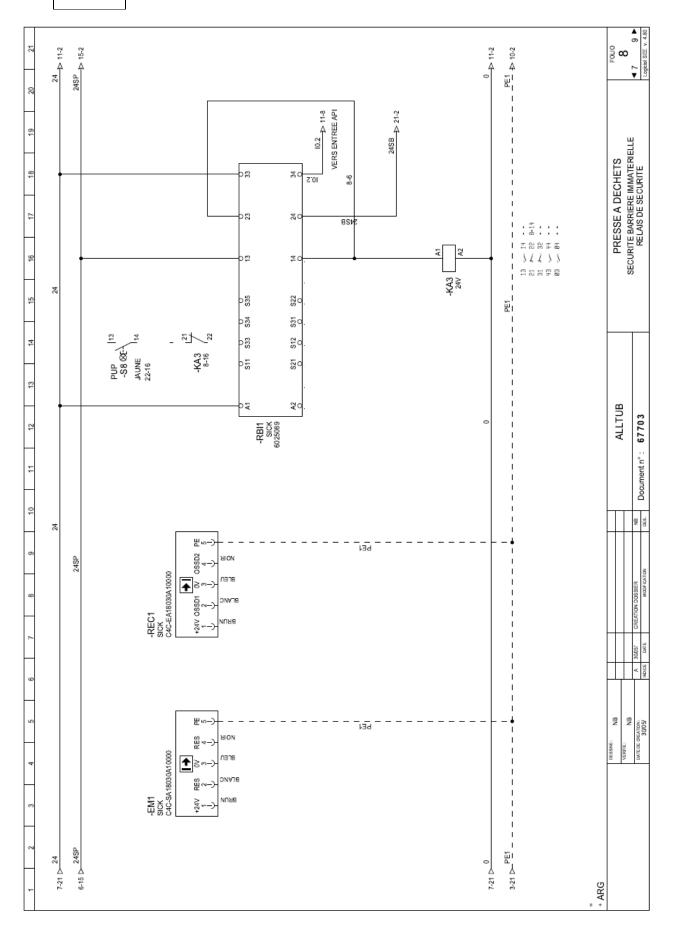
Puissance active totale : Pt =	
Puissance réactive totale : Qt =	

Q.3-1-3

Puissance apparente totale : St =	
Intensité totale absorbée : It =	

Q.3-2-3

	Valeur	Justification
l _Β	38 A	
In	40 A	
lz		
Lettre de sélection		
K1		
K2		
К3		
К		
l'z		
Smini		


Justification :		

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 13/26

Modèle CCYC : ©DNE NOM DE FAMILLE : (en majuscules)																						
PRENOM: (en majuscules)																						
N° candidat :														N° c	d'ins	crip	tior	ı :				
	(Les nu	uméros	s figure	ent sur	la con	vocatio	on, si b	esoin (deman	der à u	ın surv	eillant.	.)									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/			/															1.2-	-A3

DR5 – Documents réponses

Q.4-2-1

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 14/26

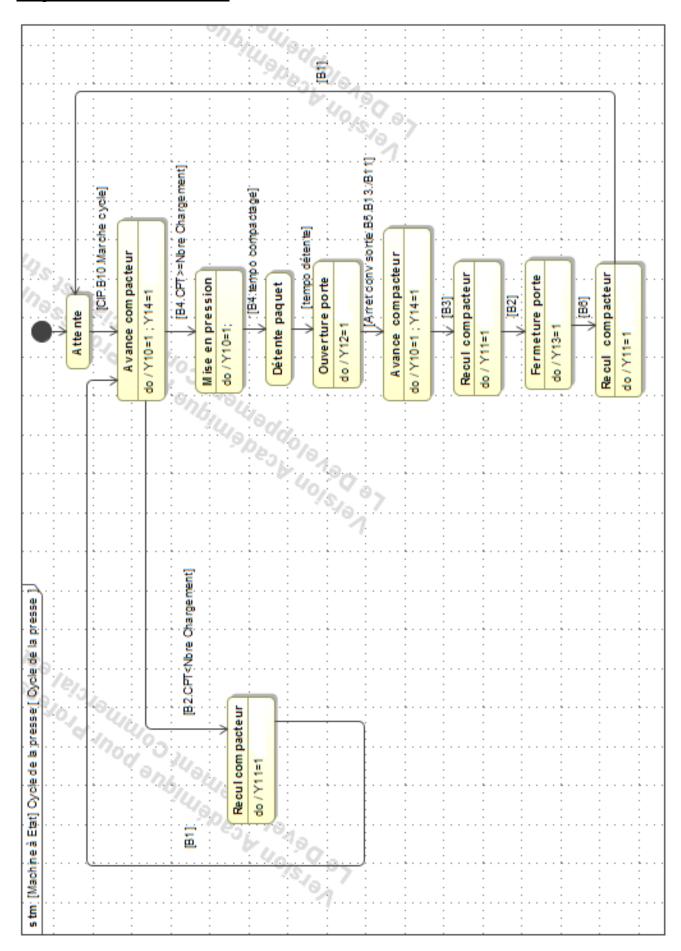
Modèle CCYC : ©DNE NOM DE FAMILLE : (en majuscules)																						
PRENOM: (en majuscules)																						
N° candidat :														N° c	d'ins	crip	tior	ı :				
	(Les nu	uméros	s figure	ent sur	la con	vocatio	on, si b	esoin (deman	der à u	ın surv	eillant.	.)									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/			/															1.2-	-A3

