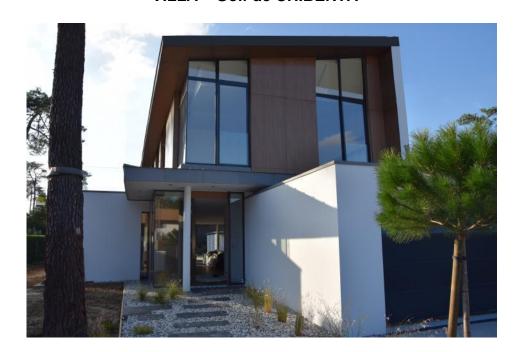
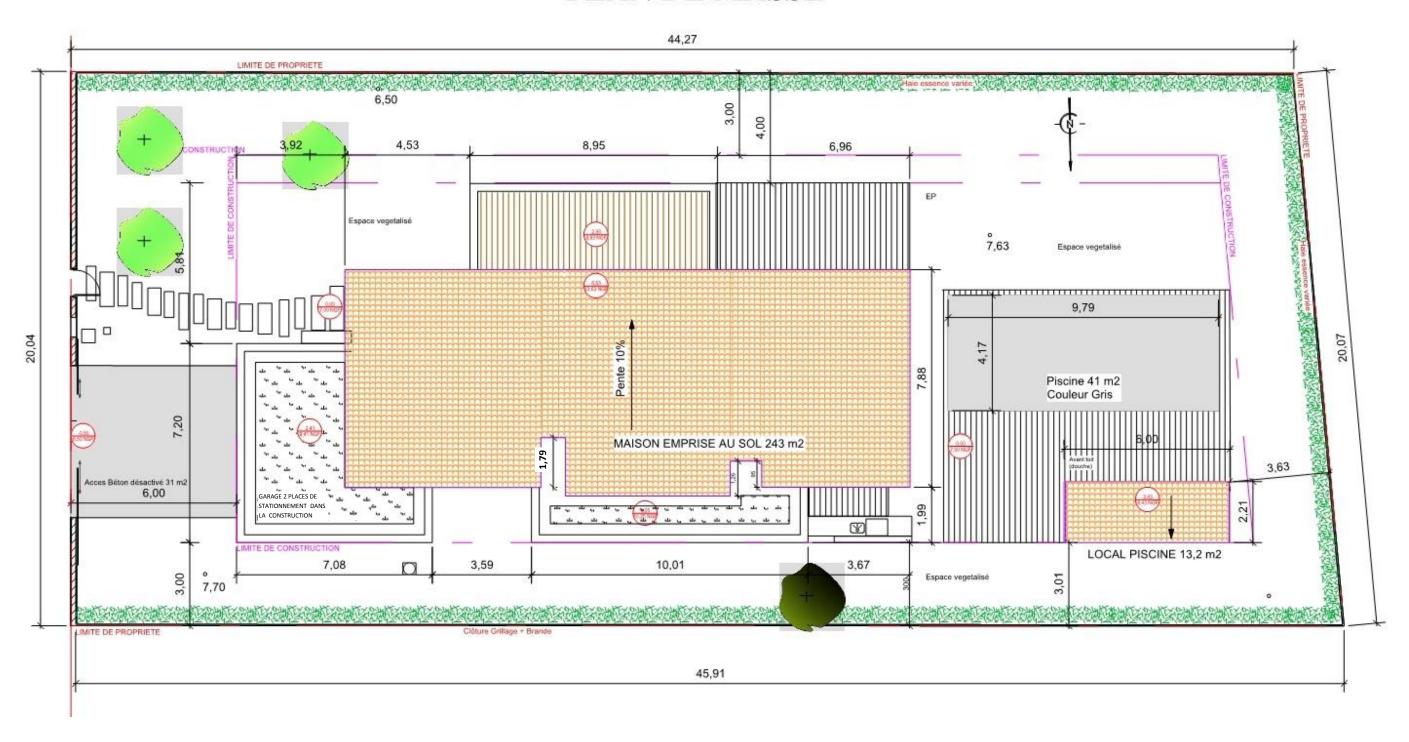
MENTION COMPLÉMENTAIRE

