BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2022

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE

Ingénierie, innovation et développement durable

ÉNERGIE ET ENVIRONNEMENT

Durée de l'épreuve : 4 heures

CORRECTION

22-2D2IDEELR1C 1/21

Partie 1 : pourquoi implanter la centrale à Porette de Nérone ?

L'objectif de cette partie est de valider les choix qui ont conduit à l'élaboration de cette centrale photovoltaïque sur le site de Porette de Nérone.

Question 1.1

citer 3 éléments :

Mise en situation DT1

- Engagements de l'état et de l'UE de couvrir 40% de la consommation d'électricité en France grâce aux ENR.
- Corse = ensoleillement très favorable (climat méditerranéen)
- La valorisation agricole des espaces laissés libres au milieu des panneaux.

Mais aussi:

plus grand secteur propice de la Corse pour l'implantation d'une centrale photovoltaïque

postes source < 5 km

Pente < 6°

Besoin local d'énergie

zones protégées, des zones urbanisées et des zones ombrées)...

Question 1.2

Justifier l'utilisation de l'unité « tep »

« tep » permet d'exprimer dans une unité commune la valeur énergétique des diverses sources d'énergie.

calculer le nombre de tep

5700/11,63 = 490 tep

Question 1.3

Calculer l'énergie

 $7.8 \times 7.5 = 58 \text{ tep / an}$

22-2D2IDEELR1C 2/21

Question 1.4 **Calculer** le nombre d'habitants

5700000/2300 = 2478 habitants

comparer aux 1957 habitants de la ville d'Aléria.

L'ensemble des habitats de la commune ont leur électricité couverte par la production de la centrale.

Question 1.5

calculer le coût total de l'investissement

DR1

Voir DR1

Question 1.6

Calculer le gain sur 20 ans et **conclure** sur la rentabilité de la centrale.

Rentabilité = 17100000-16100000 = 1000000 € = 1 million d'euros pour 20 ans.

Conclusion: l'investissement de cette centrale de production est rentable.

Partie 2 : comment optimiser la position des panneaux photovoltaïques ?

_					
Question	21	Tracer	a ravon	לוו פר	انصاد
GUCSHOIL	Z . I	I I acci	CIAVOII	uu st	исп

Voir DR2

Question 2.2 **Dessiner** la zone d'ombre

DR2

Conclure sur l'impact

Voir DR2

Question 2.3

déterminer l'heure

DR2

L'ombrage sur le panneau 2 disparait à 10H du matin.

22-2D2IDEELR1C 3/21

Question 2.4

Déterminer l'inclinaison des panneaux

DR3

Voir DR3

Relever la valeur de l'angle

La valeur trouvée est -20°.

Question 2.5

Conclure sur la période

DR3

Période de backtracking : avant 10H le matin et après 18H le soir.

Période de tracking : entre 10H et 18H.

Partie 3 : comment répartir les panneaux photovoltaïques sur le terrain ?

Question 3.1 **Calculer** le nombre de panneaux

13x9 = 117 panneaux

Question 3.2 Calculer la surface d'un bloc.

 $50x15 = 750 \text{ m}^2$

Question 3.3

Proposer une implantation

DR4

Voir DR4

Bande 1:34 blocs

Bande 2:30 blocs

Bande 3: 26 blocs

Bande 4: 11 blocs

Total 101

22-2D2IDEELR1C 4/21

Question 3.4 **Calculer** le nombre

DT2

Nbre = 101x117 = 11817 panneaux

comparer au nombre donné dans le diagramme

Le diagramme de définition de blocs nous donne également la valeur de 11817 panneaux.

Partie 4 : comment assurer le non-renversement des portiques en cas de rafale de vent inattendue?

Question 4.1

Calculer l'intensité

 $F_p = 13 \times 1 = 13 \text{ kN}$

Question 4.2

Calculer $F_{am} = F_p/2$, puis F_t ,

 $F_{am} = 13/2 = 6.5 \text{ kN}$

 $F_t = Fam/1,414 = 4,6 kN$

En déduire l'intensité F_v

Fv = -Ft = -4.6 kN

Question 4.3

Expliquer comment \overrightarrow{Fv} agit

Fv tend à enfoncer le poteau dans le sol. On peut aussi accepter « le poteau est comprimé ».

En déduire ce qui se passe si le vent souffle par l'arrière.