BREVET DE TECHNICIEN SUPÉRIEUR MAINTENANCE DES SYSTÈMES

Option A : Systèmes de production

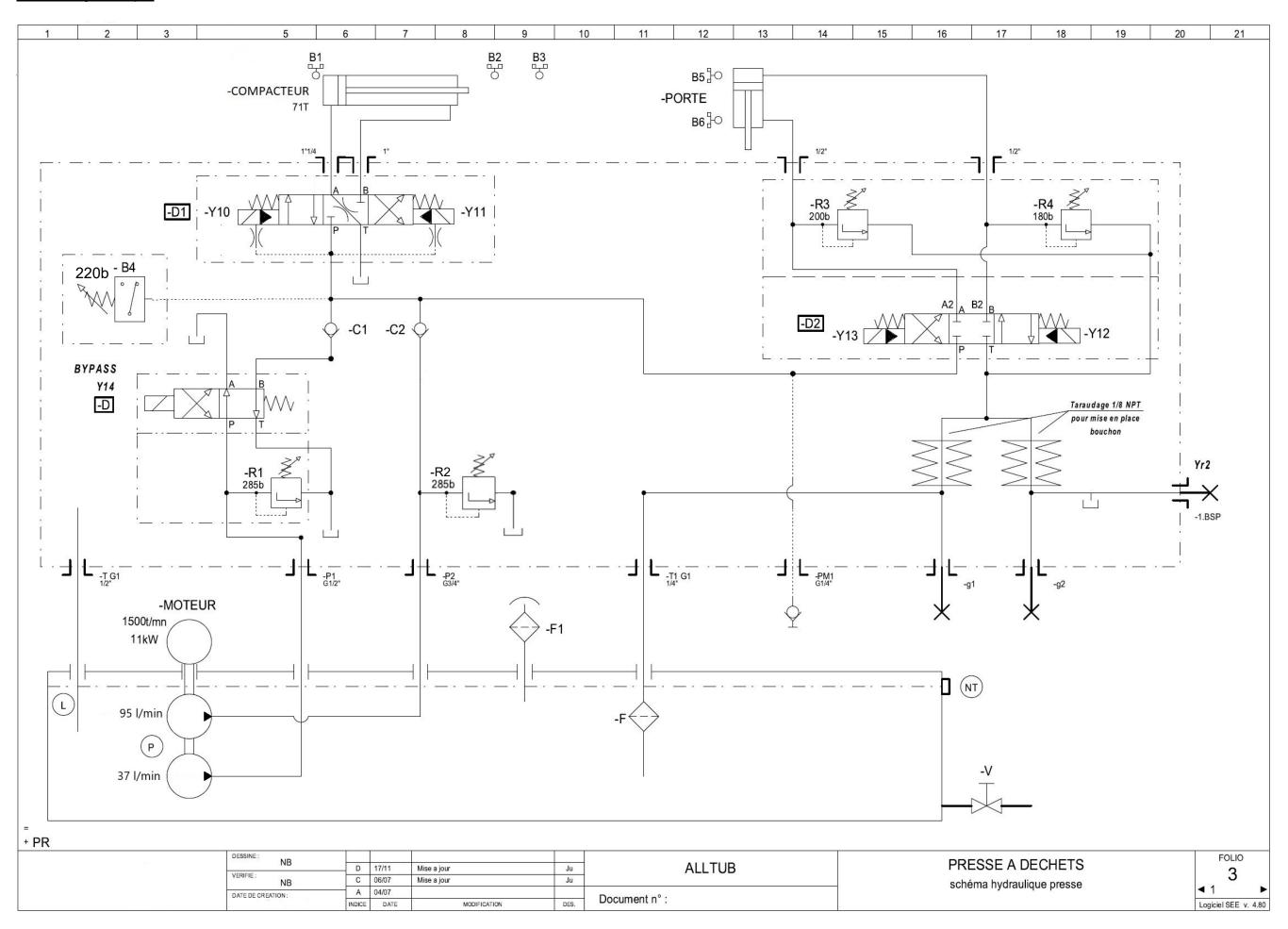
Session 2024

U 4 : Intégration d'un bien


DOCUMENTS TECHNIQUES

Ce dossier contient les documents DT1 à DT18

CODE ÉPREU 24MSU4A		EXAMEN BREVET DE TECHN SUPÉRIEUR	ICIEN	MAINTEN	ALITÉ : ANCE DES ÈMES
SESSION: 2024	SUJET	ÉPREUVE : E4	INTEGR	ATION D'UN	BIEN
Durée : 4h		Coefficient : 5	SUJET	N° 01MS24	Page 15/26


DT1 – Documents techniques

<u>Diagramme d'états-transitions</u>:

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 16/26

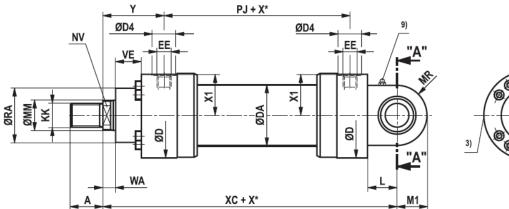
Schéma hydraulique :

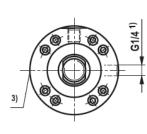
Rexroth Bosch Group

Edition: 07-2021

Vérins hydrauliques

Série CDH3

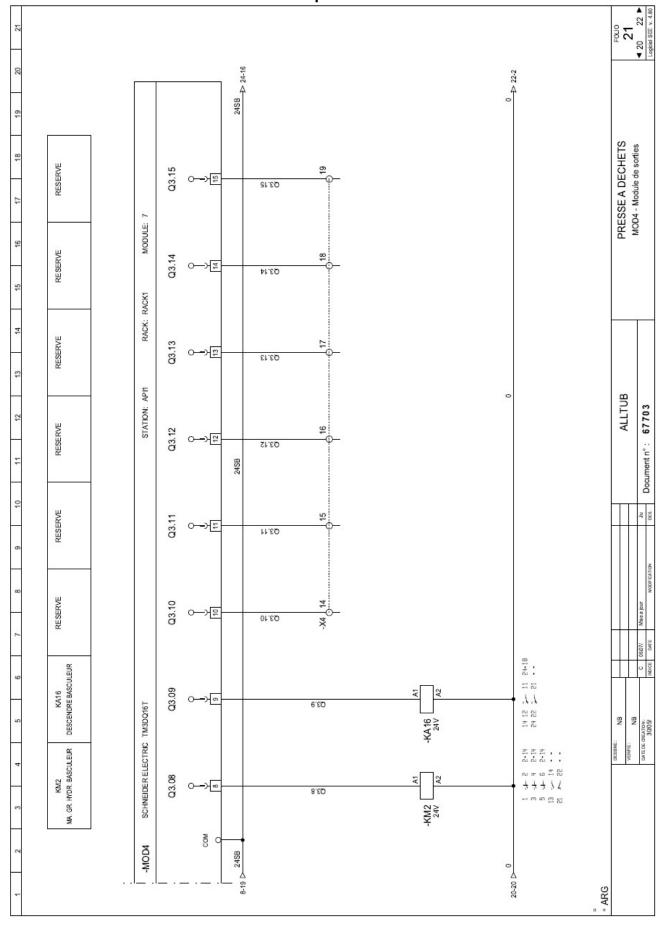

• Pression nominale : 350 bars (35 MPa)


Caractéristiques :

- 6 types de montage
- Diamètre piston (ØAL): 40 à 322 mm
- Diamètre tige (ØMM) : 28 à 220 mm
- Courses jusqu'à 6 m
- Amortissement de fin de course réglable

Dimensions (en mm)