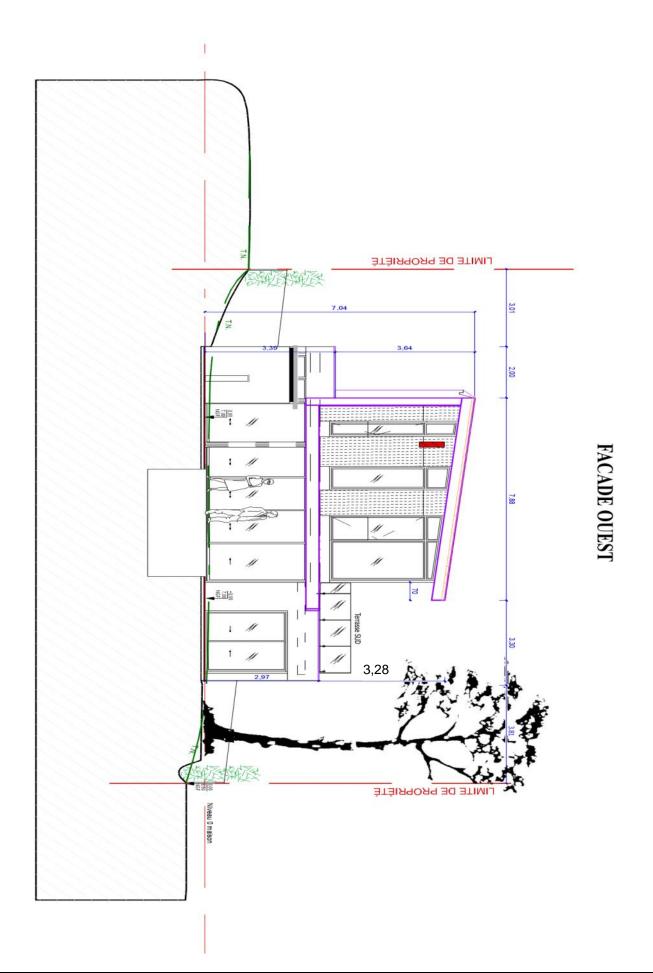
TECHNICIEN EN ÉNERGIES RENOUVELABLES

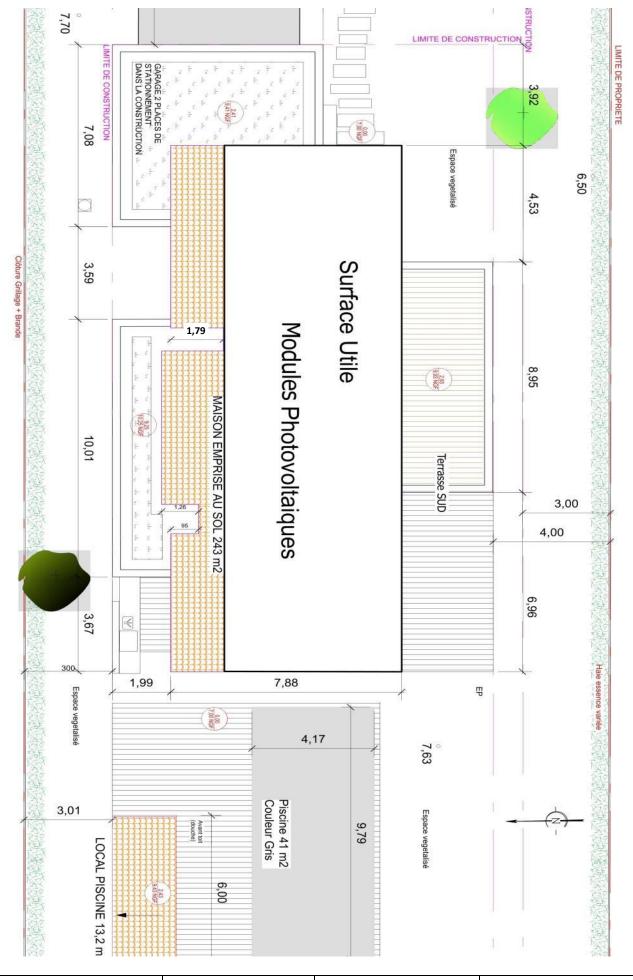

ÉPREUVE E1

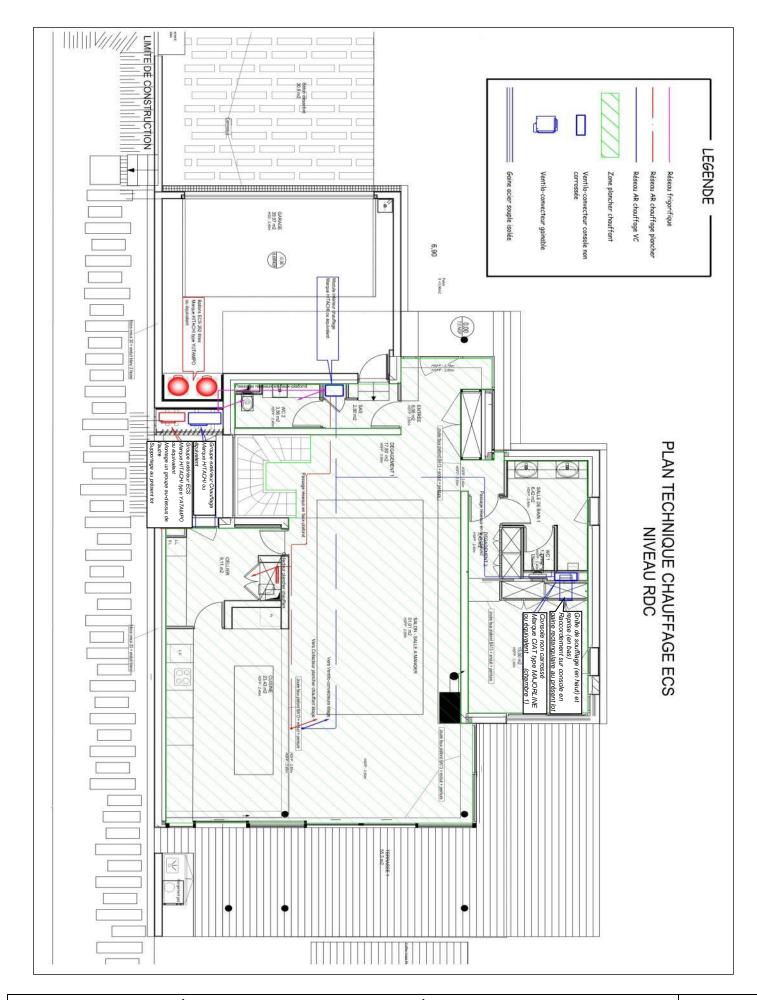
PRÉPARATION D'UNE INTERVENTION

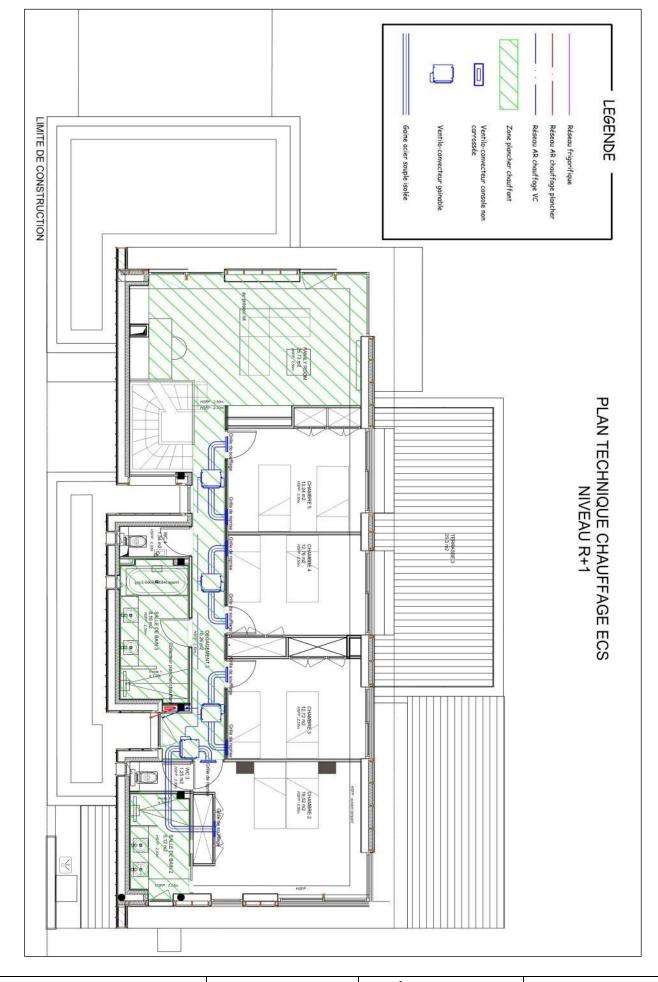
SESSION 2022


DOSSIER TECHNIQUE ET RESSOURCES


VILLA « Golf de CHIBERTA »




