Partie 1 : analyse de la structure préliminaire du E-SPIDER

Objectif : identifier les contraintes qui impactent la conception préliminaire du E-SPIDER du point de vue de la stabilité du véhicule.

Il s'agit dans cette partie de vérifier la conformité aux exigences de fluidité de direction, de la direction axe de pivot d'inclinaison des roues et du principe de pendularité.

Le document DR1 précise l'architecture du véhicule E-SPIDER en phase de conception préliminaire. Le schéma cinématique du DR1 est proche de la géométrie réelle.

Question 1	Compléter le document DR1, sur les figures 1 et 2, en indiquant les noms
DT1, DT2	des principaux sous-ensembles constituant le E-SPIDER.
DR1	

Question 2	Compléter le document DR1 en traçant sur la figure 3, les 2 axes de pivot
DT1, DT3	de direction.
DR1	En prolongeant ces axes jusqu'au niveau du sol, vérifier la conformité à l'exigence de « fluidité de direction ».
	Conclure.

Question 3	Compléter le document DR1 en traçant sur la figure 4, l'axe pivot
DT1, DT3	d'inclinaison de roue.
DR1	En prolongeant cet axe jusqu'au-dessous du niveau du sol vérifier la conformité à l'exigence de « direction axe de pivot d'inclinaison des roues ».
	Conclure.

Question 4	À partir de la position du centre de masse de la nacelle indiquée sur la
DT1, DT3	figure 4 du DR1, préciser si le principe de pendularité est respecté ?
DR1	Préciser l'exigence correspondante.

Partie 2 : respect du rayon de braquage

Objectif : adapter l'amplitude des mouvements de commande de direction pour assurer un rayon de braquage avec un objectif de 3 m en conditions de circulation.

Il s'agit ici de déterminer l'amplitude de rotation de l'ensemble couronne de direction (14) + (12) par rapport à l'axe de la traverse avant (25) noté β.

Question 5	Indiquer sur le DR2 – folio 1/2 les dimensions de la Voie (V) et de
DT3	l'Empattement (E) de l'E-SPIDER schématisé en configuration de virage.
DR2 - folio 1/2	

Question 6	Exprimer, à partir d'une étude géométrique sur le DR2 – folio 1/2, les
DT5	angles α _{avg} et α _{avd} formés respectivement par le plan de symétrie vertical
DR2 - folio 1/2	de la roue avant gauche et de la roue avant droite avec la direction
	longitudinale du véhicule en fonction de V, E et R le rayon de courbure.

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit	22CP42CP	PAGE 1/12
U42 : Conception préliminaire	2201 4201	1 /\OL 1/12

Question 7	Calculer les valeurs de α _{avg} et α _{avd} en degrés.
DT5 DR2 - folio 1/2	Si vous n'êtes pas parvenu à exprimer puis calculer ces angles, mesurer ces angles sur le DR2 – folio 1/2.

Le mécanisme de direction est présenté sur le DT5.

Déterminons maintenant l'angle de rotation nécessaire entre la couronne de direction (14) + (12) et la traverse avant (25) qui permet d'obtenir les angles de braquage α_{avg} et α_{avd} évalués ci-dessus. On indique que le degré de mobilité utile du mécanisme est m_u =1 et le degré de mobilité interne est m_i = 2.

Question 8	Indiquer quels sont les deux degrés de mobilité interne du mécanisme de
DT4, DT5	direction.
Feuille de copie	

Question 9	Calculer le degré d'hyperstaticité du mécanisme de direction.
DT4, DT5	Conclure.
Feuille de copie	Concluie.

Pour déterminer l'angle β de rotation entre la couronne de direction (14) + (12) et la traverse (25) une simulation a été réalisée avec un logiciel de mécanique.

Le résultat de cette analyse est présenté sur la courbe du DR2 - folio 2/2.

Question 10	Déterminer par un tracé sur le graphique du DR2 - folio $2/2$ l'angle β de la
DT4, DT2	couronne correspondant à la valeur de α _{avg} calculée ou mesurée question
DR2 - folio 2/2	7.
Feuille de copie	

Question 11	Toujours sur le graphique du DR2 - folio 2/2, en déduire par un tracé, la
DT4, DT2	valeur de α _{avd} pour cette configuration.
DR2 - folio 2/2 Feuille de copie	Si l'on accepte un écart de 10% par rapport à la valeur calculée question 7, préciser si la valeur de α _{avd} est conforme ?
	Conclure sur la conséquence de cet écart sur les conditions de contact des roues sur le sol ?

