
Baccalauréat Professionnel

TECHNICIEN DE MAINTENANCE DES SYSTÈMES ÉNERGÉTIQUES ET CLIMATIQUES

Session 2018

Résidences les Séniorales

Les situations professionnelles		Temps conseillé	Pages	
		Lecture du dossier	15 mn	
S1		RÉSEAU DE PRODUCTION CHAUFFAGE ET ECS	35 min	2 à 3 /9
S2		CENTRALE DOUBLE FLUX	35 min	4 /9
S3		HYDRAULIQUE	50 min	5 à 6 /9
S4		FROID	50 min	7 à 8 /9
S5		RÉSEAU DE CHALEUR	55 min	9 à 9 /9

Sous-épreuve E.21 - Unité U.21

« L'usage de tout modèle de calculatrice, avec ou sans mode examen, est autorisé. ».

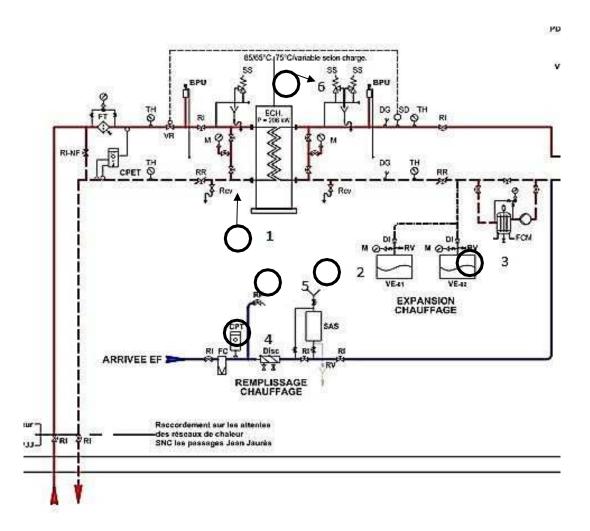
Les situations professionnelles					
S1	□ RÉSEAU DE PRODUCTION CHAUFFAGE ET ECS				
S2	□ CENTRALE DOUBLE FLUX				
S3	□ HYDRAULIQUE				
S4	□ FROID				
S5	□ RÉSEAU DE CHALEUR				

BACCALAURÉAT PROFESSIO TECHNICIEN DE MAINTENANC SYSTÈMES ÉNERGÉTIQUES ET CLI	CODE 1809-TMS T	SESSION 2018	DOSSIER SUJET- RÉPONSE	
ÉPREUVE U21	18RENEVR	DURÉE 4h	COEFFICIENT 2	PAGE DSR 1/9

S1

SITUATION PROFESSIONNELLE

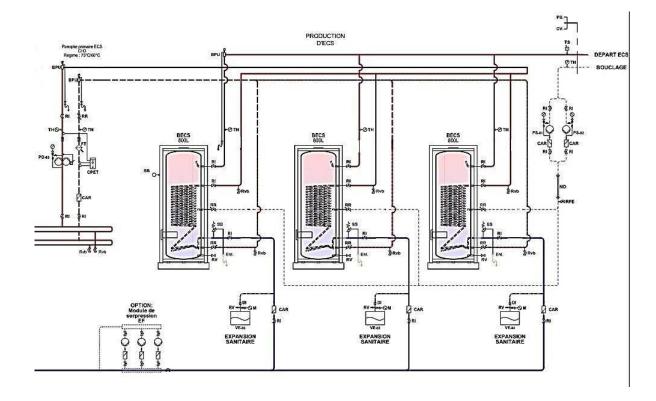
Contexte:


- La résidence est raccordée sur le réseau de chaleur de l'agglomération du Grand Dijon pour le chauffage et la production d'ECS, vous êtes en charge de la gestion de la sous station pour la production de chauffage et d'ECS. Des locataires se plaignent des chutes de température lors de l'utilisation de l'eau chaude sanitaire. On vous demande de contrôler l'ensemble de l'installation et l'adéquation avec le CCTP.