Fv tend à soulever le poteau du sol. On peut aussi accepter « le poteau est tendu ».

Question 4.4

Calculer l'intensité M_E du moment

 $M_E = -Ft \times 1,5 = -6,9 \text{ kN} \cdot \text{m}$

Indiquer comment ce moment agit sur l'ancrage du poteau.

Ce moment tend à renverser le poteau. On peut aussi accepter « le poteau est fléchi ».

5/21 22-2D2IDEELR1C

Question 4.5 **justifier** le choix technologique

L'ancrage profond dans le sol permet d'éviter l'arrachement ou l'enfoncement du poteau ainsi que son renversement

Partie 5 : comment obtenir la vitesse du vent pour piloter le tracker.

Question 5.1 **déterminer** la tension

DR5

90x1000/3600 = 25 m/s

Voir DR5

Réponse 5V

Question 5.2 **Déterminer** l'augmentation de tension

=

10/255 = 0.039 V = 39 mV

Question 5.3 **Vérifier** si ce convertisseur permet d'obtenir la précision exigée

3x1000/3600 = 0.8 m/s

10V donne 50 m/s donc 0,8 donne 166,7 mV > 39 mV donc largement OK

Question 5.4 **Déterminer** combien d'hôtes

256 adresses – adresse du réseau (.0), - adresse de broadcast (.255) = 254 hôtes

22-2D2IDEELR1C 6/21

Question 5.5

Vérifier si la station météo1 et le contrôleur principal appartiennent au même réseau.

Station météo 1: 192.168.200.201

Contrôleur principal: 192.168.200.100

Conclure quant à leur possibilité de communiquer.

L'adresse réseau des 2 appareils est 192.168.200.0 (ET logique bit par bit entre l'adresse IP et le mask), ils appartiennent au même réseau et peuvent donc communiquer.

Partie 6 : comment assembler la chaîne de production d'énergie électrique ?

Question 6.1

compléter le DR6

DT2, DR6

Voir DR6

Question 6.2

relever les côtes

DT3

Largeur 1046 mm longueur 1559 mm

calculer sa surface.

Surface: 1,046x1,559 = 1,63 m²

Question 6.3

Calculer la puissance

DT3

 $P_{RP} = 1000x1,63 = 1631 W$

Calculer le rendement

Question 6.4

donner le type d'association

Figure 1 = montage série

Figure 2 = montage parallèle ou dérivation

Question 6.5

En déduire la tension et le courant

La tension égale 13x54,7 = 711,1 V Le courant est égal à 9x5,86 = 52,74 A

22-2D2IDEELR1C 7/21

Question 6.6

DR7

déterminer le nombre de blocs Voir DR7

Question 6.7

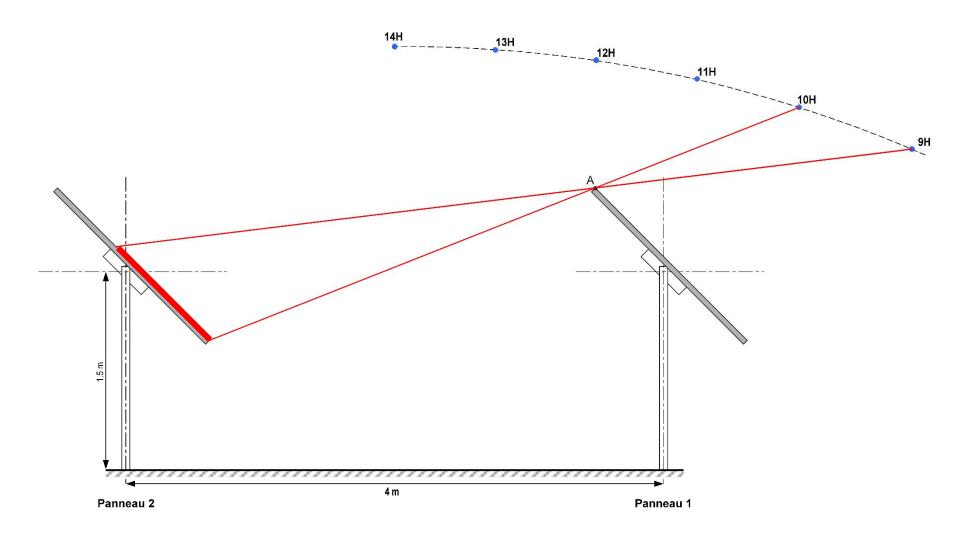
Déterminer le courant d'entrée

17 (blocs) x 52,74 (courant pour 1 bloc) = 897A

conclure sur la puissance nominale d'un onduleur.