MENTION COMPLÉMENTAIRE TECHNICIEN EN ÉNERGIES RENOUVELABLES	Code : 2206-MC4 TER E1	Session : 2022	DOSSIER TECHNIQUE ET RESSOURCES
ÉPREUVE E1	Durée : 4 H	Coefficient : 4	Page 1 / 16


PLAN DE MASSE

Module intérieur chauffage Marque HITACHI ou équivalent Passage réseaux en faux-plafond GARAGE 39,97 m2 HSD: 2,40m 3,56 m2 HSFP: 2,40. 9,11 m2 Groupe extérieur Chauffage Marque HITACHI ou équivalent Ballons ECS 262 litres Marque HITACHI type YUTAMPO Groupes extérieurs ECS ou équivalent Marque HITACHI type YUTAMPO ou équivalent Montage un groupe au dessus de l'autre Supportage au présent lot blocs creux 20 + enduit blanc 2 faces Local PAC 300 mm 150 mm

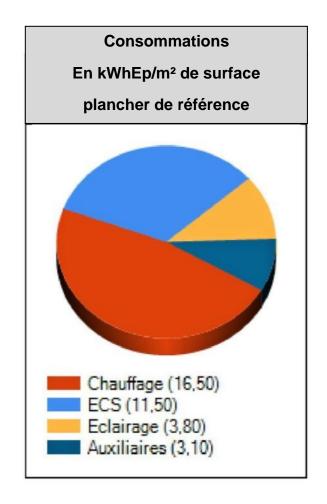
Extrait du CCTP

Lot Chauffage

Une pompe à chaleur, installée dans un renfoncement extérieur de la façade Nord, permettra le chauffage de la villa, par plancher chauffant basse température au rez de chaussée (RDC) et ventilo-convecteurs pour les chambres.

Les pièces du RDC et les salles de bains, dégagement 3 et family room du niveau R+1 seront chauffés par plancher hydraulique basse température (température de départ maxi chauffage : 40°C). Les chambres de l'étage seront chauffées par des ventilo-convecteurs gainables.

Extrait du bilan Thermique


<u>RÉCAPITULATIF</u>

Données administratives :

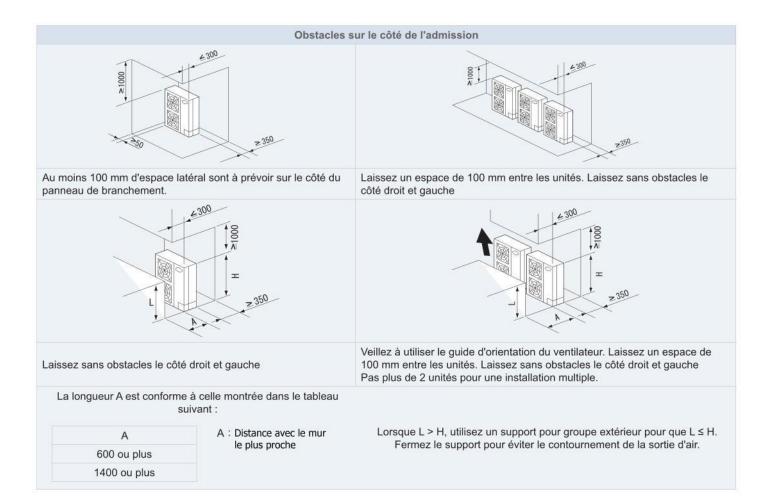
Nom de l'étude : VILLA CHIBERTA Référence : VILLA

Date du permis : 15 / 05 / 2022 Numéro de permis : 0

Surface utile : 253,48 m² Surface plancher de référence : 291 m²

Équipements pour la production de chaleur

HITACHI



		NB	NP	NB	NE	NB	NB	NB	NE	
UNITÉS INTÉRIEURES		TAILLE 2	TAILLE 2.5	TAILLE 3	TAILLE 4	TAILLE 5	TAILLE 6	TAILLE 8	TAILLE 10	
CHAUFFAGE SEUL	Réf.	RWM-2.0NE	RWM-2.5NE	RWM-3.0NE	RWM-4.0NE	RWM-5.0NE	RWM-6.0NE	RWM-8.0NE	RWM-10.0NE	
RÉVERSIBLE	Réf.	RWM-2.0CNE	RWM-2.5CNE	RWM-3.0CNE	RWM-4.0CNE	RWM-5.0CNE	RWM-6.0CNE	RWM-8.0CNE	RWM-10.0CNE	
Puissance nominale chauffage 7°C ext / 35°C eau)	kW	4,3	6	7,5	11	14	16	20	24	
Puissance de sélection chauffage -7°C ext / 35°C eau)	kW	4,7	5,7	6,7	10,6	12	13	17,9	21	
Puissance de sélection chauffage -7°C ext / 45°C eau)	kW	4,6	5,5	6,4	10	11,6	12,5	16,6	18,5	
Puissance de sélection chauffage -7°C ext / 55°C eau)	kW	4,2	5	5,5	9,7	11,2	12	14,5	17,3	
Puissance nominale froid 35°C ext / 7°C eau) (modèle éversible)	kW	3,8	5	6	7,2	9,5	10,5	14	17,5	
Niveau de puissance sonore	dB(A)		37			39			47	
oids	kg	37	38	39	46	4	8	60	62	
Dimensions (H x L x P)	mm		712 x 450 x 275	5	890 x 520 x 360			890 x 670 x 360		
Plages de températures de sortie d'eau mode chauffage)	°C		20~55				20~60			
Mimentation		23	30V / 1Ph / 50I	Hz	230V / 1Ph / 50Hz ou 400V / 3Ph / 50Hz			400V / 3Ph / 50Hz		
UNITÉS EXTÉRIEURES	Réf.	RAS-2WHVNP	RAS-2.5WHVNP	RAS-3WHVNP	RAS-4WH(V)NPE	RAS-5WH(V)NPE	RAS-6WH(V)NPE	RAS-8WHNPE	RAS-10WHNPE	
COP (7°C ext / 35°C eau)		5,25	4,8	4,55	5	4,71	4,57	4,3	4,29	
ER (modèle réversible)		3,12	3,15	2,75	3,3	3,22	2,82	3,12	2,81	
ns 35°C eau modèle chauffage Mono/Tri)*	%	191 (A+++) /-	179 (A+++)	167 (A++) /-	189 (A+++) / 188 (A+++)	177 (A+++) / 176 (A+++)	155(A++) / 154 (A++)	- / 152 (A++)	- / 143 (A+)	
ns 35°C eau modèle réversible Mono/Tri)*	%	196 (A+++) /-	181 (A+++) /-	169 (A++) /-	191 (A+++) / 191 (A+++)	178 (A+++) / 178 (A+++)	155 (A++) / 155 (A++)	- / 154 (A++)	- / 144 (A+)	
liveau de puissance sonore	dB(A)	61	63	6	4	65	67	73	74	
Dimensions (H x L x P)	mm	6	00 x 792 x 30	0	1380 x 950 x 370					
Poids	kg	4	3	44		103		137	139	
Plages de fonctionnement empératures extérieures Rafraîchissement // Chauffage // ECS	°C	10~46	43 44 10~46 // -15~25 // -15 ~ 35			10~46	// -25~25 // -	25 ~ 35		