CDH3 MP3; ØAL 40 - 200 mm


ØAL	øмм	KK	Α	KK	Α	NV	ØD	ØDA	ØD4	EE	EE	Y	PJ
40	28	M22x1,5	22	M24x2	35	22	92	52	34	G1/2	M22x1,5	91	120
50	36	M28x1,5	28	M30x2	45	30	108	62	34	G1/2	M22x1,5	90	120
63	45	M35x1,5	35	M39x3	55	36	140	78	42	G3/4	M27x2	117	133
80	56	M45x1,5	45	M50x3	75	46	148	100	42	G3/4	M27x2	124	146
100	70	M58x1,5	58	M64x3	95	60	186	125	47	G1	M33x2	119	171
125	90	M65x1,5	65	M80x3	110	75	235	160	58	G1 1/4	M42x2	170	205
140	100	M80x2	80	M90x3	120	85	258	175	58	G1 1/4	M42x2	186	219
160	110	M100x2	100	M100x3	140	95	292	200	65	G1 1/2	M48x2	210	240
180	125	M110x2	110	M110x4	150	110	325	220	65	G1 1/2	M48x2	241	264
200	140	M120x3	120	M120x4	160	120	350	245	65	G1 1/2	M48x2	262	278

ØAL	ØMM	X1	WA	хс	L	MR	M1	ØCD	EW	ØRA	VE	ØRA	VE
40	28	43	18	268	35	36	34	30	28	52	45	52	20
50	36	51.5	18	280	45	42	40	35	30	70	47	70	19
63	45	67	22	330	50	52	50	40	35	88	43	88	13
80	56	71.5	22	355	55	65	62.5	50	40	98	53	98	15
100	70	90.5	25	390	65	70	70	60	50	120	55	120	17
125	90	114	32	495	75	82	82	70	55	150	68	150	20
140	100	126	35	530	80	95	95	80	60	170	75	170	23
160	110	142.5	40	600	90	113	113	90	65	200	90	200	90
180	125	159.5	45	665	105	125	125	100	70	230	100	230	100
200	140	172.5	45	710	115	142.5	142.5	110	80	250	110	250	110

ØAL : Diamètre piston **ØMM** : Diamètre tige

1-21 P L1 04:1 P L2 1-21 P L2 SEC:4 SEC:2

DT5 – Documents techniques

DT6 - Documents techniques

Protection des circuits

Détermination des sections de câbles

Les tableaux ci-contre permettent de déterminer la section des conducteurs de phase d'un circuit.

Ils ne sont utilisables que pour des canalisations non enterrées et protégées par disjoncteur.

Pour obtenir la section des conducteurs de phase, il faut :

- déterminer une lettre de sélection qui
- dépend du conducteur utilisé et de son mode de pose
- déterminer un cœfficient K qui caractérise l'influence des différentes conditions d'installation.

Ce coefficient K s'obtient en multipliant les facteurs de correction, K1, K2, K3, Kn et Ks:

- le facteur de correction K1 prend en compte le mode de pose
- le facteur de correction K2 prend en compte l'influence mutuelle des circuits placés côte à côte
- le facteur de correction K3 prend en compte la température ambiante et la nature de l'isolant
- le facteur de correction du neutre chargé Kn
- le facteur de correction dit de symétrie Ks.

Lettre de sélection

type d'éléments conducteurs	mode de pose	lettre de sélection
conducteurs et câbles multiconducteurs	sous conduit, profilé ou goulotte, en apparent ou encastré sous vide de construction, faux plafond sous caniveau, moulures, plinthes, chambranles	В
	en apparent contre mur ou plafond sur chemin de câbles ou tablettes non perforées	С
câbles multiconducteurs	sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus	E
câbles monoconducteurs	sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus	F

Facteur de correction K1

lettre de sélection	cas d'installation	K1
В	 câbles dans des produits encastrés directement dans des matériaux thermiquement isolants 	0,70
	 conduits encastrés dans des matériaux thermiquement isolants 	0,77
	câbles multiconducteurs	0,90
	 vides de construction et caniveaux 	0,95
С	pose sous plafond	0,95
B, C, E, F	autres cas	1

Facteur de correction K2

	ettre de	disposition des	facteur de correction K2 nombre de circuits ou de câbles multiconducteurs													
S	élection	câbles jointifs	nom	bre d	e cir	cuits	ou de	câbl	es m	ultico	nduc	teurs	3			
			1	2	3	4	5	6	7	8	9	12	16	20		
В	, C, F	encastrés ou noyés dans les parois		,		,		0,55		,			,			
С		simple couche sur les murs ou les planchers ou tablettes non perforées	,	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	de ré	ducti			
		simple couche au plafond	1,00	0,85	0,76	0,72	0,69	0,67	0,66	0,65	0,64	pour	plus	de		
E,	, F	simple couche sur des tablettes horizontales perforées ou sur tablettes verticales	,				,	0,73	,		,		oles.			
		simple couche sur des échelles à câbles, corbeaux, etc.	1,00	0,88	0,82	0,80	0,80	0,79	0,79	0,78	0,78					

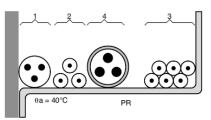
Lorsque les câbles sont disposés en plusieurs couches, appliquer en plus un facteur de correction de :

- 0,80 pour deux couches
- 0,73 pour trois couches
- 0,70 pour quatre ou cinq couches.

Facteur de correction K3

températures	isolation		
ambiantes (°C)	élastomère (caoutchouc)	polychlorure de vinyle (PVC)	polyéthylène réticulé (PR) butyle, éthylène, propylène (EPR)
10	1,29	1,22	1,15
15	1,22	1,17	1,12
20	1,15	1,12	1,08
25	1,07	1,06	1,04
30	1,00	1,00	1,00
35	0,93	0,94	0,96
40	0,82	0,87	0,91
45	0,71	0,79	0,87
50	0,58	0,71	0,82
55	-	0,61	0,76
60	-	0,50	0,71

Exemple d'un circuit à calculer selon la méthode NF C 15-100 § 523.7


Un câble polyéthylène réticulé (PR) triphasé + neutre (4° circuit à calculer) est tiré sur un chemin de câbles perforé, jointivement avec 3 autres circuits constitués:

- d'un câble triphasé (1er circuit)
- de 3 câbles unipolaires (2° circuit)
- de 6 cables unipolaires (3° circuit): ce circuit est constitué de 2 conducteurs par phase.

 Il y aura donc 5 regroupements triphasés.

 La température ambiante est de 40 °C et le câble véhicule 58 ampères par phase.

 On considère que le neutre du circuit 4 est chargé.

La lettre de sélection donnée par le tableau correspondant est E.

Les facteurs de correction K1, K2, K3 donnés par les tableaux correspondants sont respectivement :

- K1 = 1
- K2 = 0.75
- K3 = 0.91.

Le facteur de correction neutre chargé est :

• Kn = 0.84.