<u>Vous disposez</u>: (conditions ressources)

- Extrait du CCTP DT 1 page 2/15, 3/15 et 4/15
- Arrêté du 30 Novembre 2005 DT 2 page 4/15
- Schéma général de la sous station DT 3 page 5/15
- Schéma de détail du point de livraison DT 4 et DT 6 page 6/15 et 7/15

Vous devez	Critères de réussites
C1-12 Vous devez analyser les circuits	Les composants de l'installation sont repérés et
hydrauliques des réseaux primaires et	le fonctionnement de l'installation est optimisé.
d'ECS afin de justifier les chutes de	
températures.	


1) **Désigner** les composants de 1 à 6 du schéma DT 4 « circuit primaire » et donnez leur nom et leur fonction.

Voir le schéma DT4 page 6/15 pour une lecture plus facile.

Numéro	Désignation	Fonction
1		
2		
3		
4		
5		
6		

2) Sur le schéma de préparation de l'ECS ci-dessous, **repérer** le circuit de préparation, (départ en flèche rouge, retour en flèche bleues) et le circuit de distribution d'ECS (départ en flèche noir).

BACCALAURÉAT PROFESSIONNEL TECHNICIEN DE MAINTENANCE DES SYSTÈMES ÉNERGÉTIQUES ET CLIMATIQUES	DOSSIER SUJET- RÉPONSE	ÉPREUVE U21
---	---------------------------	-------------

PAGE DSR 2/9

3) **Justifier** le montage des ballons en parallèle, en vous aidant des données de consommation d'ECS.

Le montage en parallèle permet de fournir le débit de pointe de 715 litres/10 mn.	Vrai	Faux
Le débit maximum de 2002 litres/h ne peut pas être assuré avec le montage en parallèle.	Vrai	Faux
Le montage en parallèle permet de fournir la température de production à 60°C.	Vrai	Faux
Le montage en parallèle permet de fournir la température de distribution minimum de 50°C sur le retour bouclage.	Vrai	Faux

- 4) **Relever** les caractéristiques techniques de la production d'ECS permettant de :
 - Respecter la réglementation sur la lutte contre les légionnelles (2 critères).

•	Respecter	le risque	de brûlure	(2 critères)	١.
---	-----------	-----------	------------	--------------	----

- 5) Dans le document DT 1 et avec le formulaire ci-dessous :
 - a. Relever le débit de la pompe double N°3,
 - b. Relever la valeur du régime d'eau préparateur,
 - c. **Déterminer** le Δt par le calcul,
 - d. **Déterminer** la puissance distribuée par le calcul.

Formulaire : $P = Qm \times Cpeau \times \Delta t$

Avec:

- P : puissance en kW
- Qm : débit en kg/s, on prendra 1 litre = 1 kg
- Cpeau = 4,18 kJ/kg/°C
- Δt : différence de température entre le départ et le retour du réseau primaire

Vale	urs numériques :
•	Débit pompe théorique : Qm =
•	Régime d'eau :
•	$\Delta t =$
•	P _{théorique} =

6) En réalité, vous avez relevé un débit de 3,5 m³/h sur la pompe PD03. **Déterminer** la puissance réelle fournie.

```
Qm = 3.5 \text{ m}^3/\text{h}

C = 4.18 \text{ kJ/kg/°C}

\Delta t =

P =
```

7) **Conclure** entre la différence de la puissance théorique et la puissance réelle calculée à partir de vos relevés. **Justifier** votre réponse.

BACCALAURÉAT PROFESSIONNEL TECHNICIEN DE MAINTENANCE DES SYSTÈMES ÉNERGÉTIQUES ET CLIMATIQUES	DOSSIER SUJET- RÉPONSE	ÉPREUVE U21	PAGE DSR 3/9
---	---------------------------	-------------	--------------

\sim	
37	
U_	

SITUATION PROFESSIONNELLE

Contexte:

Vous prenez en charge la ventilation qui dessert le bureau, la lingerie et les sanitaires au niveau R+1. Dans le cadre d'une maintenance préventive, vous recherchez les caractéristiques de l'installation. Vous constatez que le débit de soufflage est inférieur au débit préconisé. Vous remplacez les filtres et installez une sonde de débit.

