Académie :	Session:
Examen:	Série :
Spécialité/option :	Repère de l'épreuve :
Epreuve/sous épreuve :	
NOM:	
(en majuscule, suivi s'il y a lieu, du nom d'épouse)	
	N° du candidat
Né(e) le :	(le numéro est celui qui figure sur la convocation ou liste d'appel)
Appréciat	on du correcteur
Note:	
	Examen: Spécialité/option: Epreuve/sous épreuve: NOM: (en majuscule, suivi s'il y a lieu, du nom d'épouse) Prénoms: Né(e) le: Appréciati

Il est interdit aux candidats de signer leur composition ou d'y mettre un signe quelconque pouvant indiquer sa provenance.

Baccalauréat Professionnel « Maintenance des Équipements Industriels »

ÉPREUVE E1 : Épreuve scientifique et technique Sous-épreuve E11 : Analyse et exploitation de données techniques

SESSION 2021

A partir d'un dysfonctionnement identifié sur un bien industriel pluritechnologique, l'épreuve permet de vérifier que le candidat a acquis tout ou partie des compétences suivantes :

- CP 2.1 Analyser le fonctionnement et l'organisation d'un système,
- CP 2.2 Analyser les solutions mécaniques réalisant les fonctions opératives.

Les supports retenus sont liés à la spécialité Maintenance des Équipements Industriels.

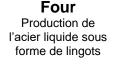
Ce sujet comporte : 15 pages

Dossier présentation Dossier questions-réponses pages 2/15 à 4/15 pages 5/15 à 15/15

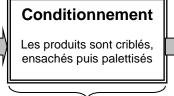
Matériel autorisé :

- L'usage de calculatrice avec mode examen actif est autorisé.
 L'usage de calculatrice sans mémoire, « type collège » est autorisé.
 (Circulaire n°2015-178 du 1^{er} octobre 2015).
- Le guide du dessinateur industriel.
- Matériel de géométrie (compas, équerre, rapporteur).

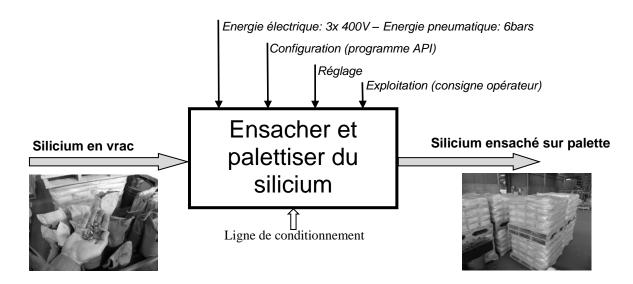
BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 1/15


DOSSIER PRÉSENTATION

I - Présentation de la ligne de production

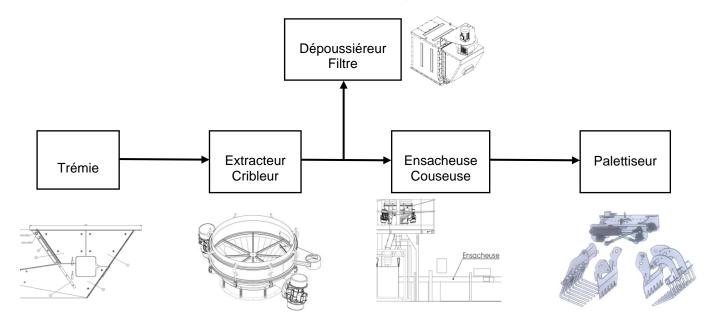

Premier producteur mondial de silicium et de ses alliages, le site de production fournit de grands groupes industriels pour la chimie, l'automobile, l'informatique et pour l'élaboration de panneaux solaires.