Le coefficient total K = K1 x K2 x K3 x Kn est donc 1 x 0,75 x 0,91 x 0,84 soit :

• K = 0.57

Détermination de la section

On choisira une valeur normalisée de In juste supérieure à 58 A, soit In = 63 A. Le courant admissible dans la canalisation est Iz = 63 A

Le courant admissible dans la canalisation est 12 = 63 A. L'intensité fictive l'z prenant en compte le coefficient K est l'z = 63/0,57 = 110,5 A. En se plaçant sur la ligne correspondant à la lettre de

sélection É, dans la colonne PR3, on choisit la valeur immédiatement supérieure à 110,5 A, soit, ici :

• pour une section cuivre 127 A, ce qui correspond à

une section de 25 mm², • pour une section aluminium 120 A, ce qui correspond à une section de 35 mm².

Détermination de la section d'un conducteur neutre chargé

Les courants harmoniques de rang 3 et multiples de 3 circulant dans les conducteurs de phases d'un circuit triphasé s'additionnent dans le conducteur neutre et le surchargent.

Pour les circuits concernés par la présence de ces harmoniques, pour les sections de phase > 16 mm² en cuivre ou 25 mm² en aluminium, il faut déterminer la section des conducteurs de la manière suivante, en fonction du taux d'harmoniques en courant de rang 3 et multiples de 3 dans les conducteurs de phases :

• taux (ih3) < 15% :

Le conducteur neutre n'est pas considéré comme chargé. La section du conducteur neutre (Sn) égale à celle nécessaire pour les conducteurs de phases (Sph). Aucun coefficient lié aux harmoniques n'est appliqué : Sn = Sph

• taux (ih3) compris entre 15% et 33% : Le conducteur neutre est considéré comme chargé, sans devoir être surdimensionné par rapport aux phases.

DT7 - Documents techniques

Détermination de la section minimale

Connaissant l'z et K (l'z est le courant équivalent au courant véhiculé par la canalisation : l'z = lz/K), le tableau ci-après indique la section à retenir.

	isolant	et nom	bre de c	onducte	urs cha	rgés (3 o	u 2)		
	caouto	houc							
В				PR3		PR2			
				PVC2	PR3		PR2		
E			PVC3		PVC2	PR3		PR2	
F				PVC3		PVC2	PR3		PR2
1.5	15.5	17.5	18.5		22		24	26	
4	28	32	34	36	40	42	45	49	
6	36	41	43	48	51	54	58	63	
	50	57	60	63	70	75	80	86	
	68	76	80	85	94	100	107	115	
									161
35									200
									242
									310
									377
									437
									504
									575
									679
									783
				-					940
									1 08
									1 25
	16.5	18.5	19.5	21				28	1 20
									121
									150
									184
									237
									289
120									337
	100								389
									447
									530
									613
		001	301	700				340	740
									856
630					711	808	899		996
	F 1,5 2,5 4 6 10 16 25 35 50 95 120 150 630 2,5 4 6 10 16 25 150 185 240 300 400 95 120 150 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Caoute ou PVC3	caoutchouc ou PVC B PVC3 PVC2 C PVC3 PVC3 E PVC3 F I.5 17,5 2,5 21 24 4 28 32 6 36 41 10 50 57 16 68 76 25 89 96 35 110 119 50 134 144 70 171 184 95 207 223 150 299 185 341 240 403 300 464 400 500 630 299 185 341 240 403 300 464 400 400 500 630 225 16,5 18,5 4 22 25 6 28 32 10 39 44 10 <	Caoutchouc ou PVC	Caoutchouc ou PVC	Caoutchouc	Caoutchouc ou PVC	B	Caoutchouc ou PVC

Prévoir une section du conducteur neutre (Sn) égale à celle nécessaire pour les conducteurs de phases (Sph). Mais un facteur de réduction de courant admissible de 0,84 doit être pris en compte pour l'ensemble des conducteurs :

 $Sn = Sph = Spho \ x \ 1/0,84$ (facteur de dimensionnement pour l'ensemble des conducteurs, par rapport à la section Spho calculée).

• taux (ih3) > 33% :

Le conducteur est considéré comme chargé et doit être surdimensionné pour un courant d'emploi égal à 1,45/0,84 fois le courant d'emploi dans la phase, soit environ 1,73 fois le courant calculé.

Selon le type de câble utilisé :

o câbles multipolaires : la section du conducteur neutre (Sn) est égale à celle nécessaire pour la section des conducteur de phases (Sph) et un facteur de correction de 1,45/0,84 doit être pris en compte pour l'ensemble des conducteurs. Sn = Sph = Spho x 1,45/0,84 (facteur de dimensionnement pour l'ensemble des conducteurs, par rapport à la section Spho calculée).

 \circ câbles unipolaires : le conducteur neutre doit avoir une section supérieure à celle des conducteurs de phases.

La section du conducteur neutre (Sn) doit avoir un facteur de dimensionnement de 1,45/0,84 et. Pour les conducteurs de phases (Sph) un facteur de réduction de courant admissible de 0,84 doit être pris en compte : $Sn = Spho \times 1.45/0.84$

Sph = Spho x 1/0.84

• Lorsque le taux (ih3) n'est pas défini par l'utilisateur, on se placera dans les conditions de calcul correspondant à un taux compris entre 15% et 33%. Sn = Sph = Spho x 1/0,84 (facteur de dimensionnement pour l'ensemble des conducteurs, par rapport à la section Spho calculée).