Vous disposez: (conditions ressources)

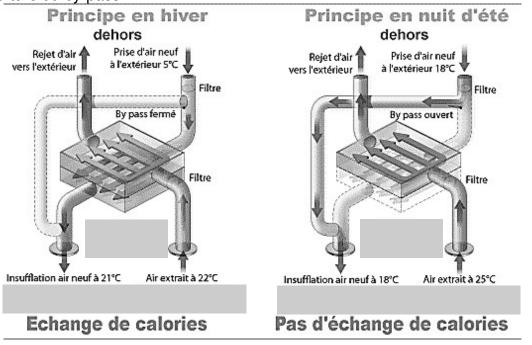
- Extrait du CCTP DT 1 page 3/15 et 4/15
- Notice technique « Centrale double flux DFE » DT 7 page 8/15 et 9/15

Vous devez	Critères de réussites
C1-1 Analyser le fonctionnement de la VMC	Les caractéristiques et les modes de
double flux au niveau R+1 et proposer la mise	fonctionnement de la VMC double flux sont
en place d'une sonde d'encrassement pour	relevés et justifiés. Le raccordement de la sonde
corriger le dysfonctionnement.	d'encrassement permet un fonctionnement
	optimal de l'installation.

Vous devez : (travail demandé)

1) Relever le débit de soufflage de la centrale double flux.

Le débit de soufflage est :		
-----------------------------	--	--


2) Relever les caractéristiques de la centrale double flux DFE compact.

	Caractéristiques
Modèle	
Dimension	
Débit d'air max en m ³ /h	
Puissance absorbé max en W	
Rendement de l'échangeur en %	
pour le débit maximum	
Puissance totale max ventilateur	
en kW	
Intensité max en A	
Intensité de protection en A	

3) **Rechercher** les types de filtres de la centrale double flux DFE compact 1000.

	Type de filtre
Air Neuf	
Air Repris	

4) **Dans le tableau ci-dessous, indiquer** par une croix les conditions nécessaires à l'ouverture du by-pass.

Conditions	Ouverture du by-pass
Température extérieure	
inférieure à la température	
intérieure	
Température extérieure	
inférieure à 14°C	
Température extérieure	
supérieure à 15°C	
Température intérieure	
supérieure à 22°C	
La température extérieure	
est supérieure à la	
température intérieure	
Température intérieure	
inférieure à 20°C	

5) Une sonde de pression est préconisée pour indiquer l'encrassement des filtres afin d'optimiser le fonctionnement. Vous devez la raccorder au régulateur. **Compléter le schéma** ci-dessous.

Circuit i/o REC

\mathbb{I}_{\circ}	0				\mathbb{I}		\mathbb{I}°	\mathbb{I}	\mathbb{I}		\mathbb{I}				\mathbb{I}°	\mathbb{I}
0	0	0	0] 0] 0	0] 0] 0] 0] 0] 0] 0] 0] 0] 0] 0
K1	K2	КЗ	+12V	IN3	IN4	+12V	+12V	IN5	IN6	IN7	IN8	GND	OUT3	OUT4	GND	T°5

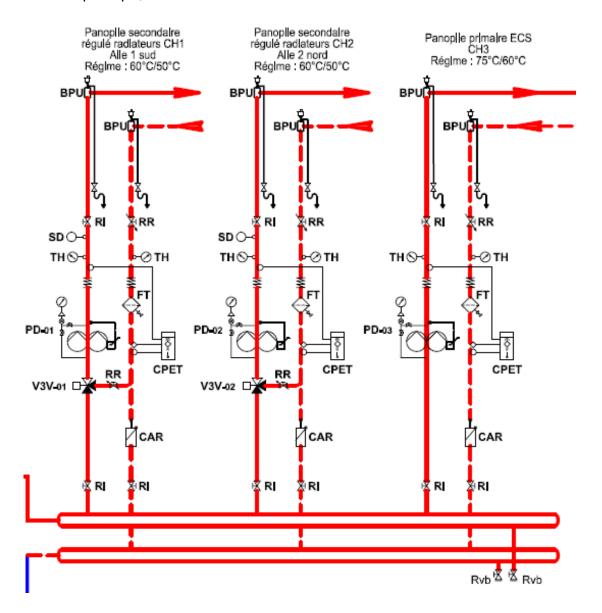
noir/black	GND	
jaune/yellow rouge/red	OUT	SONDE DE PRESSION
ı		