Synoptique de la ligne de production


Expédition des produits finis

Sujet de l'étude

II - Présentation de la ligne de conditionnement


L'objet de notre étude est cette ligne automatisée de conditionnement qui réalise les opérations suivantes :

- Remplissage de la trémie de matière première
- Extraction et criblage du silicium
- Dosage et ensachage du produit
- Couture des sacs
- Palettisation des sacs (15 ou 35 kg)

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 2/15

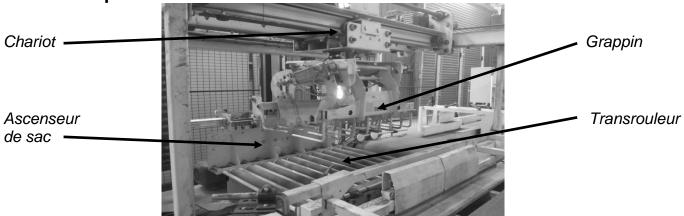
III - Présentation des sous-ensembles de la ligne de conditionnement

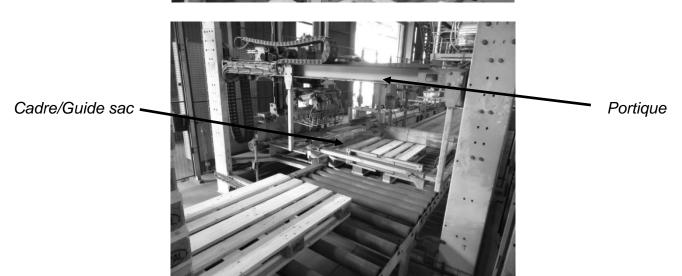
Ces appareils ont été élaborés par 3 constructeurs différents :

- PROMECA pour la trémie et cribleur
- ELPE pour l'ensacheuse
- NEWTEC pour le palettiseur

Trémie : Elle a pour fonction d'alimenter l'ensacheuse en divers produits.

Extracteur/cribleur: Il a pour fonction de trier le produit afin de respecter la granulométrie demandée.


Ensacheuse/couseuse: Elle remplit et coud les sacs avant leur palettisation.


BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR: 3/15

Palettiseur (en fin de ligne) : Il a pour rôle le conditionnement des sacs en palette.

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 4/15

DOSSIER QUESTIONS-RÉPONSES

Problématique générale :

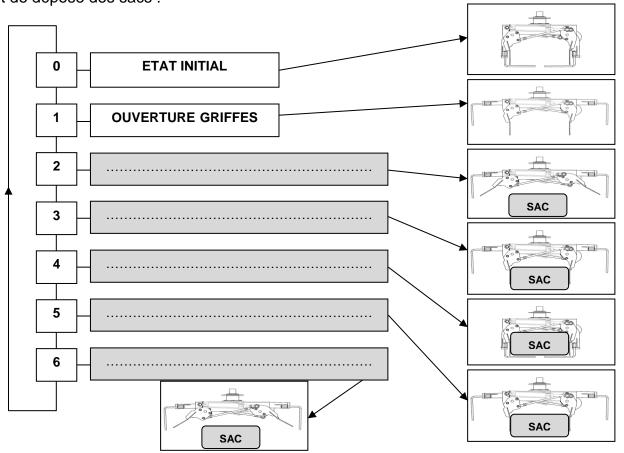
Le palettiseur ne pouvant suivre le rythme de travail de l'ensacheuse, des arrêts intempestifs stoppent la production et dans une démarche de réduction des coûts énergétiques dans laquelle l'entreprise s'est engagée (Norme ISO 50001), le bureau d'étude propose d'augmenter la cadence de fonctionnement du palettiseur.

Solution retenue: Le préhenseur doit pouvoir prendre deux sacs au lieu d'un seul actuellement.

Cette solution permettra de gagner du temps de cycle sur le palettiseur, sur l'ensemble de la ligne de production de conditionnement et donc moins consommer.

Q1	Analyse fonctionnelle	DTR 2/17, 4/17 et 14/17	Temps conseillé : 35 min	Nbre pts :/30
Q1.1 :	: Identifier la fonction globale	e du sous-ensemble paletti	seur :	
	: Indiquer quelles sont les m saires au fonctionnement du	•	MOE) sortante (MOS)	et les énergies (W)
	MOE : MOS : W :			•••••
Q1.3 : suivar	: Identifier, en vous servar nts :	nt du diagramme FAST, le	es fonctions seconda	aires des éléments
	Grappin:			
Q1.4	: A l'aide du diagramme FA	ST, cocher dans le tablea	u suivant les mouver	ments ainsi que les

	MOUVEMENTS et AXES						
ELEMENTS	TRANSLATION suivant l'axe				ROTATION suivant l'axe		
	Х	Υ	Z		Х	Υ	Z
Ascenseur de sacs							
Portique transversal							
Portique longitudinal							
Chariot							