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 20/26

DT8 – Documents techniques

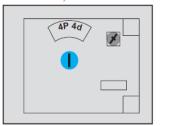
Disjoncteurs Compact NS100 à NS630

Compact NSA160N sur rail symétrique

Disjoncteurs Compact NS100 à NS630

-			
disjoncteurs Compact nombre de pôles			
caractéristiques électriques	selon	CEI 947-2 et E	N 60947-2
		40 °C	
tension assignée d'isolement (V)	Ui		
tension ass. de tenue aux chocs (kV)	Uimp		
tension assignée d'emploi (V)	Ue	CA 50/60 Hz	
		CC	
		0.4.50/00.11	000/0401/
pouvoir de coupure ultime (kA eff)	lcu	CA 50/60 Hz	
		CC	
			500 V (2 pôles série)
	lcs	(% Icu)	
endurance (cycles F-O)			440.1/. 1-70
		électrique	
			440 V - In
		Nama AD4	
	seion	Nema AB1	
Caractéristiques électriques selon CEI 947-2 et EN 60947-2			
caractéristiques électriques selon CEI 947-2 et EN 608 courant assigné (A) In 40 °C tension assignée d'isolement (V) Ui tension assignée d'emploi (V) Uimp CA 50/60 Hz CC			
catégorie d'emploi aptitude au sectionnement endurance (cycles F-O) caractéristiques électriques selon pouvoir de coupure (kA) protection (voir pages suivantes) protection contre les surintensités (A) protection différentielle installation et raccordement fixe prises avant fixe			600 V
:			
protection contre les surintensités (A)			
	lr		
protection différentielle			nel Vigi
		relais Vigirex	
installation of vaccoudances			
auxiliaires de signalisation e	et mesi	ıre	
fonctions associées aux déclencheurs él	ectroniqu	ies	
indicateur de présence de tension			
bloc surveillance d'isolement			
auxiliaires de commande			
télécommande			
commandes rotatives (directe, prolongée	e)		
inverseur de source manuel/automatique	•		
accessoires d'installation et	de rac	cordement	
bornes			
kit d'isolement pour U ≥ 600 V et Icc ≥ 75	kA		
dimensions et masses			
		2 - 3 pôles fixe PA	V
masse (kg)			
(*) 2P en tyne N seulement			

(*) 2P en type N seulement.	
(**) tension d'emploi jusqu'à 500 V.	
 Obligation d'utiliser le kit d'isolement pour U ≥ 600 V et 	Icc ≥ 75 kA.
(2) PdC de 75 kA par utilisation d'un NS400L avec TC 250	A.
(3) PdC de 60 kA par utilisation d'un C801L avec TC 630 A (4) PdC de 75 kA par utilisation d'un NS400L avec TC 150	A .
(4) PdC de 75 kA par utilisation d'un NS400L avec TC 150	A.


NS100		NS125E	NSA160N	NS1			NS2			NS4	00		NS6	30	
2 (*), 3, 4		3,4	3,4	2 (*), 3	, 4		2 (*), 3	, 4		3, 4			3, 4		
100		405	400	400			050			400			000		
100 750		125 750	160 500	160 750			250 750			400 750			630 750		
8		8	8	8			8			8			8		
690		500	500	690			690			690			690		
500			250	500			500			500			500		
N H	1			N	ш	L	N	Н	L	N	ш	L	N	Н	L
IN П 85 100	L 150	25	50	85	H	150	85	100	150	85	H 100	150	85	100	150
25 70	150	16	30	36	70	150	36	70	150	45	70	150	45	70	150
25 65	130	10	15	35	65	130	35	65	130	42	65	130	42	65	13
18 50	100	6		30	50	100	30	50	70	30	50	100	30	50	70
18 35	100			22	35	100	22	35	50	22	35	100	22	35	50
8 10 50 85	75 ⁽¹⁾ 100		40 /2 pôlos)	8 50	10 2 85	20(75 ⁽¹⁾⁽⁴⁾) 100	8 50	10 2 85	0(75 ⁽²⁾⁽¹⁾) 100	10	20 85	75 ⁽¹⁾	10	20 85	35(
50 85	100		10 (2 pôles)	50	85	100	50	85	100		85			85	
100% 100		50%	50%	100%	100%		100%	100%	100%	100%	100%	100%	100%*	* 100%	** 100
A A	Α	A	A	A	A	A	A	A	A	Α	A	A	A	A	A
			•												
50000		10000	10000	40000			20000			15000			15000		
50000 30000		6000	40000	20000			12000			8000			4000		
30000		6000	5000	20000			10000			6000			4000		
85 100	200	5	85	100	200	85	100	200	85	100	200	85	100	200	
25 65	130	5	35	65	130	35	65	130	42	65	130	42	65	130	
10 35	50		20	35	50	20	35	50	20	35	50	20	35	50	
12,5100		12,5 125		12,5	100		12,52	250		■ 1604	00		2506	200	
12,5100 ■		12,5 125	•	12,5	100		12,5	250		1604	00		2500	30	
		-	-	1			-			-					
		•	■ sur rail symétrique				•			•			•		
		•					-			-			•		
							•			•					
				Γ.			_			Γ.			Г		
			•	-						•					
				-			•			•			•		
				•									•		
			_	•			•			•			•		
		 	+				•			•					
_										_					
		•								•					
				-			•			•			•		
		•	•	-			•			•			•		
				•			•			•			•		
		-	f	-			•			-					
		•		•			•			•			•		
				-			•			•			•		
•				•						•					
105 x 161 x	96	105 x 161 x 86	90 x 120 x 82,5	10E v 1	161 x 8	6	10E v 4	161 x 8	6	140 × 4	255 x 11	0	140 ×	255 x 1°	10
140 x 161 x		105 x 161 x 86	120 x 120 x 82,5		161 x 8			161 x 8			255 x 11			255 x 1	
1,6		1,7	1,1	1,6		_	1,9	. J . A U		6,0	200 A 11		6,0	200 X I	
							- , -								

DT9 – Documents techniques

Déclencheurs électroniques STR22SE/GE (3) (8)

Protections

- Protection long retard LR contre les surcharges à seuil Ir réglable , basée sur la valeur efficace vraie du courant selon CEI 947-2, annexe F.
- Protection court retard CR contre les courts-circuits :
- □ à seuil Im réglable 1
- □ à temporisation fixe ④.
- Protection instantanée INST contre les courts-circuits, à seuil fixe

■ Sur disjoncteurs tétrapolaires, réglage de la protection du neutre par commutateur à 3 positions: 4P 3d, 4P 3d Nr, 4P 4d. Exemple de réglage : voir ci-dessous.

déclencheurs pour STR22SE STR22GE Compact NS100 à NS250 calibres (A) In 20 à 70 °C (*) Compact NS100 N/H/L Compact NS160 N/H/L Compact NS250 N/H/L

protection contre le	es surcharges (long retar	d)	
seuil de Ir déclenchement (A)		réglable (48 crans) 0,41 x In	réglable (48 crans) 0,41 x In
temps de	à 1,5 x lr	120180	1215
déclenchement (s)	à 6 x lr	57,5	-
(minimaxi)	à 7,2 x lr	3,25,0	-
protection	4P 4d	1 x lr	-
du neutre	4P 3d N/2	0,5 x lr	-
réglable	4P 3d	sans protection	-

protection contre les courts-circuits (court retard)				
seuil de déclenchement (A)	lm	réglable (8 crans 210 x Ir) réglable (8 crans) 210 x Ir	
	précision	± 15 %	± 15 %	
temporisation (ms)	temps de suri sans déclenc		fixe ≼ 40	
	temps total de	e coupure ≤ 60	≤ 60	
protection contre les courts-circuits (instantanée)				

(*) En cas d'utilisation à température élevée du STR22SE ou du STR22GE 250 A, le réglage utilisé doit tenir compte des limites thermiques du disjoncteur : le réglage de la protection contre les surcharges ne peut excéder 0,95 à 60 °C et 0,90 à 70 °C.