Afin d'assurer le faible rayon de braquage, le concepteur a prévu de recourir à une architecture à 4 roues directrices.

Question 12	Représenter en vert sur le DR2 – folio 1/2 l'orientation des roues Ard et
DT4, DT2 DR2 - folio 1/2	Arg du train arrière de l'E-SPIDER (en s'appuyant sur l'exemple des roues avant).
	Quelle remarque peut-on formuler sur le sens de braquage des roues arrière par rapport aux roues avant ?
	Préciser ce que représente le point « I », centre de la courbure pour le mouvement du châssis du E-SPIDER par rapport à la chaussée ?

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit U42 : Conception préliminaire	22CP42CP	PAGE 2/12

Partie 3 : étude d'optimisation du secteur denté de la direction

Objectif: reconcevoir la couronne de direction afin d'optimiser la masse de ce composant ainsi que sa géométrie, pour une fabrication en moyenne série obtenue par fonderie et usinage.

Au-delà des angles de braquage en condition de circulation, les manœuvres du véhicule à très basse vitesse exigent des angles de braquage supérieurs à ceux déterminés en partie 2. L'exigence, liée à l'ergonomie de braquage des roues directrices, permet un débattement du volant de ± 150° pour atteindre des positions de braquage limites à gauche et à droite. Pour respecter l'angle de braquage des roues, la couronne de direction 14 doit avoir un débattement $\beta = \pm 50^{\circ}$ lors des manœuvres à basse vitesse.

Question 13	Le pignon 15 ayant 20 dents, déterminer le nombre de dents que doit avoir
DT4	la couronne.
DR3 – folio 2/2	
Rappel: $D_n = m \times$	Z avec D_n : diamètre primitif en mm;

m : module de la roue dentée en mm ; Z : nombre de dents de la roue dentée ; $p = \pi \times m$ avec p : pas de la denture en mm.

Question 14	Sachant que le module de la denture est m = 3 mm, en déduire le diamètre
DT4	primitif de la couronne (D_p) .
DR3 – folio 2/2	Définir l'intérêt d'avoir une couronne entière ?

Afin d'alléger la couronne, la société SWINCAR souhaite créer une couronne avec seulement un secteur denté.

Question 15	Définir le nombre de dents (en valeur entière) du secteur denté que devra
DT4	comporter cette nouvelle couronne, sachant qu'il est nécessaire d'avoir
DR3 – folio 2/2	une « marge de débattement » d'une dent de chaque côté du secteur denté calculé.

Question 16	Identifier en les coloriant et en les nommant, comme indiqué sur l'exemple
DT4	du DR3 – folio 1/2, les surfaces fonctionnelles utiles de la couronne de
DR3 – folio 1/2	direction, considérée dans son ensemble {12+13+14}.
	Repasser également ces surfaces, quand elles sont visibles, sur le détail de la vue en coupe B-B et C-C issues du DT4 sur ce DR3 – folio 1/2.
	Repasser (approximativement) en couleur les dents à conserver.

Le bureau d'études a imposé, pour la re-conception de cette couronne de direction, des nouvelles positions pour les liaisons avec les rotules des push-pull de direction et des biellettes de direction comme indiquée sur le DR3 - folio 2/2.

Question 17	En respectant les surfaces jugées utiles, les formes nécessaires pour
DT4	assurer la bonne transmission du mouvement et en respectant le procédé
DR3 – folio 2/2	de fabrication, compléter le dessin de définition (à main levée) de la nouvelle couronne de direction sur les deux vues.
	Représenter les dentures de façon simplifiée.
	Indiquer les ajustements et remarques utiles pour bien définir cette pièce.

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit U42 : Conception préliminaire	22CP42CP	PAGE 3/12

Partie 4 : vérification de l'autonomie du véhicule Objectif 1 : vérifier l'exigence de franchissement.

