DOSSIER TECHNIQUE

SOMMAIRE

Le dossier technique est composé de 25 pages, celle-ci comprise.

Présentation de l'étude	DT1
Mise en situation du doseur volumétrique	DT2
Mise en œuvre du doseur volumétrique	DT3
Nomenclature dessin d'ensemble	DT4
Dessin d'ensemble doseur volumétrique	DT5
Eclatée du doseur volumétrique	DT6
Dessin de définition du corps	DT7
Repérage des surfaces du corps	DT8
Fiche matière Laiton CW 617N	DT9
Caractéristiques mécaniques des laitons	DT10
Les traitements de surface	DT11
Dessin de définition du brut	DT12
Photos du brut	DT13
Symbolisation technologique	DT14 à DT15
Nomenclature des phases	DT16
Groupes de matière SECO	DT17
Contrat de phase 20	DT18
Descriptif M.M.T.	DT19
Dessin de définition modifications du corps	DT20
Tolérances ISO 2768	DT21
Tolérances ISO des alésages	DT22
Formulaire de Résistance Des Matériaux	DT23 à DT24

Présentation de l'étude

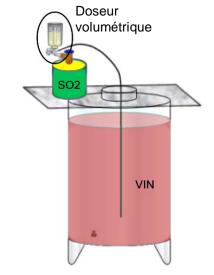
1- L'entreprise :

CLESSE INDUSTRIES conçoit, produit et commercialise dans le monde entier des équipements de détente, de robinetterie et de sécurité notamment pour les gaz combustibles.

CLESSE INDUSTRIES c'est:

- Une gamme de produits comprend principalement des détendeurs de gaz, des valves, des raccords et des accessoires de sécurité, destinés à être installés sur des réseaux, des citernes, des réservoirs ou des canalisations.
- Le leader sur le marché français de la robinetterie et de la détente depuis plus de 50 ans.
- Une gamme complète de produits et de solutions pour s'adapter à chaque utilisation et répondre aux besoins de ses clients au niveau mondial.
- 5 usines et bureaux en France, Italie, Angleterre, Brésil et Chine.
- Plus de 150 employés.

Les produits de Clesse Industries disposent de nombreux agréments, labels de conformité et certifications.


2- Produit développé pour la société LA LITTORALE :

CLESSE INDUSTRIES a développé un doseur volumétrique de SO₂ (anhydride sulfureux) pour la société LA LITTORALE.

Cette société est experte en conseils et produits œnologiques. Elle accompagne les principaux acteurs de la filière vinicole.

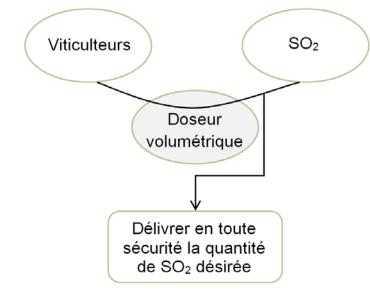
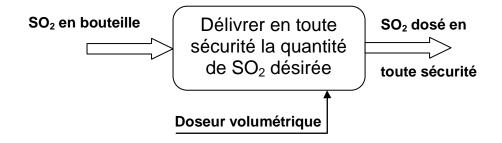
Ce doseur volumétrique est utilisé par les viticulteurs pour traiter leurs vins en cours d'élaboration. Il est monté sur une bouteille de gaz SO_2 liquéfié pour sulfiter en toute sécurité les moûts et les vins. Cette opération consiste à apporter au moût ou au vin une quantité d'anhydride sulfureux (SO_2) pour permettre une bonne vinification et favoriser une meilleure conservation.

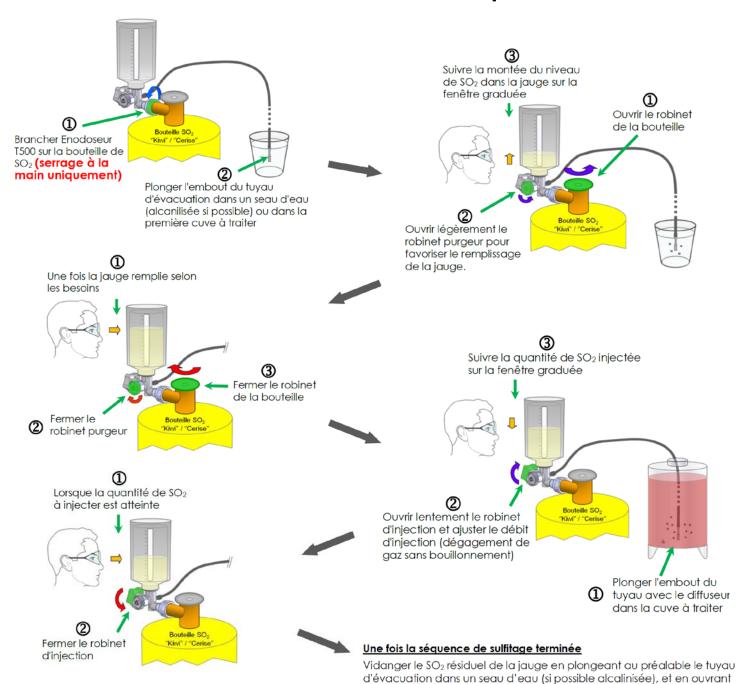
L'anhydride sulfureux agit en antiseptique et antioxydant, c'est un produit chimique dont l'utilisation est règlementée.