* Classe d'efficacité énergétique saisonnière avec contrôleur intégré

Épreuve : E1

RÈGLES DE CALCUL Extraits des régles de calcul Th - U :

Résistances thermiques superficielles

Paroi donnant sur :			
l'extérieur	R _{si}	R _{se} (2)	R _{si} + R _{se}
– un passage ouvert			
– un local ouvert(1)	m².K/W	m².K/W	m².K/W
Paroi verticale			
(inclinaison > 60 °)	0,13	0,04	0,17
Flux horizontal Flux ascendant			
	0,10	0,04	0,14
Paroi horizontale (< 60°) (inclinaison < 60°)			
	0,17	0,04	0,21
Flux descendant			

1. Un local est dit « ouvert » si le rapport de la surface totale de ses ouvertures permanentes sur l'extérieur, à son volume, est égal ou supérieur à 0,005 m²/m³. Ce peut être le cas, par exemple, d'une circulation à l'air libre, pour des raisons de sécurité contre l'incendie.

2. Si la paroi donne sur un autre local non chauffé, un comble ou un vide sanitaire, $R_{\rm si}$ s'applique des deux côtés.

Pour plus de précisions sur les résistances superficielles, se reporter au fascicule 4 « Parois opaques ».

2.1 Résistance thermique R

La résistance thermique R d'une paroi est l'inverse du flux thermique à travers un mètre carré de paroi pour une différence de température de un kelvin entre les deux faces de la paroi. R s'exprime en m^2 .K/W et elle est fonction des caractéristiques géométriques et thermiques des matériaux constituant la paroi.

À l'exception des résistances superficielles arrondies à deux décimales, les valeurs des résistances thermiques utilisées dans les calculs intermédiaires doivent être calculées avec au moins trois décimales.

2.1.1 Couches thermiquement homogènes

2.1.1.1 Couches solides

Il s'agit de couches d'épaisseur constante, à hétérogénéités faibles et régulières pouvant être assimilées à des couches homogènes.

La résistance thermique d'une couche homogène se calcule d'après la formule suivante

$$R_i = \frac{e_i}{\lambda_i}$$
 (Formule 1);

où

 R_i est la résistance thermique de la couche i, en m^2 .K/W;

est l'épaisseur de la couche i, mesurée d'après sa mise en œuvre dans la paroi, en mètres ;

λ_i est la conductivité thermique utile de la couche *i* déterminée conformément au fascicule 2 (Matériaux), en W/m.K.

La résistance thermique d'un composant de bâtiment constitué de plusieurs couches thermiquement homogènes, superposées perpendiculaires au flux de chaleur, est la somme des résistances thermiques individuelles de chacune des couches :

$$R = \sum R_i$$
 (Formule 2).

Résistances thermiques des matériaux

Parpaing creux béton B40 20 x 20 x 50cm

Réf: 903891

Parpaing creux béton B40 20 x 20 x 50cm.

- Pour la pour réalisation de mur porteur (façade et intérieur), mur de clôture, garage...
- Montage traditionnel au mortier ciment.
- Dimensions: 20 x 20 x 50 cm.
- Quantité au m²: 10.
- R = 0.250 m².C°/W

R en m². K/W des différents doublages Placo® : complexes et sandwiches

D	OUBLAGES	Placomur® Th 38	Placomur® Ultra 32	Doublissimo® 32	Doublissimo® 30	Placotherm® +
	20 mm	0,55	-	-	-	
	30 mm	=			-	1,35
	40 mm	1,10	-	1,30	-	1,75
_	50 mm	2	2	1,60	-	2,30
OLAN	60 mm	1,60	*	1,90	-	2,80
SE L'IS	70 mm	1/20	121	-	2,40	120
EPAISSEUR DE L'ISOLANT	80 mm	2,15	2,55	2,55	2,75	3,50
PAISS	90 mm	2,40	2,85	2,85	3,10	3,95
	100 mm	2,65	3,15	3,15	3,40	4,40
	110 mm	-		3,45	3,75	5,25
	120 mm	2	3,80	3,80	4,10	191
	130 mm	-	4,10	-	4,40	823

Les doublages Placomur® Th 38, Placomur® Ultra 32 et Placotherm® + sont réalisés avec un parement Placoplatre® BA 10 et peuvent également être fabriqués avec une plaque d'épaisseur 13 mm.

Les plaques techniques (Placomarine®, PlacoPremium®, Placo® Phonique et Placo Impact) sont toujours en épaisseur de 13 mm.

Depuis le 1^{er} janvier 2006, seuls les complexes Placo® avec un parement en plaques BA 13 sont utilisables dans les établissements recevant du public (ERP).