Le constructeur annonce que le franchissement supérieur à 40% de la pente est possible pour ce véhicule avec les caractéristiques techniques et dimensionnelles qu'il offre.

Question 18	Quel est le repère de l'exigence correspondant à cette performance ?
DT3 – folio 2/3	Quel est le diamètre d'une roue ?
DICT	Quel est le coefficient d'adhérence f des roues avec le sol ?

Les motorisations arrières sont davantage sollicitées, lors d'une phase de montée abrupte, que celles situées à l'avant. Cependant, le glissement des roues s'effectuera sur les roues avant dans un premier temps.

Les actions en A et B correspondent aux actions du sol sur les roues, avec adhérence. Le modèle représenté sur DR4 est dans le plan de symétrie du véhicule.

Question 19	Sachant que l'on se place à la limite de l'adhérence en B (roue avant),
DT3	définir les composantes de cette action mécanique du sol (graphiquement,
DR4	Fig. 9, ou par torseur).
	Définir quelle est la relation entre ses composantes en fonction du coefficient d'adhérence.

Afin de valider la performance annoncée, nous allons vérifier si l'adhérence des roues avec le sol permet de ce franchissement.

En isolant le E-SPIDER (1), les actions mécaniques s'exerçant sur ce solide, en équilibre, sont :

- action du sol sur la roue avant en B à la limite de l'adhérence ;
- action du sol sur la roue arrière en A :

$$\{\tau_{A,0\to1}\} = \left\{\overrightarrow{A_{0\to1}}\right\} = \left\{\begin{matrix} X_A & 0 \\ Y_A & 0 \\ 0 & 0 \end{matrix}\right\}_{A,\vec{x},\vec{y}}$$

• action de pesanteur en G :

$$\left\{\tau_{G,pesanteur \to 1}\right\} = \left\{\begin{matrix} \vec{P} \\ \vec{0} \end{matrix}\right\} = \left\{\begin{matrix} P_{\chi} & 0 \\ P_{y} & 0 \\ 0 & 0 \end{matrix}\right\}_{G,\vec{x},\vec{y}}$$

Question 20	Définir la masse du E-SPIDER + pilote.
DT3 DR4	Déterminer le poids \vec{P} de cet ensemble et ses composantes (rappel g = 9,81 m.s ⁻²).
	Tracer cet effort à l'échelle sur le document réponse, dans le repère du DR4 (Fig. 10).

Question 21	En isolant le E-SPIDER (1), appliquer le théorème de la résultante statique
DT3	et le théorème du moment statique en A afin de déterminer les
DR4	composantes des actions en A et B par le calcul ou graphiquement avec les justifications qui conviennent.
	Représenter vos résultats sur le DR4 (Fig. 10).

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit U42 : Conception préliminaire	22CP42CP	PAGE 4/12

Question 22	Vérifier si l'adhérence des roues permet de franchir cette pente.
DT3	Justifier votre réponse.
DR4	Justiner votre reponse.

Si l'adhérence est respectée, il est important également de vérifier que le couple fourni par les moteurs permet le déplacement le long de cette pente.

En isolant « <u>une</u> roue avant » (RAV) et en faisant l'hypothèse que les actions se transmettent uniquement dans le plan (\vec{x}, \vec{y}) , les actions mécaniques qui lui sont appliquées sont :

action dans la liaison pivot en O' entre 1 et RAV :

$$\left\{\tau_{O',1\to RAV}\right\} = \left\{\overrightarrow{O'_{1\to RAV}}\right\} = \left\{\begin{matrix} X_{O'} & 0 \\ Y_{O'} & 0 \\ 0 & 0 \end{matrix}\right\}_{O',\vec{x},\vec{V}}$$

• couple moteur s'exerçant en O':

$$\{\tau_{mot \to RAV}\} = \left\{ \overrightarrow{0} \atop \overrightarrow{C_m} \right\} = \left\{ \begin{matrix} 0 & 0 \\ 0 & 0 \\ 0 & C_m \end{matrix} \right\}_{O', \vec{x}, \vec{V}}$$

• action du sol sur la roue en B :

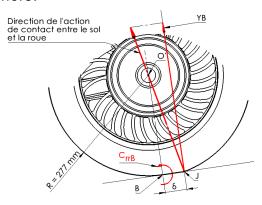
$$\left\{\tau_{B,0\to RAV}\right\} = \left\{\begin{matrix} \overrightarrow{B_{0\to 1}} \\ \overrightarrow{0} \end{matrix}\right\} = \left\{\begin{matrix} X_B & 0 \\ Y_B & 0 \\ 0 & 0 \end{matrix}\right\}_{B,\vec{x},\vec{y}}$$

avec $X_B = 303 \ N$ et $Y_B = 505 \ N$ (quelles que soient les valeurs trouvées précédemment).