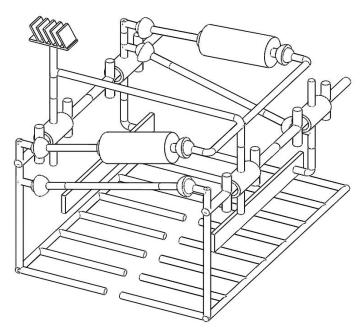

axes suivant lesquels les éléments peuvent déplacer les sacs de silicium :

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 5/15

Q1.5 : A l'aide du diagramme FAST, compléter le tableau suivant :

ELEMENT « GRAPPIN »		
FONCTION NIVEAU 1	FONCTION NIVEAU 2	SOLUTION TECHNOLOGIQUE
		Vérin de serrage
Saisir et déposer les sacs		Paliers auto-aligneurs
	Serrer les deux griffes simultanément	
	Transformer une énergie pneumatique en énergie mécanique	
Centrer les sacs	Guider en rotation autour de l'axe X	
		Bielle réglable

Q1.6 : A l'aide du dossier technique et ressources, **compléter** le chronogramme suivant du cycle de prise et de dépose des sacs :

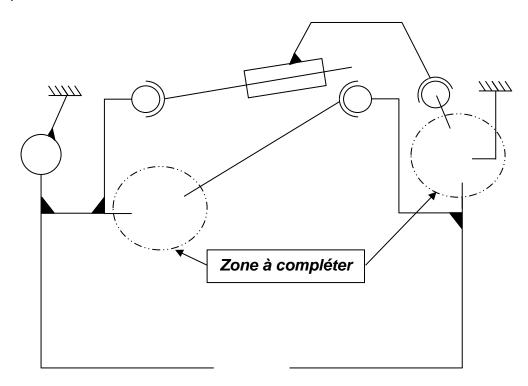

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 6/15

Q2	Analyse	structurelle	du	DTR	5/17	à	8/17,	Temps conseillé :	Nbre pts :/40
QZ	grappin			13/17	et 14/	17		50 min	Νοιε ριδ/40

Q2.1 : Compléter les classes d'équivalence du sous-système « GRAPPIN » :

SE1 = { 1;; 8; 9; 15b; 17b; 26; 27; 28; 29}	(Noir)
SE2 = { 14 ; }	(Vert)
SE3 = {; 17a }	(Vert)
SE4 = { 18a }	(Rouge)
SE5 = { 19a }	(Rouge)
SE6 = { 20 ; 21a ;}	(Bleu)
SE7 = { 23 ; ; }	(Bleu)
SE8 = { 10 ; ; 19b ; 28 }	(Blanc)
SE9 = { 12 ; 24b ;}	(Blanc)
SE10 = { 11 ;; 18b ; 22b ; 26c ; 27 ; 28 }	(Jaune)
SE11 = { 13 ; ; 21b ; 26b ; 27 }	(Jaune)

Q2.2 : Repérer et Colorier sur le schéma cinématique suivant du GRAPPIN, les classes d'équivalence précédentes :

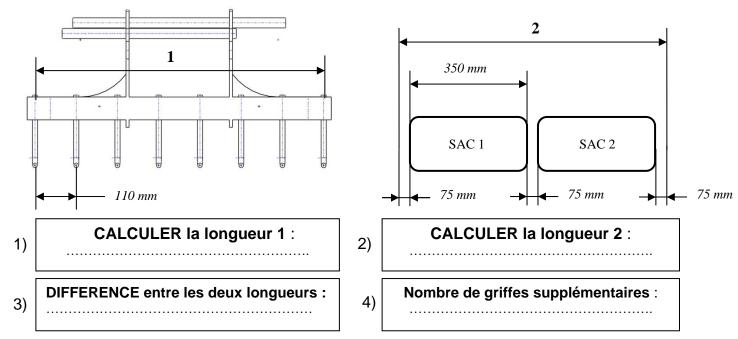


BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 7/15

Q2.3 : Compléter le tableau des liaisons cinématique ci-dessous, **nommer** et **représenter** le symbole normalisé de ces liaisons :