BACCALAURÉAT PROFESSIONNEL TECHNICIEN DE MAINTENANCE DES SYSTÈMES ÉNERGÉTIQUES ET CLIMATIQUES	DOSSIER SUJET- RÉPONSE	ÉPREUVE U21	PAGE DSR 4/9
---	---------------------------	-------------	--------------

S3

SITUATION PROFESSIONNELLE

Contexte:


- Lors de la remise mise en service du chauffage dans les logements de l'aile sud, vous avez constaté un manque de puissance de chauffe sur les radiateurs. Le débit du réseau est correct. Vous analysez le fonctionnement de la vanne 3 voies pour vérifier la conformité avec le CCTP.

Vous disposez: (conditions ressources)

- Extrait du CCTP DT 1 page 2/15 et 3/15
- Schéma de principe « Réseau de chauffage » DT 5 page 6/15
- Fiche de calcul « Pertes de charge » DT 9 page 10/15
- Notice technique « Vanne 3 voies Danfoss » DT 10 page 11/15

Vous devez	Critères de réussites
C1-1 Analyser le fonctionnement de la vannes 3 voies et interpréter les données hydrauliques	L'analyse de la vannes 3 voies permet de justifier l'autorité de la vanne.

1) **Repérer** l'emplacement de la vanne 3 voies sur le réseau hydraulique de l'aile 1 sud sur le schéma de principe, en l'entourant en bleu.

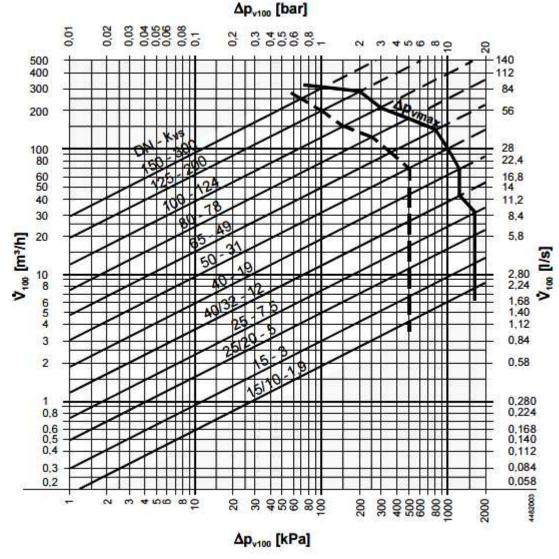
Identifier le moi	ntage et le rôle de la v	vanne 3 voies sur	le réseau hydraulique.
-------------------------------------	--------------------------	-------------------	------------------------

Type de montage :
Dâle de le venne 2 veies :
Rôle de la vanne 3 voies :

3) **Relever** le débit volumique de la pompe CH1 dans le DT 1.

Débit volumique :		
Book volamique :		

4) **Relever** les pertes de charges totales du réseau hydraulique de l'aile 1 sud à partir de la fiche de calcul, et déterminer le résultat final.


Pertes de charge totale :	mCE
Majoration 15%	mCE
Résultat final du calcul pour sélection du matériel	mCE
Résultat final du calcul pour sélection du matériel	kPa

BACCALAURÉAT PROFESSIONNEL	DOSSIER SUJET
TECHNICIEN DE MAINTENANCE DES SYSTÈMES	RÉPONSE
ÉNERGÉTIQUES ET CLIMATIQUES	REPUNSE

5) Relever le diamètre nominal de la V3V dans le tableau des pertes de charges DT 9.

