BREVET DE TECHNICIEN SUPÉRIEUR MAINTENANCE DES SYSTÈMES

Option A : Systèmes de production

Session 2024

U 4 : Intégration d'un bienDurée : 4 heures – Coefficient : 5

Éléments de Correction

	PREUVE : SU4A	EXAMEN BREVET DE TECHNICIEN SUPÉRIEUR	MAINTE	CIALITÉ : ENANCE DES STÈMES
SESSION: 2024	CORRIGÉ	ÉPREUVE : E4 INTEG	RATION D'U	JN BIEN
Durée : 4h	Coefficient : 5	Corrigé N°	° 01MS23	Page 1

4	ANALYSE DE L'EXISTANT		
		Durée conseillée : 1h 10	

1 - 1 Etude du schéma hydraulique

Q.1-1-1	Document à consulter : DT2	Répondre sur DR1
Q.1-1-2	Document à consulter : DT2	Répondre sur DR1
Q.1-1-3	Documents à consulter : DT1 - DT2	Répondre sur DR2
Q.1-1-4	Documents à consulter : DT1 - DT2	Répondre sur copie

Déterminer les deux débits possibles dans le circuit de compactage.

Débit 1 : Q1 = 95 I / min

Débit 2 : Q2 = 95 + 37 = 132 I / min

Donner l'avantage d'une telle l'installation.

Cette installation permet d'avoir 2 vitesses différentes et d'augmenter ainsi la puissance de compactage.

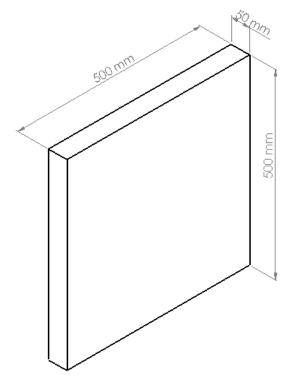
Q.1-1-5 Document à consulter : Aucun	Répondre sur copie
--------------------------------------	--------------------

Spiston = $\pi \times 0.18^2 / 4 = 25.4 \cdot 10-3 \text{ m}^2$ Q1 = 95 I / min = 1,58 \ 10-3 \ m3.s^-1 Q2 = 132 I / min = 2,2 \ 10-3 \ m3.s^-1 V1 = 1,58 / 25,4 = 0,0622 \ m.s^-1 V2 = 2,2 / 25,4 = 0,0866 \ m.s^-1

1 - 2 Etude du cycle de la presse

Q.1-2-1 Documents à consulter : DT1 – DT2	Répondre sur DR1
---	-------------------------

Q.1-2-2	Documents à consulter : DP4 - DT1 - DT2	Répondre sur copie
---------	--	---------------------------


Pression atteinte (B4) et fin de temporisation compactage.

Q.1-2-3	Document à consulter : DT2	Répondre sur copie
---------	----------------------------	---------------------------

Il faut placer un manomètre sur **PM1** puis monter progressivement en pression le circuit du vérin compacteur.

2	MODIFICATION DE LA PORTE DE SORTIE DE PRESSE	
		Durée conseillée : 30 min

Q 2.1	Document à consulter : Aucun	Répondre sur copie

 $V = 0.5 \times 0.5 \times 0.05 = 0.0125 \text{ m}^3$ $M_{porte} = 7800 \times 0.0125 = 97.5 \text{ kg}$

	Q 2.2	Document à consulter : Aucun	Répondre sur copie
--	-------	------------------------------	---------------------------

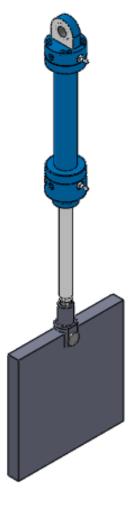
 $P_{porte} = 97.5 \times 9.81 = 956 \text{ N}$

Q 2.3 Document à consulter : aucun Répo	dre sur copie
---	----------------------

Flevage nécessaire = 10 x 1000 = 10000 N

Q 2.4	Document à consulter : DT3	Répondre sur copie
-------	----------------------------	---------------------------

 $\emptyset MM = 45 mm$


Q 2.5	Document à consulter : DT3	Répondre sur copie
-------	----------------------------	---------------------------

Déterminer la force développée par le vérin en entrée de tige.

