BREVET de TECHNICIEN SUPÉRIEUR ASSISTANCE TECHNIQUE D'INGÉNIEUR

Épreuve E4 - Sous-épreuve E4.1

Étude des spécifications générales d'un système pluritechnologique

Coefficient 3 – Durée 3 heures

Aucun document autorisé

L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de la calculatrice sans mémoire, « type collège » est autorisé.

Partie 1. Peut-on augmenter la capacité de production du robot de soudage ? 20 points

Question: 1.1.1. Ph 10 : 20 min, Ph 20 : 40 min ; Ph 30 : 40min ; Ph 40 : 20 min

Gamme de production pour un châssis mécanosoudé sur le poste de soudage						1
Taches	Processus	Ressources	Temps (min)	Phases de production	n	
	Mise en place des barres d'acier		15		45.0.0	
Chargement	Sortie de la zone de chargement	Opérateur	2		15+2+3 = 20min	
	Vérifications et départ du cycle		3	Phase 10	2011111	
	Sortie de la position repli du robot		2		0.00.0	
Soudage	Soudage pièce	Robot de soudage	36		2+36+2 = 40min	1
	Mise en repli du robot		2	Phase 20	4011111	
Refroidissement	Refroidissement de la pièce	Attente	40	Phase 30	40 min	1
Déchargement	Dépose des systèmes de maintien	Opératous	15		15+5=]
	Transfert du châssis sur le chariot	Opérateur	5	Phase 40	20 min	
					_	-

Question: 1.1.2.

(sur une journée de 7h, on a 7 * 60 : 420 min.)

Durée totale de production : 400 min

La capacité de production est de : 6 chassis / jour

Durée d'utilisation du robot soudeur : 40 min par pièce, 6 pièces, donc 6*40 : 240min

Taux de charge du robot soudeur : durée d'utilisation du robot soudeur / durée de la journée : 240/420 = 57,1%

BTS assistance technique d'ingénieur	CORRIGÉ	Session 2021
Sous épreuve E4.1	Code : ATESG-NC	Page 1 sur 8

Partie 1.2. Capacité de production du robot de soudage pour trois cabines de travail.

Question: 1.2.1. Erreur! Source du r

envoi introuvable.

La nouvelle capacité de production est : 8 châssis

Durée d'utilisation du robot : 8*40min : 320 min, Taux de charge :

320/420= 76.2%

Question: 1.2.2. On peut donc augmenter la production de 6 à 8 châssis par jour.

On va gagner presque 20% d'utilisation du robot.

Partie 2. Voir DR1 10 points

					Organisation 1	Organisation 2
2.1	2.11		Coût/j	Nbr	Coût total / jour	Coût total / jour
	2.11	Soudeur spécialisé	315€	2	630 € par jour	
			coûts horaire (€/h)	Nbr de jours		
	2.12	Coût de fonctionnement	35€	7	245 € par jour	245 € par jour
		Coût opérateur robot	40 €	7	280 € par jour	280 € par jour
		coût journalier liè à	l'utilisatior	du robot	525 € par jour	525 € par jour
	2.13	7			Coût organisation 1:	Coût organisation 2 :
	2.13				1 155 € par jour	525 € par jour

2.2 2.21 Gain journalier entre les 2 organisations : 630 € par jour

Coût investissement 50400 Nbr jour travaillés/mois : 21

2.22 Calculer le gain réalisé sur 1 mois : 13 230 € par mois

2.23 Combien de mois pour compenser l'investissement : 3,8 mois

On a 3.81 < 4 mois, donc la durée est conforme!!

2.24 : Pertinence des arguments chiffrés et clareté de la rédaction.

Partie 3. La sécurité sur le nouveau poste de soudage. 20 points

Partie 3.1. Nous allons définir le niveau de sécurité nécessaire sur le poste

Question: 3.1.1.

- Fr=5
- Pr=4
- Av=3
- CI=12
- Se=4 (pertes d'un membre)
- SIL 3 donc catégorie 4.

Question: 3.1.2. • Les 2 appareils sont de catégorie 4.

BTS assistance technique d'ingénieur	CORRIGÉ	Session 2021
Sous épreuve E4.1	Code : ATESG-NC	Page 2 sur 8

Question: 3.1.3. Hauteur de détection :1.1-0.3=0.8 métre

Référence : CA4-400-3

Question: 3.1.4. S=1600*(0.6+0.003)+850=1815 mm=1.815 mètre

Question: 3.1.5. Distance 4180-2300=1880mm > à 1815mm donc la distance

est compatible

Question: 3.1.6. voir DR2

Question: 3.1.7. L'electrocution

L'inhalation des fumées

Explosion incendie

Brulure des yeux

La barrière immatérielle ne solutionne que les risques d'électrocution.