Question 23	En isolant la roue avant (RAV) et en appliquant le théorème du moment
DT3	statique en O', déterminer le couple moteur à fournir (Fig. 9).
DR4, Fig. 9.	A partir des données constructeur, le E-SPIDER a-t-il assez de couple pour franchir cette pente ? Justifier votre réponse.

Objectif 2 : vérifier l'exigence d'autonomie (ld 1.2.)

Le E-SPIDER a été conçu pour évoluer essentiellement en milieu naturel. Pour dimensionner les batteries embarquées, il est nécessaire d'élaborer un modèle de comportement proche de la réalité en faisant les hypothèses suivantes :

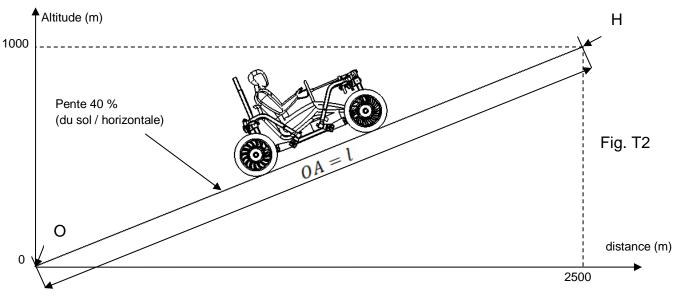

- les effets d'inerties dues aux accélérations seront négligés pour un parcours de randonnée sur chemin peu escarpé.
- les actions mécaniques s'appliquant sur le véhicule seront simplifiées comme suit :
 - o action extérieure de la pesanteur appliquée au centre de masse G : $\overrightarrow{P_{pes/E-spider}}$;
 - o action extérieure de résistance au roulement : un couple résistant au point de contact (A et B) des roues avec le sol $\overrightarrow{C_{rr}}$;
 - o action intérieure du couple moteur sur les roues en A et B : $\overrightarrow{C_m}$;
 - o action extérieure de l'air (trainée aérodynamique) ramenée en $G: \overrightarrow{T_{air/E-spider}}:$ négligée au vu des faibles vitesses.

Remarques:

Le couple de résistance au roulement s'applique en chacune des roues. Il est proportionnel à la composante en y de la réaction du sol sur la roue et du décalage « en avant » du point de contact de la roue sur le sol. La figure T1, ci-après, illustre la déformation de la roue et

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit U42 : Conception préliminaire	22CP42CP	PAGE 5/12

de ce décalage sur la roue avant (en B). Ce phénomène se produit également sur les roues arrière.



Pour un confort de pilotage, les roues de 20" \times 2,125" sont gonflées à 2 bars, donnant un décalage δ = 10 mm.

Le couple de résistance au roulement est défini sur les roues avant : $C_{rr,B} = \delta \times Y_B$, avec Y_B : composante normale au contact de l'action du sol sur la roue.

Ce phénomène s'applique de manière identique sur les roues arrière avec $C_{rr,A} = \delta \times Y_A$.

La figure T2 ci-dessous va permettre d'estimer la consommation énergétique pour une pente de 40 % (cas le plus défavorable) sur les 1000 m de dénivellé énoncé dans les exigences de conception.

Question 24Déterminer la distance de déplacement entre les points O et H : l (en m)Feuille de copiecorrespondant au déplacement du véhicule dans cette pente.