NOM de la liaison	Schéma 2D	Schéma 3D	Deg	ré de lib	erté	
		ı Z 2 X X V V	l (x	Translation. 0 0 0	Rotation 0 1 0	on
		Z Z	Axe $ \begin{cases} X \\ Y \\ Z \end{cases}$	Translation. 0 1 0	Rotation 0 1 0	on
		Z 2 2 V	Axe $ \begin{cases} X \\ Y \\ Z \end{cases}$		Rotation 1 1 1	on
Parties à con	npléter		•			

Q2.4 : Compléter le schéma cinématique suivant du sous-système Griffes en y plaçant les liaisons cinématique manquante :



BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 8/15

Q3	Etude de la modification	DTR 9/17 à 13/17	Temps conseillé : 35 min	Nbre pts :/30
----	--------------------------	------------------	-----------------------------	---------------

Dans une démarche de réduction des coûts énergétiques dans laquelle l'entreprise s'est engagée (Norme ISO 50001), le bureau d'étude propose d'augmenter la capacité de préhension à 2 sacs.

Q3.1 : Calculer le nombre de griffes supplémentaires pour la préhension de deux sacs en fonction des données fournies ci-contre. (ATTENTION, l'espace entre deux griffes doit rester dimensionné à 110 mm).

Le bureau d'étude propose de concevoir un montage amovible se montant de chaque côté des deux griffes (4 montages). voir DTR 9/17

Q3.2 : Calcul de la longueur de la partie du tenon (repère 40) permettant l'encastrement du montage dans le tube existant.

Q3.2.1 : Calculer à l'aide du plan DTR 11/17 la cote A entre l'axe de la dernière griffe le bord du tube :

et le bord du tube :

Cote A :(mm)

Q3.2.2 : Calculer la côte B sur le plan DTR 11/17 en fonction des préconisations ci-dessous : Goupille positionnée à distance égale de chaque griffe

Distance entre l'axe de perçage pour la goupille (rep42) et l'extrémité droite du tenon (rep40) : 20mm

Cote B :(mm)

Pour se laisser une marge d'erreur nous considérerons pour la suite que la cote « A » est de 25 mm.

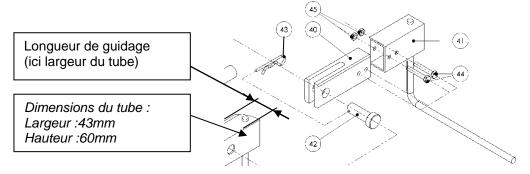
BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient : 3	DQR : 9/15

Q3.2 : Calculer la longueur C du tube support de la griffe supplémentaire repère 41 en fonction des informations ci-dessous :

Distance entre l'axe de la griffe supplémentaire et le bord du tube : 17 mm

Cote C :(mm)

Q3.3 : Calculer la longueur totale du tenon repère 40 (encastrement dans le tube support de griffe supplémentaire repère 41) :


Distance du bord du tube support de griffe supplémentaire au premier perçage : 12 mm Entraxe entre les deux perçages : 20 mm

Distance du bord du tenon (coté griffe supplémentaire) au deuxième perçage : 12 mm

Cote D:(mm)

(Q 4	Dimensionnement de l'axe et de sa goupille	DTR 17/17	Temps conseillé : 50 min	Nbre pts :/45
		sa goupine		30 111111	

Le but de cette étude est de calculer les dimensions de l'axe (42) et de dimensionner la goupille (43) (on vous demande de détailler tous vos calculs).

- Le diamètre de l'axe doit respecter la règle des guidages : Dimension de guidage = (2xd)
- L'axe doit disposer d'un arrêt en translation (goupille)
- L'axe et la goupille doivent pouvoir être retirés à la main
- Diamètres forets disponibles à l'atelier : 3,5 4 6 8 10 13 15 18 20 22

Q4.1 : Calculer le diamètre de l'axe (42) en fonction des informations ci-dessus : (longueur de guidage).