Pour des raisons de performances acoustiques, la gamme Doublissimo® est toujours réalisée avec un parement RA 13

Conductivité thermique λ matériaux

- Enduit mortier : λ = 1.15 W/m.K

Documents techniques des modules

BOURGEOIS **BGPV** 250/260-MCSI module multicristallin Bourgeois Global est engagé contre le réchauffement climatique et sélectionne la fechnologie multicitatilinne (mc-Si) natamment pour sa consommation d'eau 2 tois inférieure lors de la tabrication de ces cellules de haute efficience. La série 8Gpv 250/260 mcSi utilise un design universel convenant aux applications résidentielles comme tertiaires au commerciale. Construction au rénovation. Revente au auto consommation. GARANTIE 10 ans pièces. 10 ans pour la production à 90% et 25 ans ans pour la production à 80%. PRODUCTIVITÉ deux fois plus de kW/m² que ies modules silicium amorphe. QUALITÉ Les composants sélectionnés parmi les meilleurs standards internationaux. PERFORMANCES Le silicium multicristallin ensoleillement Européens. **POSITIVE TOLÉRANCE PUISSANCE MODULES** 97% Cellules de hautes efficiences GARANTIE garantissant une puissance délivrée au moins égale à la BOTE Production supplémentaire garantie Garantie échelonnée habituelle dans le commerce PV CYCLE

BGPV 250/260-MCSI

module multicristallin

DONNÉES T	CHNIC	QUES								
BGPV 250 KD	250W	17,12%	30,4V	8,03A	37,55V	8,40A	0/+5%	DC1000V	-40°C / +85°C	class A
BGPV 255 KD	255W	17,46%	30,7V	8,07A	37,90V	8,44A	0/+5%	DC1000V	-40°C / +85°C	class A
BGPV 260 KD	260W	17,81%	31,3V	8,12A	37,95V	8,49A	0/+5%	DC1000V	-40°C / +85°C	class A
Туре	Puissance	Rendement Cellule	Tension	Courant	Tension vide	Courant court-circuit	Tolérence	Tension de système	Plage de température	Sécurité incendie

Tension Voc	-0,27% /°C
Courant Isc	0,045% /°C
Pmax	0,0408% /°C
40	992
1500 1370 870 1370	825

or contermono reciting	010
Cellule	156mm x 156mm
Nombre cellules	60 cellules (6x10)
Poids	19,3 kg
Dimension	1650x992x40mm
Résistance impact	5400 Pa
Température de fonctionnement	-40°C à 85°C
Connecteur	Type MC4
Cadre	Aluminium
Feuille arrière	Blanc x3
Epaisseur verre	3,2 mm
Boîte de jonction	Avec 6 diodes bypass

SPÉCIFICATIONS TECHNIQUES

Documents techniques des micro-onduleurs

Fiche technique Micro-onduleurs Enphase

Enphase M250

Le système de micro-onduleurs Enphase Energy

permet d'augmenter la production d'énergie et la fiabilité tout en simplifiant au maximum la conception, l'installation et la gestion des systèmes photovoltaïques.

Le système Enphase comprend le micro-onduleur, la passerelle Enphase Envoy™ et Enlighten™, le logiciel de surveillance et d'analyse d'Enphase.

Productivité

- Optimisé pour les modules à forte puissance
- Maximise la production d'énergie
- · Minimise l'impact de l'ombrage, de la poussière et des débris

Fiabilité

- · Produit de quatrième génération
- Plus d'un million d'heures de tests
- Disponibilité du système supérieure à 99,8 %

Intelligence

- Rapidité et simplicité de conception, d'installation et de gestion
- · Surveillance et analyse en permanence

Sécurité

- · Très basse tension DC qui réduit les risques d'incendie
- · Aucun point de défaillance unique
- Installation facilitée avec le câble Engage

Micro-onduleur M250 d'Enphase

DONNÉES D'ENTRÉE (DC)	MODELES: M250-60-230-S22, M250-60-230-S25	MODELES: M250-72-2LN-S2, M250-72-2LN-S5		
Puissance module recommandée (STC)	210 - 350+ W	210 - 350+ W		
Compatibilité	Modules photovoltaïques à 60 cellules	Modules photovoltaïques à 60 et 72 cellules		
Tension d'entrée DC max.	48 V	60 V		
Tension de suivi de la puissance de crête	27 V - 39 V	27 V - 48 V		
Plage de tension de fonctionnement	16 V - 48 V	16 V - 60 V		
Tension de départ min./max.	22 V / 48 V	22 V / 48 V		
Courant de court-circuit DC max.	15 A	15 A		
DONNÉES DE SORTIE (AC)	1.			
Puissance de sortie maximale	258 W	258 W		
Puissance de sortie nominale	250 W	250 W		
Courant de sortie nominal	1,09 A	1,09 A		
Tension nominale	230 V	230 V		
Fréquence nominale	50,0 Hz	50,0 Hz		
Facteur de puissance	>0,95	>0,95		
Nombre maximum d'unités par branche de 20 A	14 (Ph + N), 42 (3Ph + N)	14 (Ph + N), 42 (3Ph + N)		
Nombre maximum d'unités par câble	14 (Ph + N), 24 (3Ph + N)	14 (Ph + N), 24 (3Ph + N)		
Courant de défaut maximal en sortie	850 mA (moyenne quadratique) pour 6 cycles	850 mA (moyenne quadratique) pour 6 cycles		
Courant (appel)	0 A	0 A		
Courant AC de retour vers le module	0 mA	0 mA		
RENDEMENT				
Rendement EN 50530 (UE)	95,7 %	95,7 %		
Rendement statique MPPT (pondéré, EN 50530)	99,6 %	99,5 %		
Consommation d'électricité de nuit	0,055 W	0,065 W		
DONNÉES MÉCANIQUES				
Plage de température de fonctionnement externe (ambiante)	-40 °C à +65 °C			
Plage de température de fonctionnement interne	-40 °C à +65 °C			
Classification environnementale du boîtier	Extérieur - IP67			
Type de connecteur MC4	M250-60-230-S22 et M250-72-2L	N-S2		
Type de connecteur, Amphenol H4	M250-60-230-S25 et M250-72-2L	N-S5		
Dimensions (L x H x P)	179 mm x 217 mm x 28 mm (supp	ort inclus)		
Poids	1,66 kg			
Refroidissement	Convexion naturelle - aucun ventil	ateur		
CARACTÉRISTIQUES				
Communication	Courant Porteur en Ligne (CPL)			
Surveillance	Options de surveillance avec Enlig	hten Manager et MyEnlighten		
Design du transformateur	Transformateurs haute fréquence	isolés galvaniquement		
Conformité	AS4777, C10/11, CEI_0-21, EN504 ERDF-NOI-RES_13E_V5, G59/3, G8 VDE AR-N 4105, OVE / ÖNORM E 8	33/2, VDE-0126-1-1 + A1,		