Le vérin implanté peut développer : $S_{levage} = \pi \ x \ (63^2 \text{-} 45^2) \ / \ 4 = 1527 \ mm^2$ $F_{levage} = 20 \ x \ 1527 = 30 \ 540 \ N$

Vérifier si le vérin initial CDH3 convient au levage de la nouvelle porte.

Flevage > Flevage nécessaire, le vérin convient.

2	ALIMENTATION ELECTRIQUE DE LA NOUVELLE PRESSE	
3		Durée conseillée : 1h 10

3 - 1 Bilan des puissances électriques

Q.3-1-1	Document à consulter : Aucun	Répondre sur DR3
Q.3-1-2	Documents à consulter : Aucun	Répondre sur DR3
Q.3-1-3	Documents à consulter : Aucun	Répondre sur DR3

3 - 2 Vérification de la section du câble d'alimentation.

Q.3-2-1	Document à consulter : DT8	Répondre sur copie

Disjoncteur de calibre 100 A avec courant de réglage Ir réglable de 12,5 à 100 A et lb = 38 A

Q.3-2-2	Documents à consulter : DT8 - DT9	Répondre sur copie
		1 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1

In déclencheur 40 A pour Ib = 38 A

Q.3-2-3	Documents à consulter : DT6 – DT7	Répondre sur DR4

3 - 3 Réglage du disjoncteur de protection.

Q.3-3-1	Document à consulter : DT9	Répondre sur copie
---------	----------------------------	---------------------------

Surcharge

Q.3-3-2	Document à consulter : DT9	Répondre sur copie
Q.3-3-2	Document a consulter : Di9	Repondre sur copie

Justifier que ces réglages ne sont pas compatibles avec la protection de la nouvelle presse.

Seuil de déclenchement = 40 * 0,63 * 0,8 = 20,1 A < 38 A

Identifier les risques si l'on conserve ces réglages.

Déclenchement permanent du disjoncteur.

Proposer des valeurs de réglage de l₀ et l_r correspondant à la nouvelle installation.

$$lo = 1$$
 et $lr = 0.95$ soit seuil = $40 * 1 * 0.95 = 38$ A

Q.3-3-3 Document à consulter : DT9 Répondre sur copie	е
---	---

Court-circuit

Q.3-3-4	Document à consulter : DT9	Répondre sur copie
---------	----------------------------	---------------------------

 $Im = 8 \times 38 = 304 \text{ A} < 310 \text{ A}$

La protection des personnes est donc assurée.

4 ÉTUDE DE LA MISE EN PLACE DE LA BARRIERE IMMATERIELLE.

Durée conseillée : 50 min

4 - 1 Choix de la barrière immatérielle

Q.4-1-1 Documents à consulter : DP3 – DT10 Répondre sur copie

Hauteur de protection 1800 mm et portée 10 m > largeur passage (1700 mm)

Q.4-1-2 Documents à consulter : DP3 – DT10 Répondre sur copie

Résolution 14 mm

4 - 2 Raccordement électrique de la barrière immatérielle

Q.4-2-1	Documents à consulter : DT15 à DT17	Répondre sur DR5
·		

Q.4-2-2 Documents à consulter : DT4 – DT5 Répondre sur copie

Indiquer sur quels composants le franchissement de la barrière immatérielle va agir. KM2, KA16 et M2

En déduire l'influence du franchissement sur le basculeur.

Arrêt du basculeur

Q.4-3-1 Document à consulter : DT11 Répondre sur copie

Donner le temps de réaction de la barrière immatérielle. 20 ms

En **déduire** le temps total d'arrêt de la machine T après franchissement du faisceau lumineux.

Ttotal = 0.22 + 0.02 = 0.24 s

Q.4-3-2 Documents à consulter : DT12 à DT14 Répondre sur copie

Déterminer la distance minimale de la barrière immatérielle par rapport au point dangereux.

 $S = 2000 \times 0.24 + 8 (14 - 14) = 480 \text{ mm}$

Préciser alors si nous pouvons installer la barrière immatérielle sans modification de la configuration des lieux.