Diamètre nominal de la vanne 3 voies du CCTP :

6) **Tracer** le point de fonctionnement de la vanne 3 voies sur l'abaque ci-dessous à partir des informations récupérées précédemment.

100 kPa = 1 bar = 10 mCE 1 m³/h = 0,278 kg/s d'eau à 20 °C 7) Relever le diamètre nominal de la vanne 3 voies à partir de l'abaque.

DN de la vanne 3 voies :

8) Vérifier l'autorité de la vanne 3 voies du réseau hydraulique.

$$a = \frac{\Delta P1}{\Delta P1 + \Delta P2}$$

$$\Delta P1 =
\Delta P2 =
a =$$

9) À l'aide du DT 10, **comparer** la vanne 3 voies du CCTP et la vanne 3 voies sélectionnée et **justifier** ce choix.

Justification:		

BACCALAURÉAT PROFESSIONNEL
TECHNICIEN DE MAINTENANCE DES SYSTÈMES
ÉNERGÉTIQUES ET CLIMATIQUES

DOSSIER SUJET-RÉPONSE

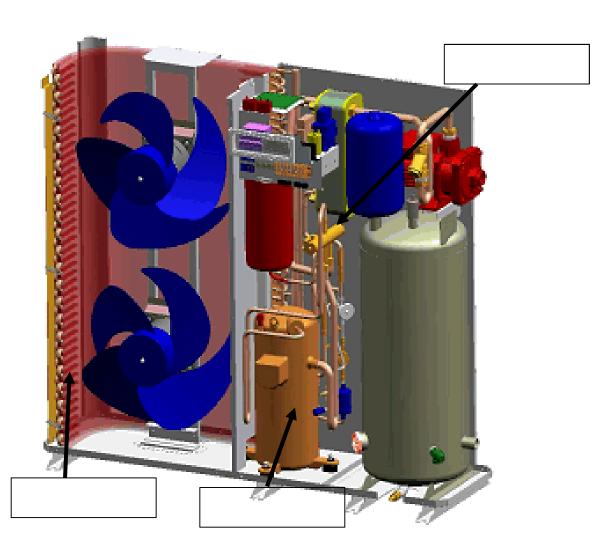
ÉPREUVE U21

PAGE DSR 5/9

S4

SITUATION PROFESSIONNELLE

Contexte:


 Lors de la mise en service de la pompe à chaleur Daikin bi-bloc haute température modèle ERRQ016AV1 sans contrôleur d'ambiance, vous basculez du mode rafraichissement en mode chauffage. Vous constatez que le changement de cycle ne s'opère pas. Vous avez effectué la maintenance curative et vous expliquez les modes de fonctionnement et les périodicités de visites.

<u>Vous disposez</u>: (conditions ressources)

- Extrait du CCTP DT 1 page 4/15
- Notice Pompe à chaleur « Daikin bi-bloc haute température » DT 12 page 12/15
- Arrêté F-gaz n°517/2014 DT 13 page 12/15

/	—, - -
Vous devez	Critères de réussites
C1-1 /C1-4 Collecter les caractéristiques de	Les données sont recueillies pour expliquer le
la pompe à chaleur et renseigner le dossier	fonctionnement au client et pour valider le
technique de l'installation en fonction de la	planning de maintenance de l'installation en
réglementation en vigueur.	adéquation avec la réglementation en vigueur.

1) À partir du schéma de principe de la pompe à chaleur, **placer** les différents composants et **remplir** le tableau en page suivante.

N°	Désignation	Fonction
1	Compresseur	
2	Condenseur	
3	Détendeur	
4	Échangeur à plaques	
5	Vanne 4 voies	

- 2) Relever les puissances frigorifiques et calorifiques se trouvant dans le CCTP.
 - la puissance frigorifique $\Phi 0$:
 - la puissance calorifique Φk :
- 3) **Relever** à partir de la documentation technique DT 13, les différentes valeurs et unités caractéristiques de la pompe à chaleur.

