Corrigé BTS Fluides Énergies Domotique Épreuve E32 – Physique et chimie Mise en service d'une CTA

questions	réponses attendues				
A. Contró	ôle électrique				
I. Mesure de la tension en sortie d'une pile à combustible					
1.	Voltmètre en DC				
2.	Un onduleur pour transformer le continu en alternatif				
II. Mesure de la chute de tension aux bornes du câble d'alimentation du moteur du ventilateur					
1.1	$U(R) = \frac{2,57.0,00138}{\sqrt{6}} = 0,00148 \Omega$ Avec 1 chiffre significatif : U(<i>R</i>) = 0,002 Ω				
1.2.	$\bar{R} = 0.4675 \Omega$ $R = (0.468 \pm 0.002) \Omega \Rightarrow 0.466 \Omega < R < 0.470 \Omega$				
1.3	$\Delta U_1 = R.I \text{ avec I} = 19,3 \text{ A} \Rightarrow 8,99 \text{ V} < \Delta U_1 < 9,07 \text{ V}$				
2.	$\Delta U_2 = 232 - 223 = 9 \text{ V}$ On constate que la valeur de ΔU_2 est bien dans l'intervalle de ΔU_1 .				
III. Mesure	de puissance absorbée nominale par le moteur				
	D'après la plaque signalétique : $P_a = P_u/\eta = 3600/0,9 = 4000 \text{W}$ Ou $P_a = U \cdot l \cdot \cos \phi = 230 \text{x} 19,3 \text{x} 0,9 = 3995 \text{W}$ La valeur mesurée est proche de la valeur théorique donc on peut considerer qu'elle est cohérente.				
B. Contrô	ôle échangeur				
I. Qualité d	de l'eau				
1. Teneur e	en glycol				
1.1	La présence de glycol permet d'abaisser la température de changement d'état mais diminue la capacité thermique du fluide constitué.				
1.2	Capacité thermique à 20 % de glycol : $C = 4 \text{ kJ} \cdot \text{kg}^{-1}$ Température de gel du mélange : $T_G = -8 \text{ °C}$				
2. Mesure	du pH (2 points)				
	Utiliser du papier pH ou un pH-mètre ou un indicateur coloré. Le technicien a utilisé le pH-mètre car la mesure est précise, ce qui n'est pas possible avec du papier pH.				
3. Mesure	du titre hydrotimétrique				

BTS Fluide Énergies Domotique Option GCF	corrigé	session 2021
épreuve E32 : physique et chimie	durée : 2 heures	coefficient : 1
Code: 21FEPHGCF1-C		page 1/2

3.	Le TH indique la dureté de l'eau en °f donc plus le TH est élevé plus il y a de risques d'apparition de calcaire dans l'échangeur qui diminue sa capacité de transfert thermique.		
4	La teneur en glycol correspond au conditionnement de l'installation car $T_G < -3^{\circ}\text{C}$. L'eau est très légèrement basique sans conséquence pour l'installation. Le TH indique une eau douce. Qualité de la rédaction		
II. Circuit a	aéraulique		
1.	Entrée : pression de l'air en amont et en aval du filtre Sortie : signal 4 - 20mA		
2.	Les filtres M6 ont une perte de charge de 450 Pa = 4,5 mbar compatible avec la gamme du capteur de 0 à 6,25 mbar		
3.	signal $4-20$ mA correspond à une pression différentielle $0-6.25$ mbar = $0-625$ Pa On veut 90 % de 450 Pa = 0.90 x 450 = 405 Pa Rapport de la mesure $405/625 = 0.648$ Etendue du signal $20-4=16$ Valeur du signal de sortie $16*0.648=10.37$ mA		
C. Contro	ôle de la production calorifique de la CTA		
I. Producti	ion calorifique		
1.	La différence entre les deux pouvoirs calorifiques est la prise en compte de la condensation de la vapeur d'eau pour le PCS		
2.	Calculer la quantité d'énergie Q_{eau} nécessaire pour chauffer la masse d'eau calculée, connaissant la capacité thermique de l'eau et l'augmentation de température de l'eau. Calculer la quantité de chaleur Q_{gaz} fournie par le gaz à partir de la quantité de gaz consommé et de son pouvoir calorifique. Faire le rapport Q_{eau}/Q_{gaz}		
II. Circuit h	nydraulique		
1.	10 ⁵ kJ.h ⁻¹ = 27,7 kJ.s ⁻¹ $P = q_{\rm m}.C_{\rm eau}.\Delta\theta$ donc $q_{\rm m}$ = 27,7·10 ³ /(4 ,18.10 ³ x 10) = 0,662 kg·s ⁻¹ $q_{\rm V} = q_{\rm m}$ / ρ = 0,662.10 ⁻³ m ³ ·s ⁻¹ = 2,39 m ³ ·h ⁻¹ = 39,9 L·s ⁻¹		
2.1.	HMT = 4 m		
2.2.	L'apparition de gaz à l'aspiration de la pompe est due à la diminution de la pression en dessous de la pression de vaporisation de l'eau.		

BTS Fluide Énergies Domotique Option GCF	corrigé	session 2021
épreuve E32 : physique et chimie	durée : 2 heures	coefficient : 1
Code: 21FEPHGCF1-C	page 2/2	