OK car Smini (480 mm) < 570 mm

5	ÉTUDE DU RACCORDEMENT DE LA PRESSE AU RESEAU INFORMATIQUE.	
		Durée conseillée : 20 min

5 - 1 Etude du réseau de l'entreprise

Q 5.1.1	Document à consulter : DT18	Répondre sur copie
---------	-----------------------------	---------------------------

Adresse IP: 192.168.0.0

Q 5.1.2 Document à consulter : DT18 Répondre sur copie
--

Masque de sous-réseau 255.255.255.0 donc 256 adresses moins 2. Soit 254 adresses disponibles.

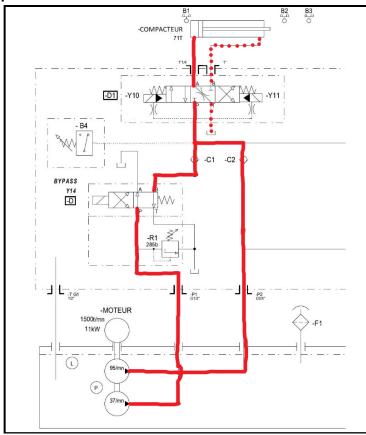
Q 5.1.3	Document à consulter : DT18	Répondre sur copie
---------	-----------------------------	---------------------------

Il faut prendre des adresses non utilisées. Prendre entre 192.168.0.1 et 192.168.0.254 sauf

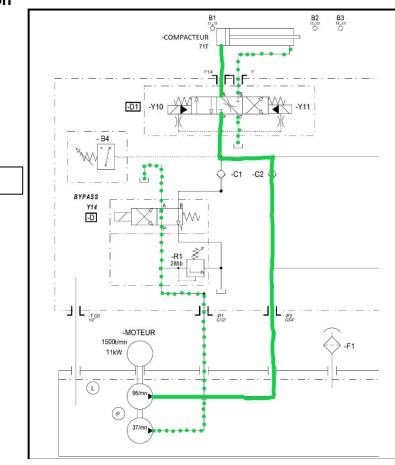
192.168.0.31 192.168.0.33 192.168.0.34 192.168.0.36 Q.1-1-1

Composant	Désignation	Rôle	
D1	Distributeur 4/3 monostable à cde électro-hydrau	Piloter le vérin compacteur	
R1	Régulateur (ou limiteur) de pression	Limiter la pression de compactage	
В4	Pressostat	Vérifier la pression de compactage	

Q.1-1-2


	Pression maximum dans le vérin (en bar)	
Compactage	285 bars	
Ouverture porte	200 bars	
Fermeture porte	180 bars	

Q.1-2-1


Actions	Pilotage des préactionneurs associés					
Actions	Y10	Y11	Y12	Y13	Y14	
Ouverture porte			Х			
Fermeture porte				X		
Avance compacteur	X				X	
Recul compacteur		X				
Mise en pression	X					