Autres fonctions

Signalisation

seuil de

déclenchement (A)

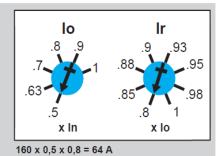
Indication de charge par diode

- électroluminescente en face avant ~
- allumée : 90 % du seuil de réglage Ir
- clignotante : > 105 % du seuil de réglage Ir.

≥ 11 x In

Prise de test en face avant ', permettant de connecter un boîtier de test (voir page B49) pour vérifier le bon fonctionnement de

≥ 11 x In


Exemple de réglage

Exemple de réglage

Quel est le seuil de protection contre les surcharges d'un Compact NS250 équipé d'un déclencheur STR22SE calibre 160 A réglé à lo = 0,5 et lr = 0,8 ?

Réponse

seuil = $160 \times 0.5 \times 0.8 = 64 \text{ A}$.

DT10 - Documents techniques

deTec

BARRAGES IMMATÉRIELS DE SÉCURITÉ

deTec4 Core

- Domaine d'utilisation: environnement industriel standard
- Niveau de sécurité: type 4, PL e, SIL3
- Fonctions: deTec Core (mode de protection)
- Mode de raccordement: connecteur mâle M12, 5 pôles
- Indice de protection: IP65, IP67

Résolution Portée	Portee		Émetteur	Émetteur		Récepteur	
	champ de protection	Туре	Référence	Туре	Référence		
14 mm 10 m	300 mm	C4C-SA03010A10000	1211450	C4C-EA03010A10000	1211463		
	450 mm	C4C-SA04510A10000	1211469	C4C-EA04510A10000	1211470		
		600 mm	C4C-SA06010A10000	1211471	C4C-EA06010A10000	1211472	
		750 mm	C4C-SA07510A10000	1211473	C4C-EA07510A10000	1211474	
		900 mm	C4C-SA09010A10000	1211475	C4C-EA09010A10000	1211515	
		1.050 mm	C4C-SA10510A10000	1211476	C4C-EA10510A10000	1211477	
		1.200 mm	C4C-SA12010A10000	1211478	C4C-EA12010A10000	1211479	
		1.350 mm	C4C-SA13510A10000	1211480	C4C-EA13510A10000	1211481	
		1.500 mm	C4C-SA15010A10000	1211482	C4C-EA15010A10000	1211483	
		1.650 mm	C4C-SA16510A10000	1211484	C4C-EA16510A10000	1211485	
	1.800 mm	C4C-SA18010A10000	1211486	C4C-EA18010A10000	1211487		
	1.950 mm	C4C-SA19510A10000	1211488	C4C-EA19510A10000	1211489		
	2.100 mm	C4C-SA21010A10000	1211490	C4C-EA21010A10000	1211491		
30 mm	15 m	300 mm	C4C-SA03030A10000	1211462	C4C-EA03030A10000	1211464	
		450 mm	C4C-SA04530A10000	1211492	C4C-EA04530A10000	1211493	
		600 mm	C4C-SA06030A10000	1211494	C4C-EA06030A10000	1211495	
		750 mm	C4C-SA07530A10000	1211496	C4C-EA07530A10000	1211497	
	900 mm	C4C-SA09030A10000	1211498	C4C-EA09030A10000	1211516		
		1.050 mm	C4C-SA10530A10000	1211499	C4C-EA10530A10000	1211500	
	1.200 mm	C4C-SA12030A10000	1211501	C4C-EA12030A10000	1211502		
		1.350 mm	C4C-SA13530A10000	1211503	C4C-EA13530A10000	1211504	
		1.500 mm	C4C-SA15030A10000	1211505	C4C-EA15030A10000	1211506	
		1.650 mm	C4C-SA16530A10000	1211507	C4C-EA16530A10000	1211508	
		1.800 mm	C4C-SA18030A10000	1211509	C4C-EA18030A10000	1211510	
		1.950 mm	C4C-SA19530A10000	1211511	C4C-EA19530A10000	1211512	
	2.100 mm	C4C-SA21030A10000	1211513	C4C-EA21030A10000	1211514		

EXAMEN: BTS M.S. - Épreuve: E4 - Sujet N° 01MS24 - page 22/26

DT11 – Documents techniques

C4C-SA18010A10000, C4C-EA18010A10000 | deTec

BARRAGES IMMATÉRIELS DE SÉCURITÉ

Informations de commande

Pièce du système	Туре	Référence
Émetteur	C4C-SA18010A10000	1211486
Récepteur	C4C-EA18010A10000	1211487

Autres modèles d'appareil et accessoires → www.sick.com/deTec

Caractéristiques techniques détaillées

Caractéristiques

Domaine d'utilisation	Environnement industriel standard
Pièce du système	Paire
Émetteur compatible	1211486
Récepteur compatible	1211487
Résolution	14 mm
Portée	10 m
Hauteur du champ de protection	1.800 mm
Temps de réponse	20 ms
Sans zone blanche	Oui
Synchronisation	Synchronisation optique
Contenu de la livraison	Émetteur Récepteur Bâton test dont le diamètre correspond à la résolution du barrage immatériel de sécurité Consigne de sécurité Notice de montage Notice d'instruction à télécharger

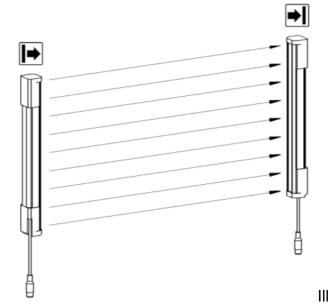


Illustration 1 : Emetteur et récepteur

DT12 - Documents techniques

3 **Description du produit**

Ce chapitre fournit des informations sur le fonctionnement du barrage immatériel de sécurité et présente des exemples d'application.

3.1 Structure et fonctionnement

Le barrage immatériel de sécurité deTec4 Core est un équipement de protection électro-sensible (ESPE) composé d'un émetteur et d'un récepteur.

Entre l'émetteur et le récepteur, une série de rayons infrarouges parallèles forment un champ de protection de la zone dangereuse (protection des points dangereux, d'accès et de zone dangereuse). Dès qu'un ou plusieurs rayons sont complètement interrompus, le barrage immatériel de sécurité signale le franchissement du faisceau lumineux par un changement de signal sur les sorties de commutation. L'évaluation du signal, qui met fin à l'état dangereux de la machine, doit être effectuée par une commande sûre ou un relais de sécurité (contacteurs).

La synchronisation entre l'émetteur et le récepteur s'effectue automatiquement par voie optique. Le raccordement électrique entre les deux composants est inutile.