Partie 3.2. Mise en place de l'arrêt d'urgence dans la nouvelle cabine

Question: 3.2.1. voir DR3

Voir DR4 Question: 3.2.2.

Partie 3.3. Mise en place d'une balise de visualisation des états de la cabine de soudage

Question: 3.3.1. Voir DR5.

Partie 3.4. Vérification de l'état de la machine

Question: 3.4.1.

Voir, 0, 0

X100

Question: 3.4.2.

Voir. 0

A l'étape 100, toutes les étapes des grafcets de production sont désactivées.

BTS assistance technique d'ingénieur	CORRIGÉ	Session 2021
Sous épreuve E4.1	Code : ATESG-NC	Page 3 sur 8

Partie 4. Programmation d'un troisième poste de soudage pour le bras du robot 10 points

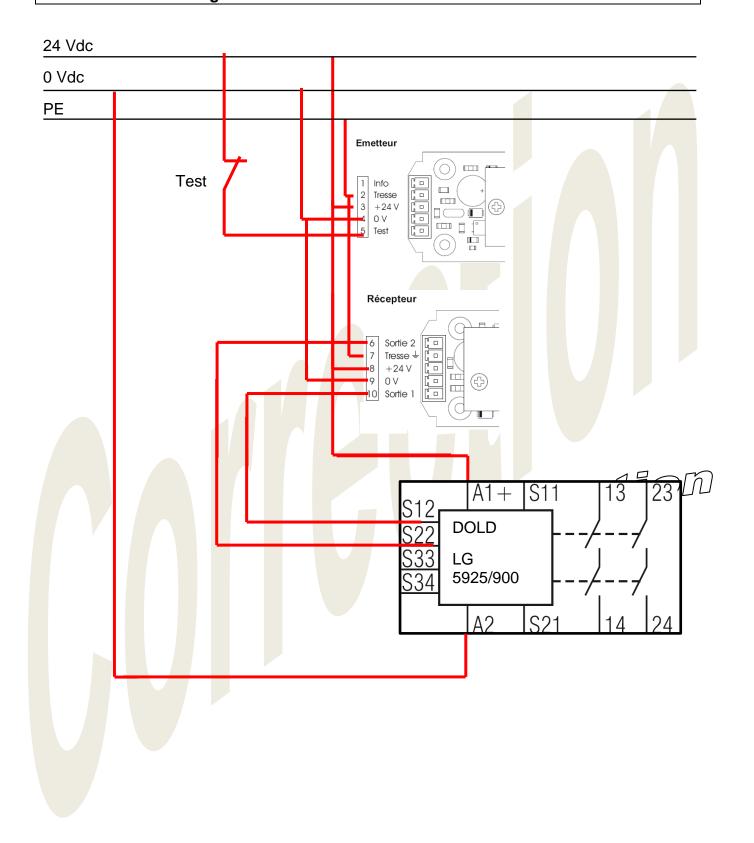
Question: 4.1.1. voir DR6

Voir 0

Question: 4.1.2. voir DR7

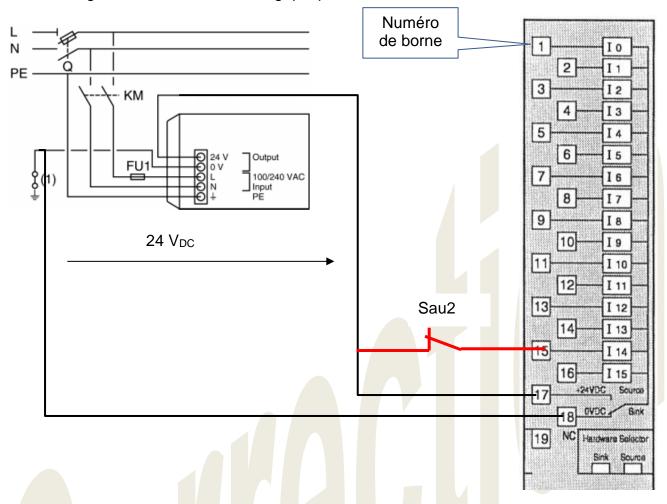
Voir 0

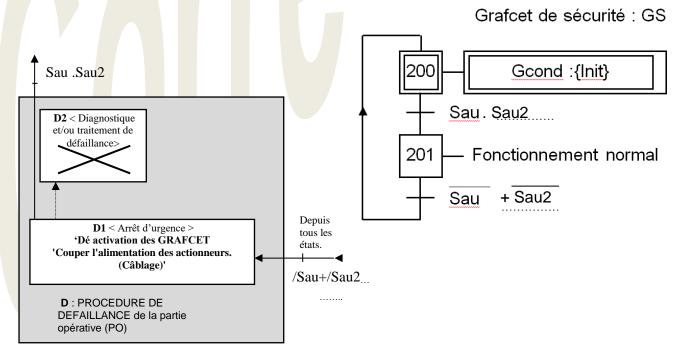
Question: 4.1.3. voir DR5


Voir 0

Question: 4.1.4. voir DR5

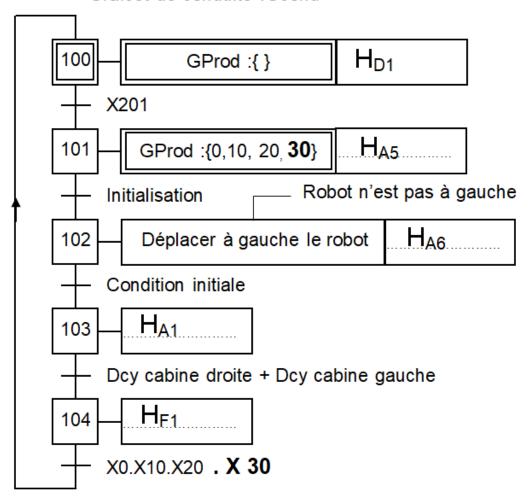
BTS assistance technique d'ingénieur	CORRIGÉ	Session 2021
Sous épreuve E4.1	Code : ATESG-NC	Page 4 sur 8

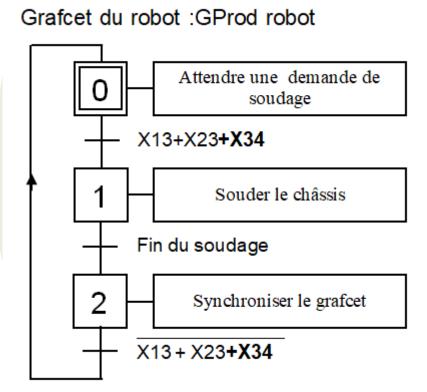

DR2 Schéma de câblage des barrières immatérielles : Question: 3.1.6


BTS assistance technique d'ingénieur	CORRIGÉ	Session 2021
