œ

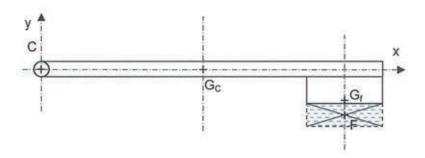
	lind		əj	i rigio	z≈lı ı uesı ı	Pan		%7	¦ı≈lı	əլdn	os ni	eəuu	ьа	enėre	ı bolγı ı bolγı	ıssiT
Epuisement des ressources non renouvelables	Indiquer ici l'unité équivalente comparable	3 Kg de sable pour 1kg de Si (eq 95Wc)	2,6 Kg charbon coke bois pour 1kg de Si	3,7 kg de produits chimiques et gaz pour 1 m² de plaque (eq 140Wc)	0,4 kg de quartz pour 1 m² de plaque	0.06 kg produit chimique et gaz par cellule (156 mm x 156 mm) (eq 3,6 Wc)	0,035 kg de solvants organiques par module de 60 cellules (eq 220 Wc)	2 kg de sable pour 1 kg de Si (eq 52 Wc)	3,5 kg charbon coke bois pour 1 kg de Si	3,7 kg de produits chimiques et gaz pour 1 m² de plaque (eg 76 Wc)	0,4 kg de quartz pour 1 m² de plaque	0,06 kg produit chimique et gaz par cellule (eq 2 Wc)	0,035 kg de solvants organiques par module de 60 cellules (eq 120 Wc)	4 g de produits chimiques pour 1 m² de tissu	0,6 g de quartz pour 1 m² de tissu	120 g de solvants pour 1 m² de tissu
Unité équivalente de Qté de matière première /production attendue.		0,031	0,027	0,026	0,0028	0,016	1,59.10*	0,038		1	1	0,03			0,035	
nsommation snergétique	9	150 kWh pour 1 kg Si	30 kWh pour 1 m² de plaque	0,74 kWh par cellule	10,7 kWh par module de 60	3		210 kWh pour 1 kg de Si	30 kWh pour 1 m² de plaque					90 kWh pour la fabrication du fil	+ 4.5 kWh par m² pour le tissage	
Unité équivalente d'énergie consommée /production attendue		1,57	0,21	0,205	0,048									ı	i	
nse'b	°2	65 I par m² de plaque	27 I par cellule	34 I par module de 60 cellules				80 l par m² de plaque	29 I par cellule	30 I par module de 20 cellules				1,26 l par m² de tissu		
Unité équivalente de consommation d'eau /production attendue		0,46	7,5	0,15					1	1						
otentiel de chauffement climatique	160		35g CO ₂ -eq/kWh Correspondant à	la quantité de gaz à effet de serre émis lors de la	fabrication du système sur sa	production électrique pendant 30 ans			Subg COz-eqrkwn Correspondant à	la quantité de gaz à effet de serre émis lors de la	fabrication du système sur sa	électrique pendant	SU BUS	25g CO ₂ -eq/kWh Correspondant à la quantité de gaz	a effet de serre émis lors de la fabrication du	production production electrique pendant
cidification de l'air	A			KVVh d'oxyde	soufre et	d d'azote				Sejets 6 d'kVh 6 d'oxyde		d azote		чл	SS SS	006
oduction de déchets	Pro			Poussières fines 2 kg de produits	silicium	solvant				Poussières fines 2 kg de produits chimiques	silicium	solvant			Résidus de solvants	1

Concours général des lycées	2016
ciences et technologies de l'industrie et du développement durable STI2D	Page 47 / 49

Modèle ENSD ©NEOPTEC																					
Nom: (Suivi, s'il y a lieu, du nom d'épouse)																					
Prénom :																					
N° d'inscription :											N	é(e)	le :]/		//				
	(Le nun	néro es	t celui d	qui figu	re sur la	a convo	cation	ou la fe	uille d'	émarge	ment)									 	
	Con	cour	s			Sect	ion/0	Optio	on .				Epre	uve				Mati	ère		

STID

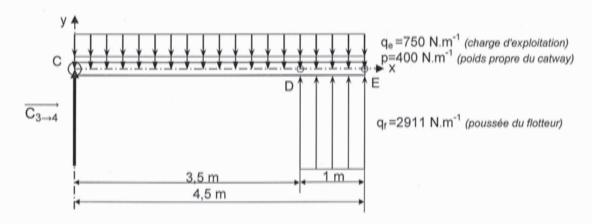
DOCUMENTS RÉPONSES DR8 à DR11

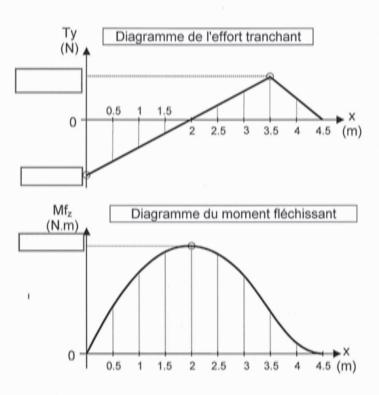

DR8 - Puissance transmise à la batterie branchement direct

U _{Bat} (V)	10	12	15
I _{Bat} (A)			
P _{Bat} (W)			
η _{transfert} (%)			

DR9 - Puissance transmise à la batterie branchement régulateur MPPT

U _{Bat} (V)	10	12	15
$K = \frac{V_2}{V_1}$			
I _{Bat} (A)			
P _{Bat} (W)			
η _{transfert} (%)			


DR10 - Equilibre du catway lège (sans charge d'exploitation)


Echelle des forces : 1 mm \rightarrow 40 N

Concours général des lycées	2016
Sciences et technologies de l'industrie et du développement durable STI2D	Page 48 / 49

DR11 - Diagrammes des efforts tranchants et moments fléchissants

L'étude des efforts de cohésion du catway en charge donne les diagrammes d'effort tranchant Ty et moment fléchissant Mf_z en fonction de l'abscisse x:

Concours général des lycées	2016
Sciences et technologies de l'industrie et du développement durable STI2D	Page 49 / 49