Rappel:

Théorème de l'énergie cinétique :

$$\Delta Ec_{,O \to H} = \sum W_{ext,O \to H} + \sum W_{int,O \to H}$$

avec:

 $\Delta Ec_{O\rightarrow H}$: variation de l'énergie cinétique entre les positions O et H;

 $\sum W_{ext,O \to H}$ = somme des travaux des actions mécaniques extérieures pour aller de la position O vers la position H ;

 $\sum W_{int,O\to H}$ = somme des travaux des actions mécaniques intérieures pour aller de la position O vers la position H.

Nous isolons le véhicule qui se déplace entre deux positions d'arrêt : $\Delta E c_{,O \to H} = 0$.

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit U42 : Conception préliminaire	22CP42CP	PAGE 6/12

Les travaux extérieurs sont uniquement dûs :

Feuille de copie

- à la force de pesanteur : $W_{\vec{P},O\to H}$;
- au couple de résistance au roulement sur chacune des roues: $W_{\overline{\mathsf{C}_{\mathrm{rr},\mathrm{B}}}}$ et $W_{\overline{\mathsf{C}_{\mathrm{rr},\mathrm{A}}}}$.

Le travail intérieur est celui fourni par les moteurs : $W_{moteur} = Cm \times \theta_{O \to H}$ avec $\theta_{O \to H}$ angle en radian effectué par les roues pour aller de O vers H.

Question 25	Calculer le travail du poids $W_{\vec{P},O\to H}$.
Feuille de copie	Conclure, si le travail est moteur ou résistant en énergie ?

Quelles que soient les valeurs calculées dans la partie précédente, sur les roues arrière (en A) s'exercent une composante normale à la pente $Y_A = 1800 \, N$ et sur les roues avant en B $Y_B = 1000 \, N$.

Question 26 Feuille de copie	Déterminer l'angle $\theta_{O \to H}$ en radians correspondant à l'angle effectué par une roue pour passer du point O au point H.
	Calculer les couples de résistance au roulement $C_{rr,B}$ et $C_{rr,A}$.
	Calculer le travail du couple résistant sur chacune des roues $W_{\overline{C_{rr,A}}}$ et $W_{\overline{C_{rr,A}}}$
	Conclure sur les travaux, sont-ils moteurs ou résistants en énergie ?
Question 27	En appliquant le théorème de l'énergie cinétique, en déduire l'expression
Feuille de copie	du travail des 4 moteurs en fonction des autres travaux en présence.
	Calculer ce travail en Joules.
Question 28	Sachant que le rendement des moteurs est de 82.5%, déterminer leur
Feuille de copie	consommation énergétique.
Question 29	Définir le pourcentage d'énergie, stockée dans les batteries, utilisée par
DT1 - folio 4/4	les moteurs pour franchir cette pente ?

Lors d'un déplacement à plat sur les roues arrière (en A) s'exercent une composante normale à la pente $Y_A = 1600 \ N$ et sur les roues avant en B $Y_B = 1450 \ N$.

Question 30	En faisant l'hypothèse que le reste du parcours (jusqu'à 50 km) se fasse à
Feuille de copie	plat et à vitesse constante, déterminer le travail que devra fournir les moteurs pour se déplacer sur les 47.3 km restant (environ).
	Préciser si l'autonomie restante des batteries permet ce déplacement ?
Question 31	Citer au moins trois paramètres influant sur la consommation énergétique
Feuille de copie	du véhicule.
	<u>l</u>

	Feuille de copie	ceux qui permettraient d'avoir une influence positive sur l'autonomie de véhicule et sur quelle topologie de terrain ?	L
B.	TS CONCEPTION	LDE PRODUITS INDUSTRIELS DOSSIER TRAVAIL SESSION 2022	

En analysant les travaux évoqués précédemment, préciser quels sont

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit U42 : Conception préliminaire	22CP42CP	PAGE 7/12

Partie 5 : étude comparative de la suspension

Objectif : choisir et représenter une solution efficace pour répondre à l'exigence de confort lié à l'amortissement. (l.d.1.1.7).

L'évolution de la suspension actuelle est une piste majeure dans cette phase de reconception. Actuellement, un « Rosta » est utilisé pour amortir le mouvement entre la jambe cintrée et le bras de roue.

Dans sa démarche, le bureau d'études souhaite comparer diverses solutions pour faire le meilleur choix. Elle s'appuie sur le tableau comparatif du DT6.