Sous épreuve E4.1	Code : ATESG-NC	Page 5 sur 8

DR 3 Schéma de câblage de l'arrêt d'urgence: Question: 3.2.1

L'arrêt d'urgence doit être câblé en logique positive sur l'entrée l14.

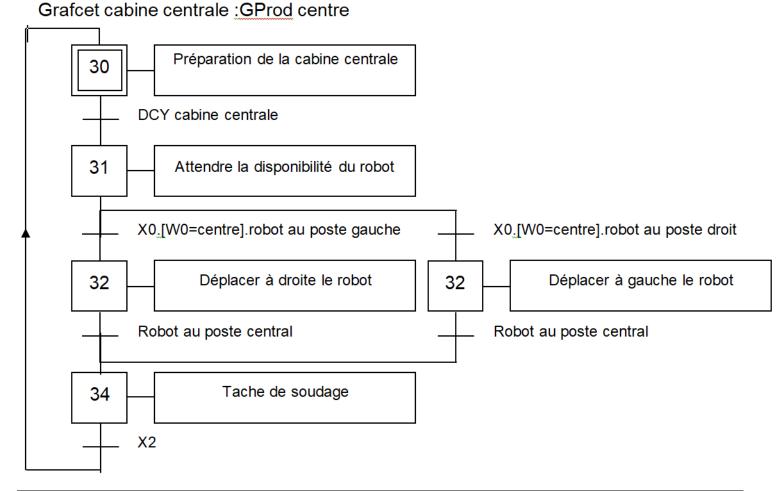

DR4 Extrait du Gemma et du grafcet de sécurité à compléter : Question: 3.2.2 0



BTS assistance technique d'ingénieur	CORRIGÉ	Session 2021
Sous épreuve E4.1	Code : ATESG-NC	Page 6 sur 8

DR5 Grafcet de conduite et grafcet de la tâche du robot

Grafcet de conduite :Gcond



GCIOM

BTS assistance technique d'ingénieur	CORRIGÉ	Session 2021
Sous épreuve E4.1	Code : ATESG-NC	Page 7 sur 8

DR6 Grafcet de déplacement du robot Grafcet cabine gauche :GProd gauche Grafcet cabine droite :GProd droite Préparation de la cabine Préparation de la cabine 10 20 droite gauche DCY cabine gauche DCY Cabine droite Attendre la disponibilité du Attendre la disponibilité du 11 21 robot robot X0,[W0=gauche]. X0.[W0=droite]. Déplacer à gauche le robot 12 Déplacer à droite le robot 22 Robot au poste gauche Robot au poste de droite 13 Tache de soudage Tache de soudage 23 X2 X2

DR7 Grafcet de déplacement du robot

BTS assistance technique d'ingénieur	CORRIGÉ	Session 2021
Sous épreuve E4.1	Code : ATESG-NC	Page 8 sur 8