Hauteur du champ de La hauteur du champ de protection correspond à la zone dans laquelle le bâton test du protection barrage immatériel de sécurité est correctement détecté. Les dimensions du barrage immatériel de sécurité déterminent la hauteur du champ de protection. Par la structure et la forme du barrage immatériel de sécurité deTec4 Core, la protection d'un appareil s'étend jusqu'à l'extrémité du boîtier, sans zone morte.

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 23/26

DT13 - Documents techniques

4.3.2 Distance minimale par rapport au point dangereux

Respectez une distance minimale entre le barrage immatériel de sécurité et le point dangereux. Cette distance est nécessaire pour empêcher qu'une personne ou une partie du corps d'une personne pénètre dans la zone dangereuse avant la fin de la situation dangereuse de la machine.

DANGER

Risque d'inefficacité du dispositif de protection

En cas de non-observation de cette consigne, la situation dangereuse de la machine ne s'interrompt pas ou ne s'interrompt pas à temps.

- ▶ Calculez la distance minimale nécessaire pour votre machine.
- ▶ Montez le barrage immatériel de sécurité en tenant compte de ce calcul.

Calcul de la distance mi- Le calcul de la distance minimale s'appuie sur les normes et prescriptions nationales et nimale internationales en vigueur sur le lieu d'utilisation de la machine.

> Si la distance minimale est calculée selon la norme ISO 13855, elle dépend des points suivants:

- Temps d'arrêt complet de la machine (intervalle entre le déclenchement du capteur et la fin de la situation dangereuse de la machine)
- Temps de réponse du dispositif de protection
- Vitesse d'approche ou d'intrusion de la personne
- Résolution (capacité de détection) du barrage immatériel de sécurité
- Type d'approche : perpendiculaire ou parallèle
- Paramètres prédéfinis en fonction de l'application

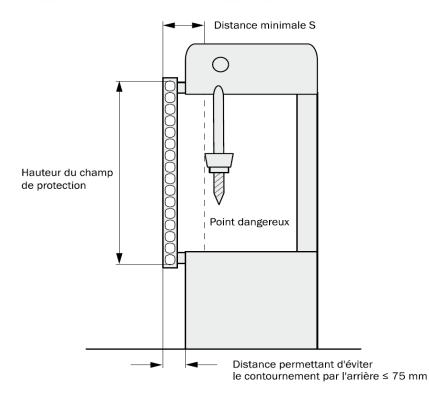


Illustration 7: Distance minimale par rapport au point dangereux en cas d'approche perpendiculaire au champ de protection

DT14 - Documents techniques

Exemple de calcul de la distance minimale S selon la norme ISO 13855

L'exemple présente le calcul de la distance minimale en cas d'approche perpendiculaire au champ de protection. Selon l'application et les conditions ambiantes (par exemple, avec un champ de protection parallèle à ou formant un angle quelconque avec le sens d'approche ou en cas d'approche indirecte), un autre calcul peut être nécessaire.

- Calculez d'abord S à l'aide de la formule suivante :

$$S = 2000 \times T + 8 \times (d - 14) [mm]$$

0ù...

- T = Temps d'arrêt complet de la machine + temps de réponse du dispositif de protection après franchissement du faisceau lumineux [s]
- d = Résolution du barrage immatériel de sécurité [mm]
- S = Distance minimale [mm]

La vitesse d'approche/d'intrusion est déjà intégrée dans la formule.

- Si le résultat S ≤ 500 mm, alors utilisez la valeur calculée pour la distance minimale.
- Si le résultat S > 500 mm, recalculez S comme suit : $S = 1600 \times T + 8 \times (d - 14) [mm]$
- Si la nouvelle valeur S > 500 mm, alors utilisez la nouvelle valeur calculée en tant que distance minimale.
- Si la nouvelle valeur S ≤ 500 mm, utilisez 500 mm.

Exemple de calcul Temps d'arrêt complet de la machine = 290 ms

Temps de réponse après franchissement du faisceau lumineux = 30 ms

Résolution du barrage immatériel de sécurité = 14 mm

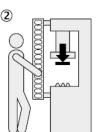
T = 290 ms + 30 ms = 320 ms = 0.32 s

 $S = 2000 \times 0.32 + 8 \times (14 - 14) = 640 \text{ mm}$

S > 500 mm. donc:

 $S = 1600 \times 0.32 + 8 \times (14 - 14) = 512 \text{ mm}$

EXAMEN: BTS M.S. – Épreuve: E4 – Sujet N° 01MS24 – page 24/26


DT15 - Documents techniques

4.4.1 Fonction de réarmement et contrôle des contacteurs commandés

Selon les dispositions nationales en vigueur ou selon la fiabilité nécessaire de la fonction de sécurité, prévoyez une fonction de réarmement et/ou un contrôle des éléments de commutation externes (contrôle des contacteurs commandés).

Fonction de réarme- Une fonction de réarmement empêche le redémarrage de la machine tant que l'utilisament teur ne la réarme pas délibérément. La situation dangereuse de la machine (1) est interrompue en cas de franchissement du faisceau (2) et ne sera à nouveau autorisée (3) que lorsque l'utilisateur actionnera un dispositif de réarmement (4).

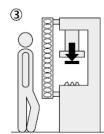


Illustration 14 : Schéma de fonctionnement avec fonction de réarmement

Ne pas confondre la fonction de réarmement avec le verrouillage de démarrage de la machine. Le verrouillage de démarrage empêche le démarrage de la machine après sa mise en route. La fonction de réarmement empêche le redémarrage de la machine après une erreur ou le franchissement du champ de protection.

Selon les dispositions nationales en vigueur, prévoyez une fonction de réarmement lorsque le contournement par l'arrière est possible. Le barrage immatériel de sécurité n'est pas équipé d'une fonction de réarmement interne. Pour cette raison, prévoyez un verrouillage de redémarrage externe via le circuit électrique ou la commande, par ex. associé à des relais de sécurité SICK UE48-20S/UE48-30S.

veillance externe)

Contrôle des contacteurs (guidés), qui peuvent teurs commandés être utilisés pour arrêter l'état dangereux de la machine, retombent (position repos) (EDM/dispositif de sur- lorsque le dispositif de protection est déclenché.

REMARQUE

Comme le barrage immatériel de sécurité n'est pas équipé d'un contrôle des contacteurs commandés, celui-ci doit être, si nécessaire intégré dans la commande externe.