Capacité du circuit de dérivation

Type de point de livraison du réseau public	Nombre maximum de M250 par circuit de dérivation AC	Nombre maximum de M215 par circuit de dérivation AC
230 V monophasé	14	17
400 V triphasé	24	27
400 V triphasé, centré *	42	51

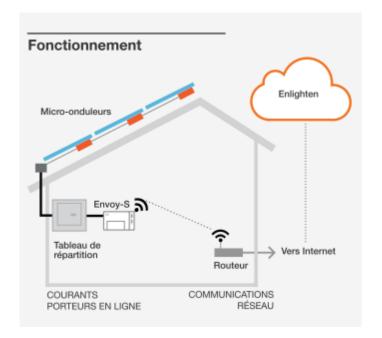
^{*} Pour centrer un circuit, divisez-le en deux sous-circuits protégés par un seul OCPD (système de protection contre les surintensités).

Onduleur central:

L'avantage : C'est le prix. Ce système d'installation avec onduleur unique limite forcement le coût global d'investissement en comparaison d'un système équipé d'un micro-onduleur pour deux panneaux.

L'inconvénient: C'est la production. L'onduleur central ne produit pas moins, mais en cas de défaillance d'un panneau, c'est toute la chaîne de panneaux qui en pâtit. En effet, le branchement en série répercute la défaillance technique éventuelle d'un panneau sur les autres panneaux de la même chaîne. Donc si c'est le premier panneau qui ne produit plus, le système global de la chaîne ne produit plus. En cas d'ombre sur les panneaux, le même schéma se produit. La consommation finale du kit de 10 panneaux solaires (en une chaîne) peut n'être donc ici que de 10% de ses capacités, soit une perte de 90% de production.

Micro-onduleur:


Dans le cas d'un kit solaire équipé de micro-onduleurs, chaque panneau est relié à un ou deux micro-onduleurs selon le type de micro-onduleur proposé. Il y a donc plusieurs micro-onduleurs. Les panneaux ne sont plus branchés en série mais ce sont les micro-onduleurs qui le sont. Chaque panneau étant connecté à son micro-onduleur.

L'avantage : C'est la production garantie et optimisée. En effet, en cas de défaillance d'un panneau, les autres panneaux produisent toujours de manière optimale. Le fait d'avoir une production d'électricité répartie entre chaque panneau ou couple de panneau permet d'assurer la production optimale de l'ensemble du système. La consommation finale du kit de 10 panneaux solaires peut donc ici être assurée à 90% de ses capacités, soit une perte de 10% de production. Par ailleurs, les micro-onduleurs sont recommandés pour de petites installations car les onduleurs centraux les moins puissants commencent généralement à partir de 2000Wc (8 panneaux). Les micro-onduleurs permettent également l'évolutivité de votre système. En effet, les micro-onduleurs vous permettent de rajouter des panneaux à votre installation à tout moment, sans avoir à redimensionner l'ensemble.

L'inconvénient: C'est le prix, car on multiplie les micro-onduleurs par rapport au système de l'onduleur central. La technologie micro-onduleur étant également plus évoluée, le prix s'en fait ressentir

Le système micro onduleur ENPHASE

Le système micro onduleur ENPHASE offre un système totalement intégré avec un réseau de courant porteur en ligne (CPL) et un logiciel avance sur base internet afin de créer une installation solaire plus intelligente, plus performante et plus efficace.

1 Système Micro-Onduleur Enphase

Performance maximale Les Micro-onduleurs Enphase sont installés sous les modules photovoltaïques, ils convertissent la puissance maximale de chaque module en courant électrique alternatif AC. Caractéristiques Le Micro-onduleur le plus performant au monde Peut travailler avec un faible niveau de luminosité et tension permettant un gain de production Augmentation de la production d'énergie globale de 5 à 25% Système automatique de découplage VDE 0126-1-1 intégré dans chaque Micro-onduleur Produit étanche haute performance - IP67 Compatibilité avec les systèmes de montage y compris intégration totale

2 Câblage Engage « Plug & Play »
Rapide, simple et facile

Le système de câblage Engage facilite l'installation

avec ses connecteurs précâblés.

Caractéristiques

- Dimensionnement flexible
- Orientation paysage ou portrait
- Finition facile avec l'embout de terminaison étanche
- Câblage tout AC

Mise en réseau simplifiée

La passerelle de communication Envoy assure la transmission immédiate d'informations sur l'état et la performance de chaque Micro-onduleur et module photovoltaïque. Les informations sont transmises directement à chaque propriétaire et installateur via une liaison Internet.

Caractéristiques

- Paramétrage automatique
- Communique via les câbles AC existants
- Pas de câblage supplémentaire l'Envoy utilise la technologie de courant porteur en ligne (CPL)

4 Logiciel Enlighten™

Système de surveillance et monitoring

Le logiciel Enlighten™ est un logiciel de monitoring basé sur le web qui surveille en continu chaque partie de l'installation et tient l'utilisateur informé en temps réel de la performance 24/7.

Caractéristiques

- Monitoring web puissant disponible sur tout support PC, Smartphone, tablette
- Diagnostic, mise à jour et maintenance à distance
- Outils de promotion y compris affichage de vues en mode Kiosque
- Gestion simple de vos installations

SOLUTION CLASSIQUE "STRING"

SOLUTION ENPHASE ENERGY

Bénéfices pour l'utilisateur

PERFORMANCE

- » Installation complète affectée par un seul module
- » Sensible à la saleté, l'ombrage et la défaillance des modules

PERFORMANCE

- » Production indépendante de chaque module
- » Insensible aux facteurs environnementaux
- » Augmente la production d'énergie de 5% jusqu'à 25%

FIABILITÉ

- Garantie entre 5 à 10 ans
- » Sensible aux problèmes d'entrées d'air et de ventilateurs obstrués
- » Un défaut d'onduleur affecte la totalité du système
- » Détections et remontées d'alarmes limitées

FIABILITÉ

- » Garantie constructeur 20 ans
- Système totalement étanche sans partie en mouvement (IP67)
- » Un défaut d'onduleur affecte une très faible partie du système
- » Détections et remontées d'alarmes automatiques