Q.1-1-3

Avance compacteur_

Mise en pression

Q.3-1-1

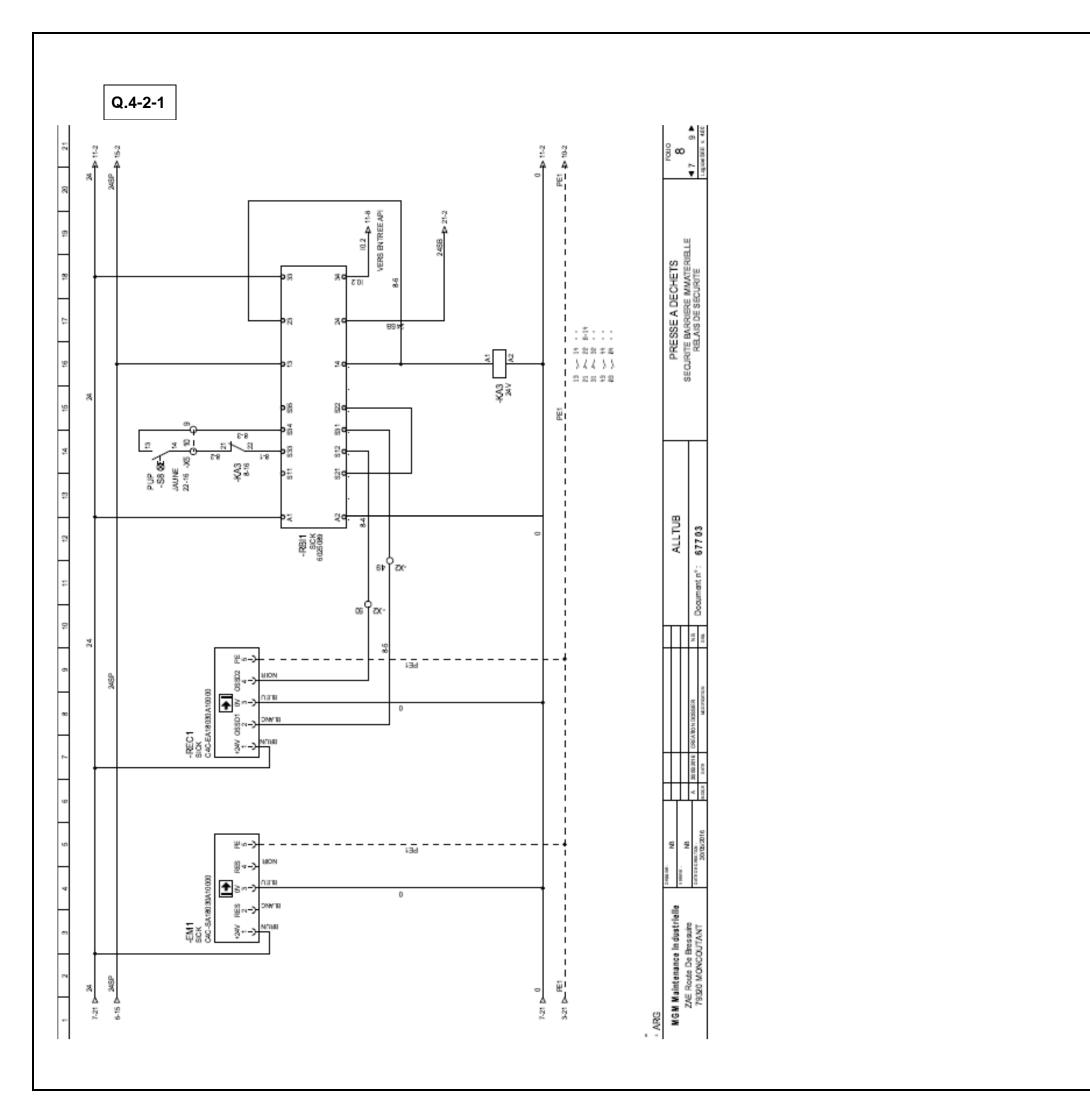
Bilan des puissances électriques

Eléments	Caractéristiques	P _{abs} (W) Puissance active	Q (VAR) Puissance réactive	Calculs
Moteur PRESSE	P = 11 kW U = 400 V triphasé I = 21,5 A Cos φ = 0,86 η = 86 %	12790	7589	Pabs = Pu / η Q = Pabs * tan φ
Moteur BASCULEUR	$P = 1,5 \text{ kW}$ $U = 400 \text{ V}$ triphasé $I = 3,3 \text{ A}$ $\text{Cos } \phi = 0,82$ $\eta = 96 \text{ \%}$	1562	1090	
Moteur CONVOYEUR Sortie Presse	P = 0.18 kW $U = 400 V$ triphasé $I = 0.55 A$ $Cos φ = 0.65$ $η = 73 %$	247	289	
Moteur CONVOYEUR Entrée Presse	$P = 0.75 \text{ kW}$ $U = 400 \text{ V}$ triphasé $I = 2.1 \text{ A}$ $\text{Cos } \phi = 0.77$ $\eta = 67 \%$	1119	927	
Divers		5500 W	4125 VAR	

Q.3-1-2

Puissance active totale : Pt =	21,22kW
Puissance réactive totale : Qt =	14 kVAR

Q.3-1-3


Puissance apparente totale : St =	26,1 kVA
Intensité totale absorbée : It =	37,7 A

Q.3-2-3

	Valeur	Justification	
lв	38 A		
In	40 A		
lz	40 A	Protection par disjoncteur	
Lettre de sélection	Е	Câble multi sur chemin de câbles perforé	
K 1	1	Lettre E	
K2	1	Posé seul	
К3	0,96	PR – 35 °C	
K	0,96	1 x 1 x 0,96	
l'z	41,7 A	40 / 0,96	
Smini	4 mm²	E – PR3	

Justification:

On pourra conserver le câble car S > Smini.