La puissance nominale d'un onduleur doit être supérieure à P_{ond} = 711 x 897 = 638 kW

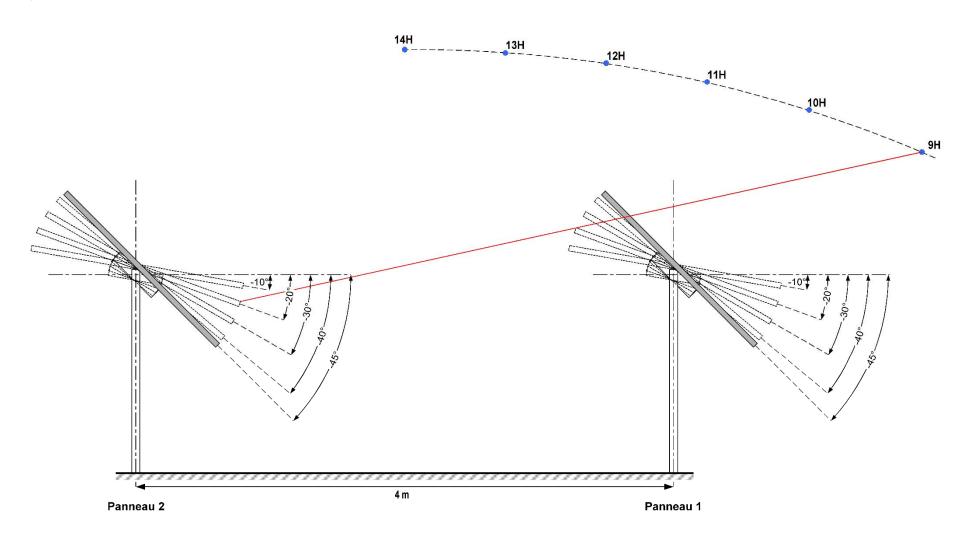
22-2D2IDEELR1C 8/21


DOCUMENT RÉPONSE DR1

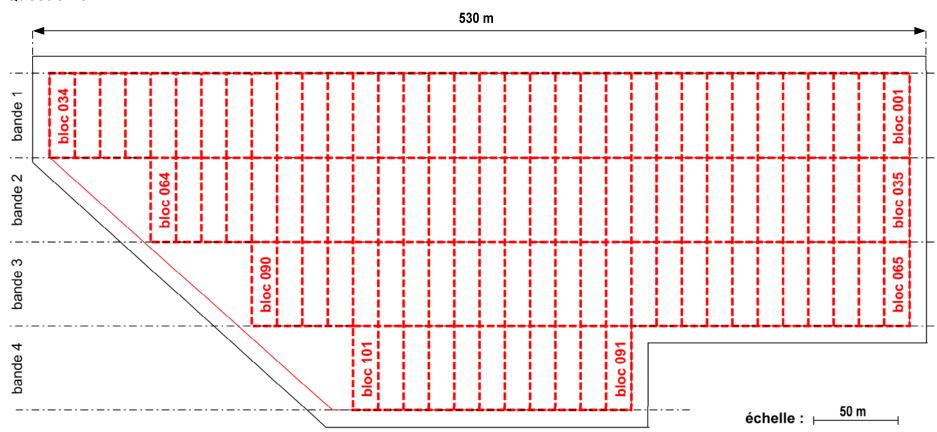
Question 1.5

	Investissement	Dépenses annuelles	Dépenses sur 20 ans	Recettes annuelles	Recettes sur 20 ans
Construction de la centrale	11800000				
Compensation financière liée aux impacts du projet	110 000 €				
Enfouissement de la ligne électrique sur 5 km.	390 000 €				
Taxe locale		106500	2130000		
Maintenance		83 500 €	1678000		
Rachat EDF				855000	17100000
Total	12300000		3800000		17100000