Bénéfices pour l'installateur

RAPIDIT

- » Limitée par l'architecture et le dimensionnement des circuits DC
- » Nécessite des circuits DC avec boîtes de jonction et fusibles
- » Installation séparée de l'onduleur

RAPIDITÉ

- » Positionnement et dimensionnement flexibles des systèmes
- » Le réseau de câblage est 100% AC
- » Onduleurs installés directement sous les modules ou à proximité

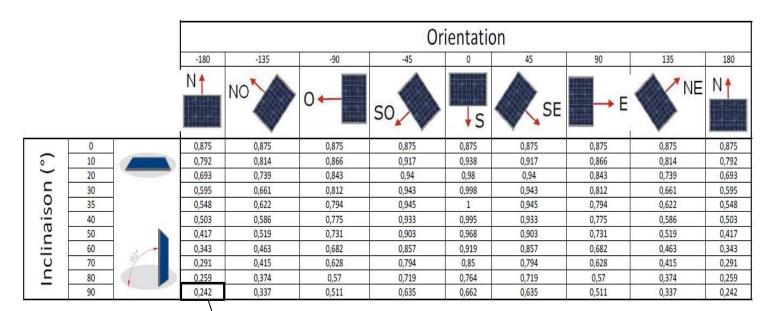
SÉCURITÉ

- » Manipulation de câbles DC à des niveaux de tension élevés
- » Risque d'incendie par arc électrique DC
- » Système continuellement sous tension durant la journée (DC)

SÉCURITÉ

- » Circuits DC 100% très basse tension
- » Pas de risque d'arc électrique DC
- » Mise hors tension automatique en cas d'absence réseau (VDE 0126-1-1)

Pour en savoir plus sur la technologie micro-onduleur Enphase, visitez


www.enphase.com/fr

Enphase Energy S.A.S. 905 rue d'Espagne - Hub Business - Bâtiment N° 2 69125 LYON - FRANCE Tel. +33 (0)4 74 98 29 56 - Fax. +33 (0)4 74 98 38 15 sas@enphaseenergy.com

www.enphase.com/fr ou www.enphase.com/eu

Facteur de correction de l'irradiation solaire en fonction de l'orientation et de l'inclinaison (Hémisphère Nord)

Exemple : Facteur de correction de l'irradiation solaire = 0,242 Rendement de l'intallation = 24,2 %

Estimation du champ de production photovoltaïque

Données techniques

η câbles et connexion	η _{masques}	η _{éclairement}	η réflectivité	Ensoleillement H
0.99	1	0.95	0.75	1580 kWh/m².an

Formulaires

E = S * r * H * Cp E = surface du champ photovoltaïque : 39 m² F = rendement du panneau ou module H = ensoleillement/rayonnement sur la surface inclinée en kWh/m² .an Cp = coefficient de perte (la valeur fréquente étant entre 0.65 et 0.75)

Tarifs électriques en vigueur (2021)

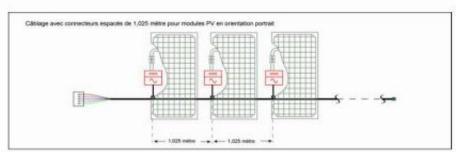
TARIFS DE VENTE DE L'ELECTRICITE PHOTOVOLTAIQUE EN SURPLUS DU 1 JUILLET 2021 AU 30 SEPTEMBRE 2021

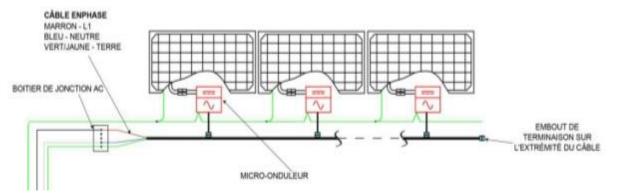
Prime d'investissement et tarif de vente de l'électricité photovoltaïque (auto-consommation avec vente de surplus)

Type installation	Puissance (kWc)	primes et tarifs (c€/kWh) du 1/07 au 30/09/2021
Sur bâtiment et respectant les critères généraux d'implantation	≤ 3 kwc ≤ 9 kwc	prime de 380 € /kwc (soit 1140 € pour 3 kwc) + vente à 10 c€/kWh) prime de 280 € /kwc (soit 2520 € pour 9 kwc) + vente à 10 c€/kWh)
Sur bâtiment et respectant les critères	≤ 36 kwc	prime de 160 € /kwc (soit 5760 € pour 36 kwc) + vente à 6 c€/kWh)
généraux d'implantation	≤ 100 kwc	prime de 80 € /kwc (soit 8000 € pour 100 kwc) + vente à 6 c€/kWh)
Sur bâtiment et respectant les critères généraux d'implantation	> 100 kwc	o

Prix du kWh facturé par EDF: 0,16 € (16 c€)

L = largeur [mm]	40
H = hauteur [mm]	36
Longueurs [m]	2,10/3,15/4,15/6,10


Documents techniques des matériels pour la pose P.V.


Le câble Engage qui a une section de 2.5 mm² comporte des connecteurs intégrés pour micro onduleurs.

Pour l'installer, il suffit de le dérouler, puis de couper à la longueur souhaitée. Une des extrémités est raccordée directement à la boite de jonction AC. L'autre extrémité est protégée des agressions externes par l'utilisation d'un embout de terminaison Enphase.

Options d'espacement des connecteurs

Le câble Engage est disponible avec trois options d'espacement de connecteurs. L'espace entre les connecteurs du câble peut être de 1,025 mètre (40"), de 1,7 mètre (67") ou de 2,1 mètres (84"). L'espace de 1,025 mètre est le mieux adapté pour connecter des modules photovoltaïques installés en mode portrait, tandis que les espaces de 1,7 mètre et de 2,0 mètres vous permettent d'installer des modules photovoltaïques 60 cellules et 72 cellules en mode paysage.

Support de fixation

Cross rail

Maintenance à distance et gestion
 Application mobile

MENTION COMPLÉMENTAIRE – TECHNICIEN EN ÉNERGIES RENOUVELABLES DOSSIER TECHNIQUE ET RESSOURCES Session : 2022 Épreuve : E1 Page 13 / 16

à long terme	Simplifie l'installation et la mise en service
Connexion réseau flexible	Disponible sur Android et Iphone

Enphase Envoy-S Metered

La passerelle de communication Enphase Envoy-S
Metered™ transmet les données sur la production
photovoltaïque et la consommation d'énergie à
Enlighten™, le logiciel de surveillance et d'analyse
d'Enphase pour assurer entièrement la maintenance et
la gestion à distance d'un système Enphase.