DT16 - Documents techniques

Exemple de câblage avec UE48-20S avec fonction de réarmement et contrôle des contacteurs commandés

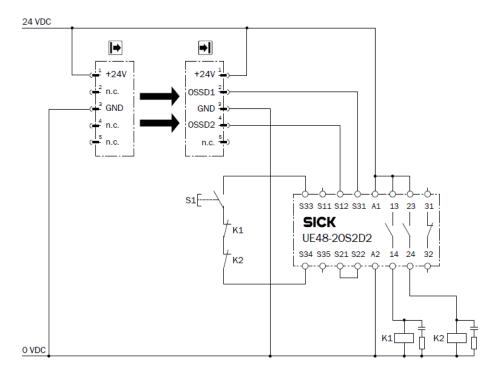


Illustration 15 : Exemple de câblage avec UE48-20S avec fonction de réarmement et contrôle des contacteurs commandés

Le barrage immatériel de sécurité peut être relié aux interfaces UE48-20S. Le fonctionnement s'effectue avec une fonction de réarmement et un contrôle des contacteurs commandés.

Fonctionnement

Lorsque le champ de protection est libre, les sorties OSSD1 et OSSD2 sont sous tension. Le système est prêt à fonctionner si K1 et K2 sont en position de repos. L'actionnement du bouton S1 met en fonction l'interface UE48. Les contacts 13-14 et 23-24 de l'UE48 activent les contacteurs K1 et K2.

En cas de franchissement du champ de protection, les sorties OSSD1 et OSSD2 ne sont plus sous tension. L'UE48 n'est plus en fonction et K1, K2 sont désactivés.

Évaluation des défauts

Une défaillance de K1 ou K2 n'entraîne pas la perte de la fonction d'arrêt. Les courtscircuits et courts-circuits transversaux des sorties OSSD1 et OSSD2 sont détectés et entraînent l'état de verrouillage. Le système détecte si l'un des contacteurs de commutation K1 et K2 ne retombe pas.

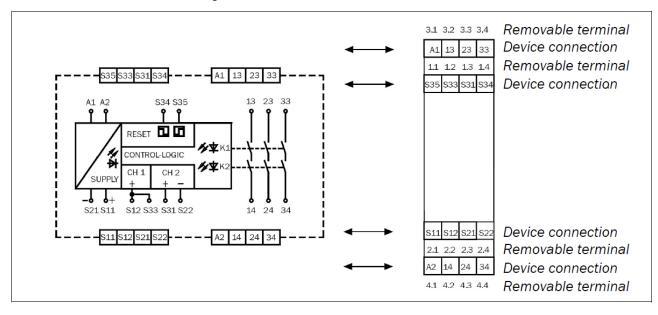
EXAMEN: BTS M.S. - Épreuve: E4 - Sujet N° 01MS24 - page 25/26

DT17 - Documents techniques

Relais de sécurité UE48-3OS

Vue d'ensemble 🗘

Relais de sécurité à 3 sorties de sécurité pour toutes les applications de sécurité courantes



Vos avantages

- Un module pour toutes les applications courantes simplifie l'intégration des machines
- Surveillance et analyse complètes des capteurs
- La surveillance séquentielle assure l'analyse des interrupteurs de sécurité sans contact
- Remplacement rapide, sans outil grâce aux borniers à vis débrochables avec détrompage
- Associe les avantages des relais classiques à une technique de commutation simple

Q

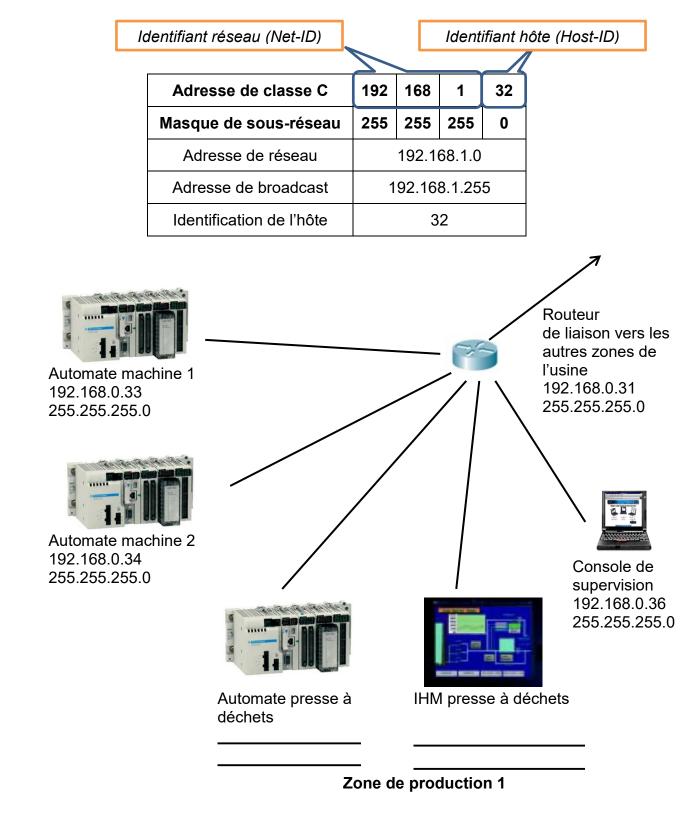
11 Internal circuitry

Relais de sécurité à 3 sorties de sécurité pour toutes les applications de sécurité courantes

Le relais de sécurité UE48-3OS offre des fonctions complètes pour les applications courantes. Dans le domaine des interrupteurs de sécurité, des boutons-poussoir d'arrêt d'urgence et des interrupteurs sans contact, le relais de sécurité contrôle les signaux, la détection des courscircuits croisés et la surveillance séquentielle. Les signaux des dispositifs de protections optoélectroniques sont directement gérés et traités par le relais de sécurité.

En bref

- Idéal pour l'évaluation des interrupteurs d'arrêt d'urgence, des interrupteurs de sécurité, des barrages immatériels de sécurité, des scrutateurs laser de sécurité et des tapis sensibles de sécurité
- Détection des courts-circuits croisés et surveillance séquentielle en cas de commande à double canal
- 3 sorties de sécurité
- Réarmement manuel ou automatique
- Contrôle des contacteurs commandés (EDM)
- Version codée pour tous les emplacements de borniers


DT18 - Documents techniques

Une adresse IP est composée d'un identificateur réseau et d'un identificateur d'hôte.

Sur un réseau, la première adresse correspond à l'adresse du réseau et la dernière adresse correspond à l'adresse de broadcast. Elles sont donc réservées et ne doivent pas être utilisées.

<u>Remarque</u>: c'est par l'intermédiaire d'un masque de réseau que l'on peut distinguer l'identifiant de réseau de l'identifiant d'un hôte.

Exemple:

EXAMEN: BTS M.S. - Épreuve: E4 - Sujet N° 01MS24 - page 26/26