22-2D2IDEELR1C 9/21

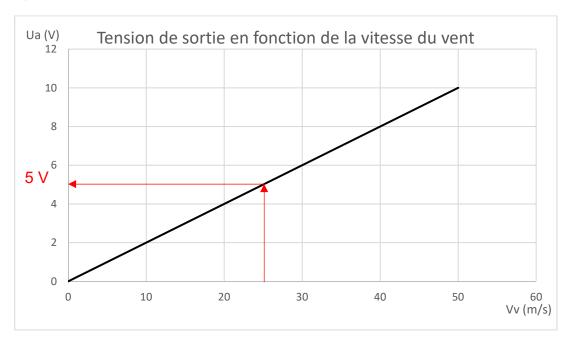

Question 2.1 - 2.2 - 2.3

22-2D2IDEELR1C 10/21


DOCUMENT RÉPONSE DR3

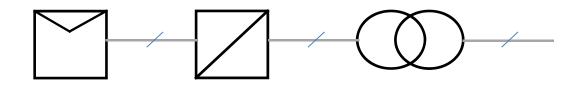
Question 2.4 – 2.5

22-2D2IDEELR1C 11/21


Question 3.4

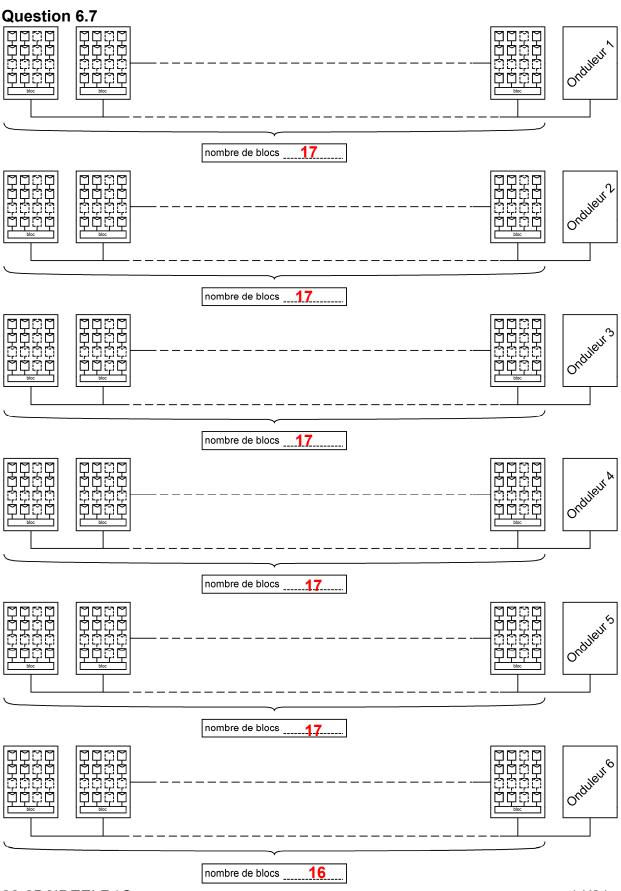
22-2D2IDEELR1C 12/21

DOCUMENT RÉPONSE DR5


Question 5.1

Courbe caractéristique de l'anémomètre

DOCUMENT RÉPONSE DR6


Question 6.1

	Modules photovoltaïques	Ond	uleurs	Transfo	rmateurs
Nombres					
de					
composants	11817		6	3	3
Type de	Sortie	Entrée	Sortie	Entrée	Sortie
courant	DC	DC	AC	AC	AC
électrique					

22-2D2IDEELR1C 13/21

DOCUMENT RÉPONSE DR7

22-2D2IDEELR1C 14/21

Énergie et Environnement

CENTRALE PHOTOVOLTAÏQUE DE PORETTE DE NERONE

Barème sur 24 points

22-2D2IDEELR1C 15/21

Partie A : Le système de suivi du soleil permet-il d'optimiser la production de la centrale ? (8,5 points)

Question A.1

Période de l'année : de mars à octobre.(0,5 point)

DTS1

Période de la journée : de 5h à 20h. (0,5 point)

Question A.2

Voir DRS1. (1,5 points)

DTS1, DRS1

Gap = 1526-1330 = 196 kW.h. (1 point)

 $Gap\% = (1526-1330) \times 100 / 1330 = 14,73 \%. (1 point)$

Question A.3

Eg = 4970 x 0,1473 = 732 MW.h

Question A.4

Eacm = $P \times t = 101 \times 4680 \times 2/60 \times 365 = 5750940 \text{ W.h} = 5750,94 \text{ kW.h} = 5.75 \text{ MW.h} (1 \text{ point})$