Diamètre de l'axe : d =.....(mm)

Q4.2 : Donner la désignation de la goupille (43) en fonction des informations ci-dessus :

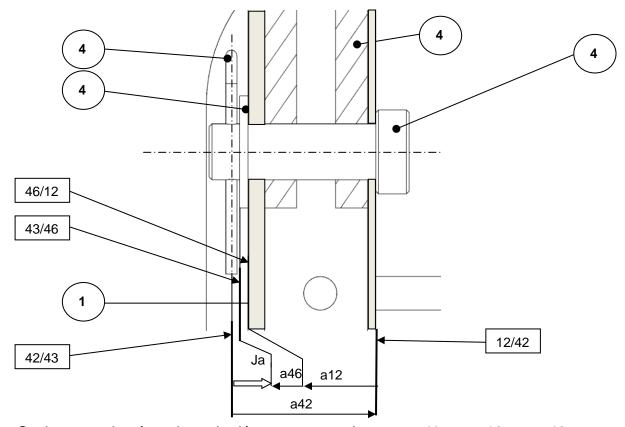
Désignation de la goupille :

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 10/15

Q4.3 : Donner la désignation de la rondelle d'appui (46) en fonction des indications suivantes :

Le bureau d'étude a décidé après calcul qu'un axe de diamètre 20 mm serait suffisant.

- Diamètre de l'axe : 20 mm


Taille normale

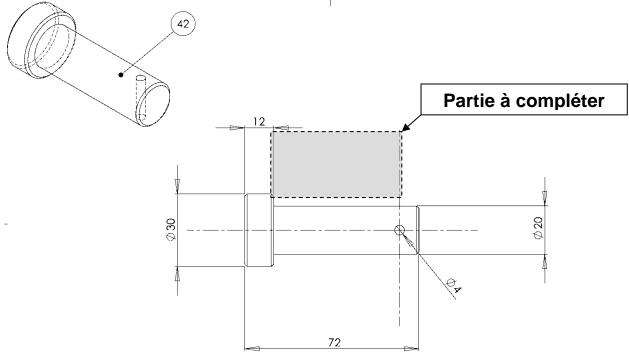
Désignation de la rondelle :

Q4.4 : Calculer les cotes maxi et min de perçage de la goupille bêta (43) sur l'axe (42) en réalisant la chaîne de cotes avec les indications suivantes :

On considère l'axe de la goupille (43) comme la surface terminale de a42. Le jeu fonctionnel entre l'axe de la goupille bêta (43) et la rondelle d'appui (46) est : Jamini=2^{+0,5} et Jamaxi=2⁺¹

(Rondelle 46) a46_{maxi}=3; a46_{mini}=2,8 (Tube 12) a12_{maxi}=43,1; a12_{mini}=43 et a42 (cote de perçage de la goupille).

Sachant que les équations de départ sont :


 $Ja_{maxi} = -a46_{mini} - a12_{mini} + a42_{maxi}$ $Ja_{mini} = -a46_{maxi} - a12_{maxi} + a42_{mini}$

+ a42 _{maxi} =

+ a42 _{mini} =

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 11/15

Q4.5 : NOTER sur le plan de définition de l'axe 42 ci-dessous la cote a42 avec sa tolérance :

Q5	Etude statique de la modification	DTR 13/17, 15/17et 16/17	Temps conseillé : 35 min	Nbre pts :/30
----	-----------------------------------	-----------------------------	-----------------------------	---------------

Q5.1 : Déterminer le poids des 2 sacs (chaque sac a une masse maxi de 35 kg) et on considère $g=10 \text{ m/s}^2$:

Q5.2 : Déterminer le poids de l'ensemble sacs+grappin sachant que le poids du sous-ensemble grappin est de 500N :

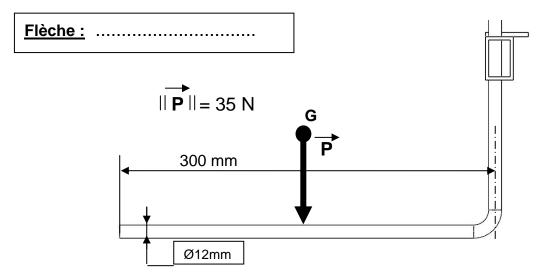
```
P<sub>total</sub>= .....(N)
```

Q5.3 : Calculer le poids total de sécurité (données : coefficient de sécurité à appliquer s=2,5) :

```
P_{\text{totalsecurite}} = P_{\text{total}} \times S = \dots (N)
```

Q5.4: Relever sur DTR 16/17 la valeur de la charge radiale dynamique C du roulement (rep30) :

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient : 3	DQR : 12/15


Q5.5 : Calculer alors la charge dynamique axiale (FA) tolérée par le roulement (rep30) :

Charge dynamique axiale Fa=

Q5.6 : Comparer la charge axiale tolérée (FA) avec le poids total de sécurité (Ptotalsecurite) :

Comparaison :	
	•

Q5.7: Trouver, à l'aide du DTR 15/17, la flèche de la flexion d'une griffe en fonction des données suivantes :

Q5.8: Le constructeur du palettiseur préconise une flèche maximum de 2 mm pour éviter toute déformation permanente des griffes.