Question 33	Définir à partir de quel moment on peut considérer qu'il y a amortissement		
DT6	sur les 3 courbes de performances fournies dans le DT6 ?		
Feuille de copie	Comparer ces courbes en déterminant le nombre d'oscillations avant amortissement.		

Question 34	Préciser les critères au regard des exigences, qui permettent de choisir
DT6	principalement l'amortisseur ? Justifier votre réponse en argumentant.
Feuille de copie	

Le choix se porte finalement vers un amortisseur du type DT DNM DV-22AR 165 x 35. La re-conception nécessite une pièce d'interface pour la liaison pivot entre la jambe cintrée et le bras de roue. Sur cette pièce, une chape pour la partie haute de l'amortisseur (côté système de réglage du rebond) a déjà été conçue (DR5).

Pour réduire les coûts de fabrication, la chape de liaison entre l'amortisseur et le bras de roue sera en EN – AW 1350 A, obtenue par découpe et pliage (épaisseur 6 mm).

Lors de son implantation sur le E-SPIDER, sans présence du pilote, l'amortisseur sera déjà comprimé de 15 mm.

Question 35	En fonction des données sur l'amortisseur et de la chape à réaliser, placer	
DT6	l'axe d'articulation de l'amortisseur et la chape par rapport à la surface	
DR5	supérieure du bras de roue.	
	Indiquer par une cote cette distance.	

Question 36	Représenter par un arc de cercle la position de l'axe de la chape.
DT6 DR5	En déduire la position de l'axe de la chape et tracer l'axe de l'amortisseur.

Question 37	Dessiner à main levée la liaison pivot glissant entre la chape et		
DT6	l'amortisseur en utilisant les composants donnés sur le DT6.		
DR5	Coter les ajustements nécessaires.		
	Représenter en perspective la chape.		
	L'amortisseur sera représenté de façon simplifiée.		

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit	22CP42CP	PAGE 8/12
U42 : Conception préliminaire	2201 4201	1 AGE 0/12

Partie 6 : optimisation de la traverse

Objectif : minimiser la masse de la traverse qui constitue une pièce essentielle de la structure du E-SPIDER en optimisant sa résistance et sa rigidité.

Objectif intermédiaire 1 : vérification de la résistance de la traverse actuelle.

Hypothèse: on suppose la répartition des charges des roues sur le sol identique et symétrique sur les quatre roues. Le matériau de la traverse est un alliage d'aluminium EN AW 2024 dont la limite élastique est Re= 145 MPa.

Données:

- le poids de l'ensemble E-SPIDER + Pilote = 3040 N ;
- l'accélération de pesanteur sera prise égale à 9,81m.s⁻².

Question 38	Sur le DR6, représenter par un vecteur au point C la réaction du sol sur la
DT3, DT4 <i>DR6</i>	roue avant droite de l'E-SPIDER $\overrightarrow{C_{Sol \to RAV}}$.

Question 39	Sur le DR6, reporter la valeur de la demie voie de l'E-SPIDER.	
DT3, DT4 DR6	Ecrire la forme du torseur de cohésion en A dans la demi-traverse OB considérée comme une poutre encastrée en O.	

Question 40	Identifier la sollicitation à laquelle est soumise la demi-traverse OB.
DT3, DT4	
DR6	

Question 41	Exprimer puis calculer le moment fléchissant M _{fz} en A.
DT3, DT4 DR6	Tracer le diagramme du moment fléchissant dans la poutre OB.

Question 42	Détailler puis calculer le moment quadratique de la section de poutre au
DT3, DT4	point A. On négligera les congés.
DR6	

Quelle que soit la valeur trouvée précédemment vous prendrez : I_{Gz}= 224540 mm⁴.

Question 43	Exprimer la contrainte normale maximale de flexion en A.
DT3, DT4 DR6	Calculer la contrainte normale maximale de flexion en A.

Question 44	Exprimer le coefficient de sécurité dans la section A.	
DT3, DT4 <i>DR6</i>	Calculer le coefficient de sécurité dans la section A.	
DINO	Conclure sur la pertinence du coefficient de sécurité ? Justifier votre	
	réponse.	

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit U42 : Conception préliminaire	22CP42CP	PAGE 9/12

Objectif intermédiaire 2 : optimisation topologique de la traverse.