Question A.5

DTS1

Le système de tracking permet de gagner 732 MW.h, mais son système de pilotage consomme 5,75 MW.h. Le système reste très avantageux, il permet de gagner 732-5,75 = 726,3 MW.h. La production de la centrale passe de 4970 Mw.h à (4970+726,3) environ 5700 MW.h. (1 point)

Partie B : Comment optimiser la puissance fournie par les panneaux photovoltaïques ? (9 points)

Question B.1

Voir DTS2 et DRS2. (2 points) avec -0,5/erreur

DTS2, DRS2

Question B.2

Voir DTS2 et DRS2. (2 points) avec - 0,5/erreur

DTS2, DRS2

Question B.3

 $E = P \times t$.

DTS2, DRS2

Voir DRS2. (1 point)

22-2D2IDEELR1C 16/21

Question B.4 \mid E = P x t

DTS2, DRS2

Voir DRS2. (1 point)

 $| E_{TC} = 1746 \text{ W.h. } (0.5 \text{ point}) |$ Question B.5

 $E_{TMPPT} = 1918 \text{ W.h. } (0.5 \text{ point})$

Question B.6 $G_{MPPT}\% = (1918 - 1746) \times 100 / 1746 = 9.85 \% (1 point)$

> On constate que le fait d'utiliser un onduleur MPPT permet d'optimiser près de 10 % la production des panneaux photovoltaïques. (1 point)

Partie C : Quelle est l'influence de la température sur le fonctionnement de l'onduleur.(3 points)

Question C.1 | 500 V à 820 V. (1 point)

Question C.2

D'après DTS4 : 820 V à - 20 °C et 600 V à 70 °C. (1 point)

DTS4

DRS3

DRS3

Question C.3

La plage d'entrée de l'onduleur étant de 500 V à 820 V, les tensions d'entrées sont correctes même avec des températures extrêmes.(1 point)

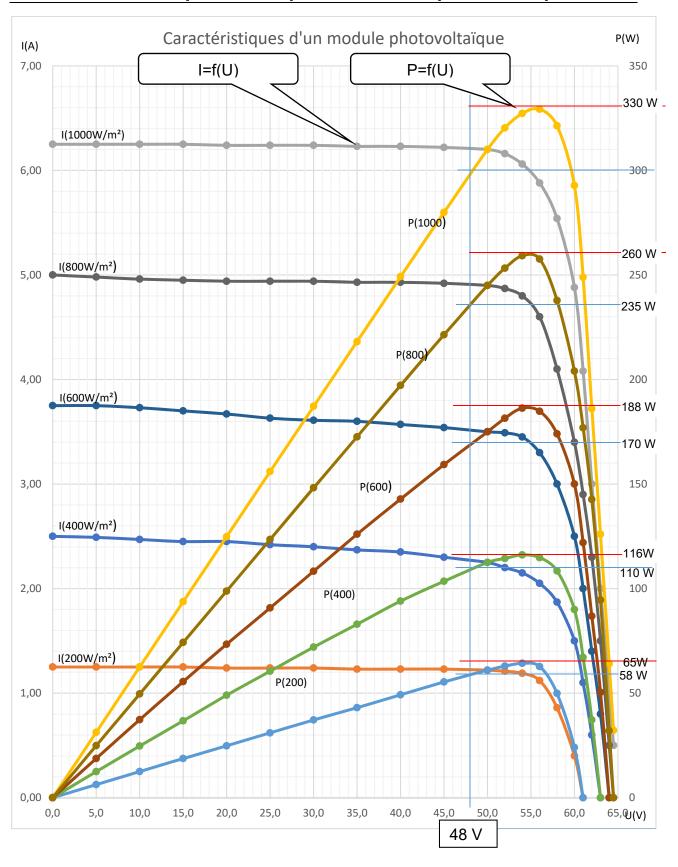
Partie D : Quelle est l'influence des différents rendements des constituants sur le rendement globale de la centrale ? (3,5 points)