Cette modification respecte-t-elle cette préconisation ? Entourez la bonne réponse et justifiez-la :

Oui / Non : Justification :

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 13/15

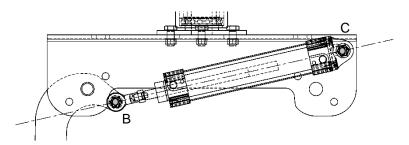
Q6	Etude statique de la modification		Temps conseillé : 35 min	Nbre pts :/25
----	-----------------------------------	--	-----------------------------	---------------

Le poids des sacs ayant doublé le bureau d'étude vous charge de vérifier si le vérin est toujours apte à déposer les sacs sans difficultés.

Q6.1 : Calculer l'effort maximum que peut exercer le vérin des griffes lors de l'ouverture de celles-ci :

Données : Pression du réseau = 6 bars Diamètre du piston = 63 mm

 $Fgmax = P \times S \qquad S = \pi \times r^2$

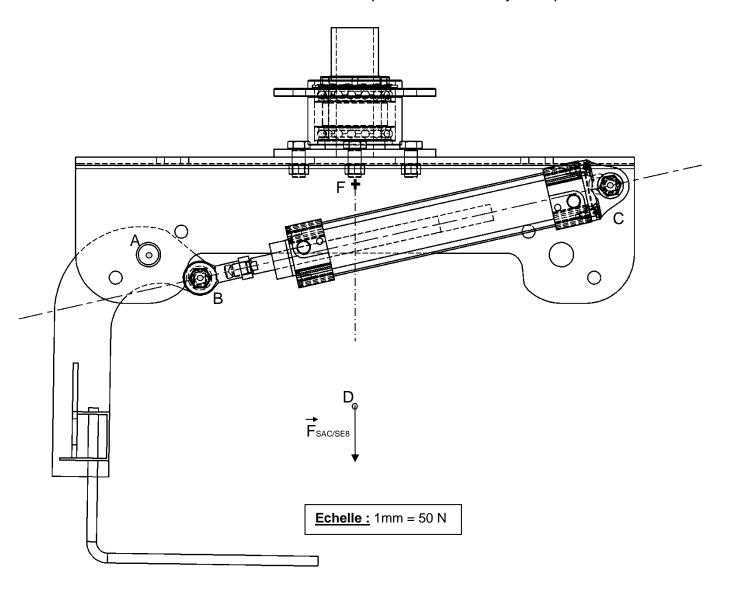

Fgmax en daN P en bars S en cm²

$$\mathsf{F} g_{\mathsf{max}} = \dots \qquad \qquad \mathsf{daN}$$

<u>Hypothèses pour l'étude statique</u> : Le système d'ouverture des griffes est considéré comme symétrique donc l'étude ne portera que sur une seule griffe.

Q6.2: On isole la tige du vérin SE4:

Tracer en rouge ci-dessous la direction des forces B_{SE8/SE4} et F_{Fluide/SE4}.


Q6.3: On isole la Griffe droite SE8:

Compléter le tableau du bilan des forces qui s'exercent sur le sous-ensemble S8 :

Nom	Point d'application	Direction	Sens	Intensité (N)
→	F			700 N
F _{SAC/SE8}		ļ	▼	
Ase1/Se8				

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 14/15

Q6.3 : Tracer ci-dessous les directions des forces puis construire le dynamique des forces :

Q6.4 : Compléter les intensités des forces trouvées avec le tracé du dynamique :

Q6.5: Comparer l'effort au point B avec le Fg_{max} trouvé lors de la Q6.1 :

→	> ou <	Famou
DSE4/SE8	- 0u <	Fgmax

BAC PRO MEI	Code: 2106-MEI ST 11 1	Session 2021	Dossier Questions-Réponses
E1 - SOUS-ÉPREUVE E11	Durée : 4 h	Coefficient: 3	DQR : 15/15