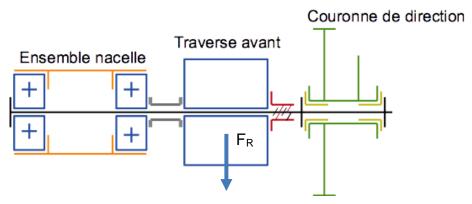
Sur le DT7 est présenté le résultat géométrique obtenu à partir d'une étude d'optimisation topologique de la traverse soumise aux mêmes conditions de chargement que précédemment avec le même matériau.

La masse de la nouvelle traverse est de 3,6 kg (masse de la version initiale = 4,4 kg).

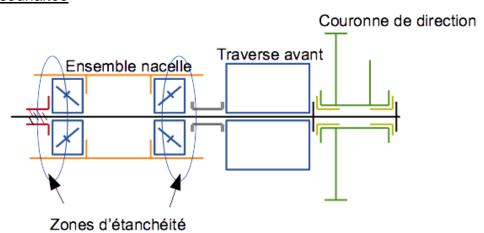
Question 45	Relever la valeur de la contrainte normale équivalente maximale.	
DT4, DT7 Feuille de copie	Calculer le coefficient de sécurité de la traverse optimisée.	
T came ac copie	Donner un procédé de fabrication qui permettrait d'arriver à ce résultat de forme. Justifier votre réponse en ajoutant les détails techniques.	

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit	22CP42CP	PAGE 10/12
U42 : Conception préliminaire	2201 4201	1 AOL 10/12

Partie 7 : re-conception de la liaison pivot entre l'ensemble nacelle et la traverse avant


Objectif: optimiser la conception de la liaison par roulements.

L'effort radial le plus important F_R provient de la traverse, qui lui est transmis par les jambes de roues. Cet effort est lié à l'arbre et est situé en porte à faux par rapport au montage de roulements.


Il est proposé de remplacer les roulements à billes à contact radial utilisés par des roulements à rouleaux coniques. Ce type de roulements non étanches nécessite la mise en place de joints d'étanchéité. L'ordre de montage des pièces est par cette évolution facilité.

Les schémas technologiques ci-dessous présentent l'évolution retenue :

Configuration actuelle

Evolution souhaitée

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit	22CP42CP	PAGE 11/12
U42 : Conception préliminaire	22014201	FAGL 11/12

Question 46	Donner deux arguments qui justifient un montage en « O ».
DT4	
Feuille de copie	

Le remplacement des roulements à billes par des roulements à rouleaux coniques se fait avec un diamètre d'axe conservé de 30 mm.

Question 47	Donner la référence des roulements à rouleaux coniques à installer pour		
DT4, DT8	respecter les conditions d'encombrement.		
Feuille de copie	Les roulements retenus sont-ils aptes à résister aux conditions de chargement ? Justifier votre réponse.		

Question 48	Sur le document DR7, définir à main levée l'ensemble des solutions
DT4, DT8	retenues sur la vue en coupe ébauchée.
DR7	Le dessin permettra de montrer :
	 le montage de roulements ; l'étanchéité du montage de roulements ; les arrêts axiaux de la traverse et de la couronne de direction.
	Des vues complémentaires peuvent être ajoutées.

Question 49	Donner la référence de l'écrou de serrage. Justifier votre choix.		
DT4, DT8 Feuille de copie	Donner la référence du joint d'étanchéité. Justifier votre choix.		
, came ac copie	Dessiner à main levée l'allure de l'axe (25) pour accueillir tous les éléments : couronne de direction, traverse avant, roulements, joints d'étanchéité et écrou.		

Question 50	Indiquer sur le dessin du DR7 les conditions fonctionnelles nécessaires
DT4, DT8	aux solutions proposées (ajustements/tolérances, jeux fonctionnels, états
DR7	de surfaces).
Feuille de copie	Caractériser les ajustements.

BTS CONCEPTION DE PRODUITS INDUSTRIELS	DOSSIER TRAVAIL	SESSION 2022
E4 : Étude préliminaire de produit	22CP42CP	PAGE 12/12
U42 : Conception préliminaire	22014201	FAGL 12/12