Question D.1 $P_L = 3781,44 - 38 = 3743,44 \text{ kW}. (0.5 \text{ point})$

 $P_{OND} = 3743.44 \times 0.98 = 3668.5 \text{ kW}. (0.5 \text{ point})$

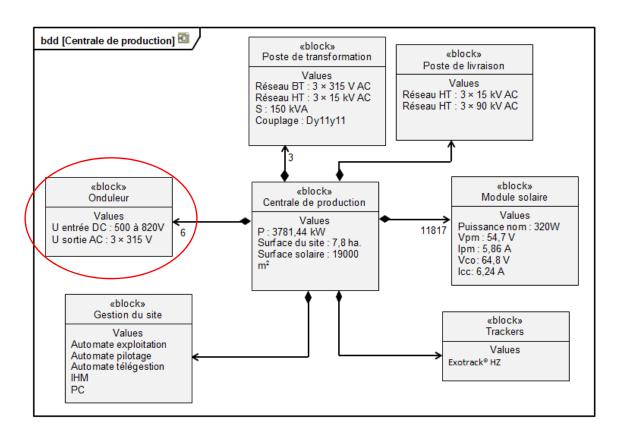
 $P_S = 3668 \times 0.96 = 3521.8 \text{ kW. } (0.5 \text{ point})$

Voir DRS4

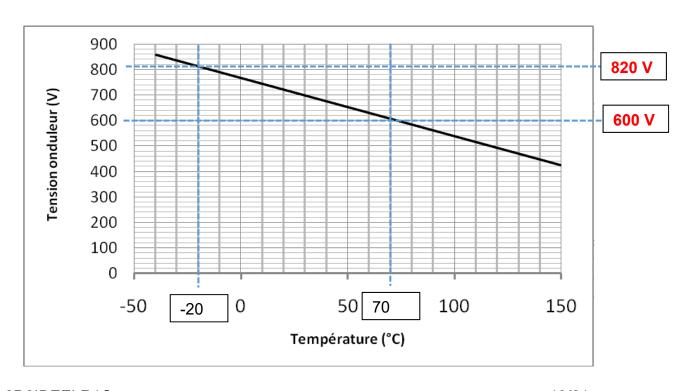

Question D.2 $\eta_G = Ps / Pe = 3521.8 / 19270 = 0.183 \% soit 18.3 \%. (1 point)$

Ce sont les panneaux photovoltaïques qui ont le rendement le plus faible.

 $\eta_{panneaux} = 3781,44 / 19270 = 0,196 \text{ soit } 19,6 \%. (1 \text{ point})$


17/21 22-2D2IDEELR1C

DTS2 : Caractéristiques électrique d'un module photovoltaïque



22-2D2IDEELR1C 18/21

DTS3 : Diagramme de définition de la centrale

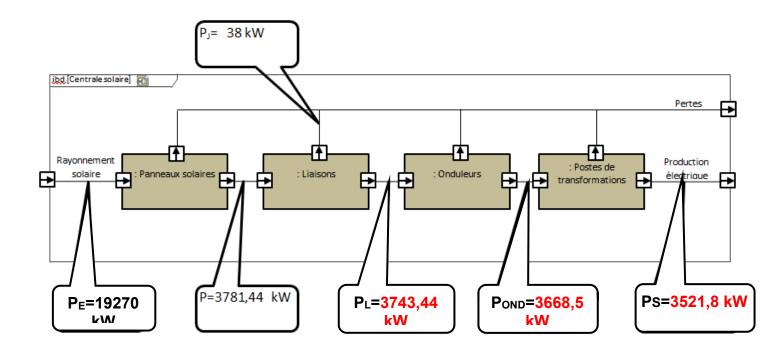
DTS4 : Caractéristique $U = f(T^{\circ})$ à l'entrée de l'onduleur MPPT

22-2D2IDEELR1C 19/21

DOCUMENT RÉPONSE DRS1

Question A.2

En kWh	jan	feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Structure fixe	72	78	110	128	138	142	147	142	123	102	79	69	1330
Trackers un axe	62	73	118	146	168	190	208	184	145	108	66	58	1526


DOCUMENT RÉPONSES DRS2

Questions B.1, B.2, B.3, B.4

	Ensoleillement (W·m ⁻²)	200	400	600	800	1000
Question B.1	Puissance fournie par le PPV avec un onduleur classique (W)	58	110	170	235	300
Question B.2	Puissance fournie par le PPV avec un onduleur MPPT (W)	65	116	188	260	330
Question B.3	Energie fournie par le PPV sur 2h avec un onduleur classique (Wh)	116	220	340	470	600
Question B.4	Energie fournie par le PPV sur 2h avec un onduleur MPPT (Wh)	130	232	376	520	660

22-2D2IDEELR1C 20/21

Question D.1

22-2D2IDEELR1C 21/21