Caractéristiques	Valeurs	Unités
P Calorifique Nom. à 7°C ext.		
P Absorbée Nom. à 7°C ext.		
Type de compresseur		
Fluide		
Charge en Fluide		
Alimentation Électrique		
Protection (Fusible recommandé)		

4) En application de la F-gaz n° 517/2014, vous devez **indiquer** la périodicité de contrôle d'étanchéité de l'installation.

BACCALAURÉAT PROFESSIONNEL TECHNICIEN DE MAINTENANCE DES SYSTÈMES ÉNERGÉTIQUES ET CLIMATIQUES	DOSSIER SUJET- RÉPONSE	ÉPREUVE U21	PAGE DSR 5/9
---	---------------------------	-------------	--------------

5) Lors de la mise e l'installation pass		nt vous demande d ichissant au mode d		er par quel procédé
		ı de principe de la p ssage en mode cha	=	eur. Cocher le schéma
INTÉRIEUR	Evaporateur	BA4	Condenseur	cocher
INTÉRIEUR	Evaporateur	BAL	Condenseur	cocher

BACCALAURÉAT PROFESSIONNEL TECHNICIEN DE MAINTENANCE DES SYSTÈMES ÉNERGÉTIQUES ET CLIMATIQUES	DOSSIER SUJET- RÉPONSE	ÉPREUVE U21	PAGE DSR 5/9
---	---------------------------	-------------	--------------

S5	SITUATION PROFESSIONNELLE
----	---------------------------

Contexte:

- Afin de satisfaire au Grenelle de l'Environnement, la résidence est raccordée au réseau du grand Dijon. Dans le cadre d'une réunion co-organisée entre le syndic de copropriété et les résidents, vous devez expliquer les avantages et les inconvénients de cette énergie.
- <u>Vous disposez</u>: (conditions ressources)

- Extrait du dossier de presse du Grand Dijon DT 16 page 14/15 et 15/15

Vous devez	Critères de réussites
C1-4 Transcrire les informations du dossier de presse du réseau de chaleur de l'agglomération de Dijon.	Les informations relevées permettent d'expliquer les atouts de ce type de réseau.

1) Le réseau de chaleur est alimenté par 2 chaufferies, **rechercher** les sources d'énergie utilisées et le pourcentage d'énergies renouvelables.

Sources énergétiques :	
•	
•	
•	

Pourcentage d'énergies renouvelables :	

2) Une des chaufferies utilise le principe de la cogénération, **expliquer** ce principe.

Cogénération :			

3) Le développement des réseaux de chaleur est encouragé par le Grenelle de l'environnement, **quels en sont les enjeux** ?

Les enjeux :		

- 4) Relever dans le document technique :
 - a. le gain au niveau du rejet en dioxyde de carbone.
 - b. les exemples de coût du mégawattheure de réseau de chaleur.
 - c. les exemples de coût du mégawattheure du chauffage conventionnel.

Gain en CO2 : Prix du mégawattheure du réseau de Quetigny : Prix du mégawattheure du réseau de Fontaine d'Ouche : Mégawattheure gaz ou électricité :

- 5) Le Grand Dijon a décidé de coupler une chaufferie gaz en appoint avec l'usine d'incinération,
 - a. **Rechercher** le pourcentage d'énergie produite par cette chaufferie.
 - b. Rechercher les raisons de ce choix technique.

Pourcentage d'énergie produite par la chaufferie gaz :
Raisons de ce choix technique :

- 6) La chaufferie biomasse produit 60% de l'énergie injectée,
 - a. **Relever** la puissance de chacune des 3 chaudières.
 - b. **Rechercher** les avantages pour l'économie locale et pour le consommateur final.

Puissance unitaire des chaudières bois :			
Chaudière 1 : Chaudière 2 :			
Chaudière 3 :			
Avantages économiques :			

BACCALAURÉAT PROFESSIONNEL TECHNICIEN DE MAINTENANCE DES SYSTÈMES ÉNERGÉTIQUES ET CLIMATIQUES	DOSSIER SUJET- RÉPONSE	ÉPREUVE U21	PAGE DSR 5/9
---	---------------------------	-------------	--------------