Grâce aux options de mesure de la production et de la consommation, l'Envoy-S est une plate-forme intelligente permettant une gestion complète de l'énergie et s'associe à la batterie AC d'Enphase™.

Intelligence

- Offre un contrôle et une surveillance sur le Web
- Communications bidirectionnelles pour une mise à niveau à distance

Simplicité

- Configuration du système simple grâce à l'application mobile Installer Toolkit
- Connexion réseau flexible : Wi-Fi, Ethernet ou cellulaire

Fiabilité

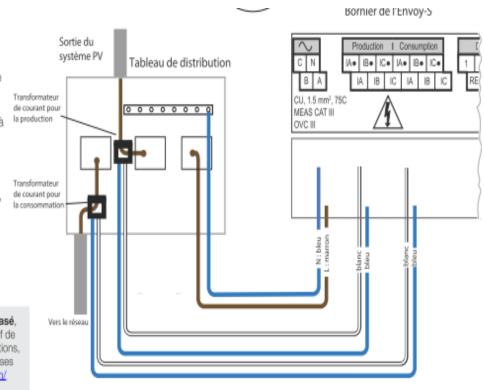
- Conçu pour une installation en intérieur ou en extérieur, dans un boîtier
- · Garantie de 5 ans

Envoy-S Metered								Section					
ENV-S-WM1-230 (monophasé)													
ACCESSOIRES (à commander sé;	Puissance	Intensité	1,5mm²	2,5mm²	4mm²	6mm²	10mm²	16mm²	25mm²	35mm²	50mm²	70mm ²	95mm
Enphase Mobile Connect™ CELLMODEM-02	500 W	2,3 A	100 M	165 M	265 M	395 M							
CONFIGURATION REQUISE POL	1 000 W	4,6 A	60 M	84 M	135 M	200 M	335 M	530 M				Zoom-E	lec
Câblé	1 500VV	6,8 A	33 M	57 M	90 M	130 M	225 M	355 M	565 M		- n		
CAPACITÉ	2 000 W	9 A	25 M	43 M	68 M	100 M	170 M	265 M	430 M	595 M			
Nombre de périphériques détectés	2 500 W	11,5 A	20 M	34 M	54 M	80 M	135 M	210 M	340 M	470 M	630 M		
	3 000 W	13,5 A	17 M	29 M	45 M	66 M	110 M	180 M	285 M	395 M	520 M		
	3 500 W	16 A	14 M	24 M	39 M	56 M	96 M	155 M	245 M	335 M	450 M		
	4 000 W	18 A	-	21 M	34 M	49 M	84 M	135 M	210 M	295 M	395 M	580 M	
	4 500 W	20 A	annege	19 M	30 M	44 M	75 M	120 M	190 M	260 M	350 M	515 M	
	5 000 W	23 A	Thomas .	_	27 M	39 M	68 M	105 M	170 M	235 M	315 M	460 M	630 M
	6 000 W	27 A	-	-	23 M	32 M	56 M	90 M	140 M	195 M	260 M	385 M	530 M
	7 000 W	32 A	Q <u>.</u> ,	-	-	28 M	48 M	76 M	120 M	170 M	225 M	330 M	460 M
	8 000 W	36 A	- (9 _	_	_	42 M	67 M	105 M	145 M	195 M	290 M	400 M
	9 000 W	41 A	-	c-1	-	_	38 M	60 M	94 M	130 M	175 M	255 M	355 M
	10 kW	45 A	_		すか		34 M	54 M	84 M	120 M	155 M	230 M	320 N

Page 14 / 16

MENTION COMPLÉMENTAIRE – TECHNICIEN EN ÉNERGIES RENOUVELABLES DOSSIER TECHNIQUE ET RESSOURCES Session : 2022 Épreuve : E1

Raccordement de la passerelle ENVOY-S METERED


Installez le transformateur de courant de consommation (facultatif)

- Assurez-vous que les câbles du réseau AC soient hors tension jusqu'à ce que vous ayez raccordé les conducteurs du transformateur de courant au bornier.
- Pour les conducteurs du transformateur, raccordez le câble blanc à « IA » et le câble bleu à la production « IA ».
- Placez le transformateur de courant repéré sur la phase d'alimentation photovoltaique.
 Lorsque le transformateur de courant de consommation est sur le conducteur de phase, la flèche doit être orientée vers la charge.

Remarque: n'utilisez que des conducteurs actifs dans le transformateur de courant. Le transformateur de courant peut accueillir plusieurs conducteurs actifs.

Serrez toutes les connexions à 0,56 N m.

i vous installez l'Envoy-S dans un réseau polyphasé, stallez un coupleur de phase côté charge du dispositif de rotection contre les surintensités. Pour plus d'informations, onsultez le dossier technique sur le couplage des phases dapté à votre pays, disponible sur le site <u>enphase.com/</u> upoort.

Les transformateurs de courant sont des sondes de mesure (transformateurs d'intensité)

Section de conducteurs

Ressources préventions

Échelle TUBESCA_COMABI

Échelles simples évasées mixte acier/alu						
Code article	Référence fournisseur	H de travail max (m)	H dépliée (m)	Nombre de marches		
2035591	03211117	5,84	4,92	17		
2035590	03211114	4,99	4,08	14		
2035589	03211112	4,43	3,52	12		
2035588	03211110	3,86	2,96	10		

Titre d'habilitation

Système de classification des habilitations électriques.

1° caractère	2° caractère	3° caractère	4° caractère
1° caractère B : basse tension H : haute tension	2° caractère 0 : opération d'ordre électrique 1 : exécutant opération d'ordre électrique 2 : chargé de travaux C : consignation R : intervention de dépannage S : intervention de remplacement et de raccordement E : opérations spécifiques P : monteur	3° caractère T : travaux sous tension V : travaux au voisinage N : nettoyage sous tension X : spéciale PV : intervention photovoltaïque	4° caractère Essai Vérification Mesurage Manœuvre
	spécifiques		

Cette classification est détaillée dans la norme NF C18-510.