Mise en situation du doseur volumétrique

1- Analyse du besoin :

La société LA LITTORALE a contacté CLESSE INDUSTRIES pour concevoir un doseur volumétrique de SO₂ afin de répondre à un besoin de ses clients.

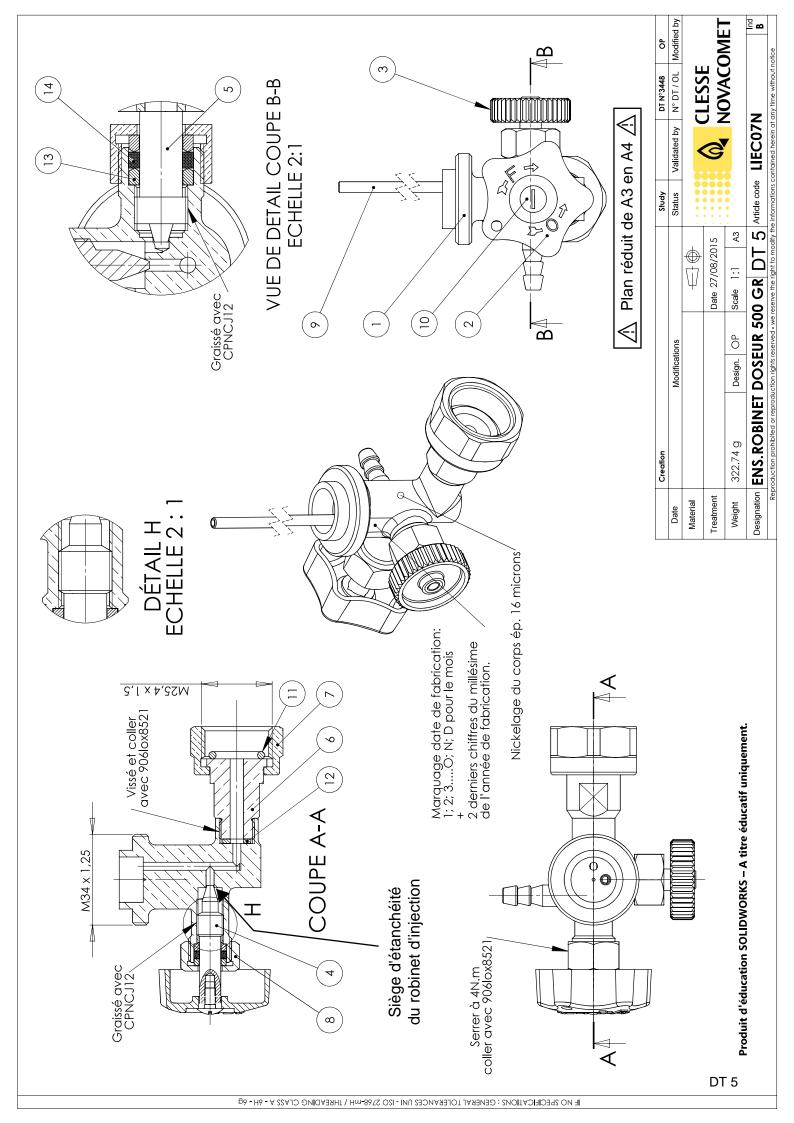

Diagramme « bête à comes »

2- Fonction globale du système :

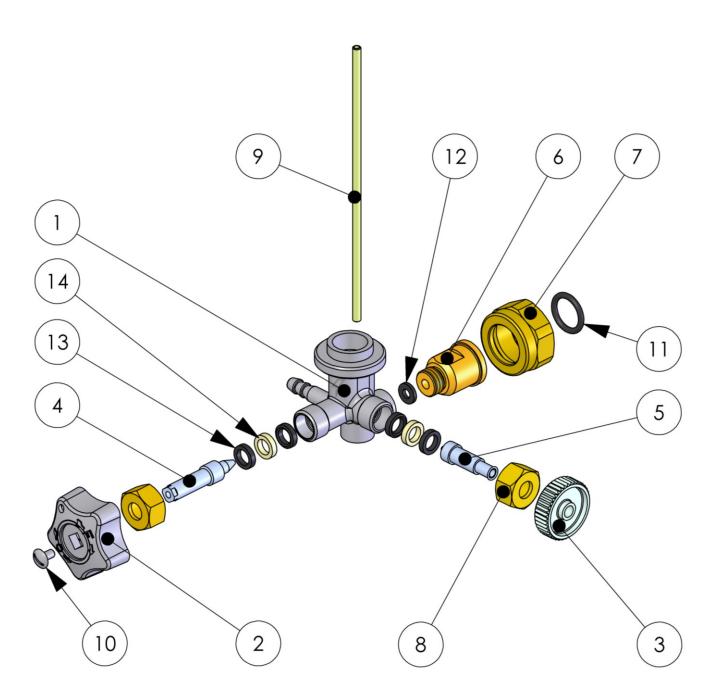
Le doseur volumétrique est vissé sur la bouteille de gaz liquéfié, l'utilisateur peut sulfiter son vin sans être en contact avec le SO₂.

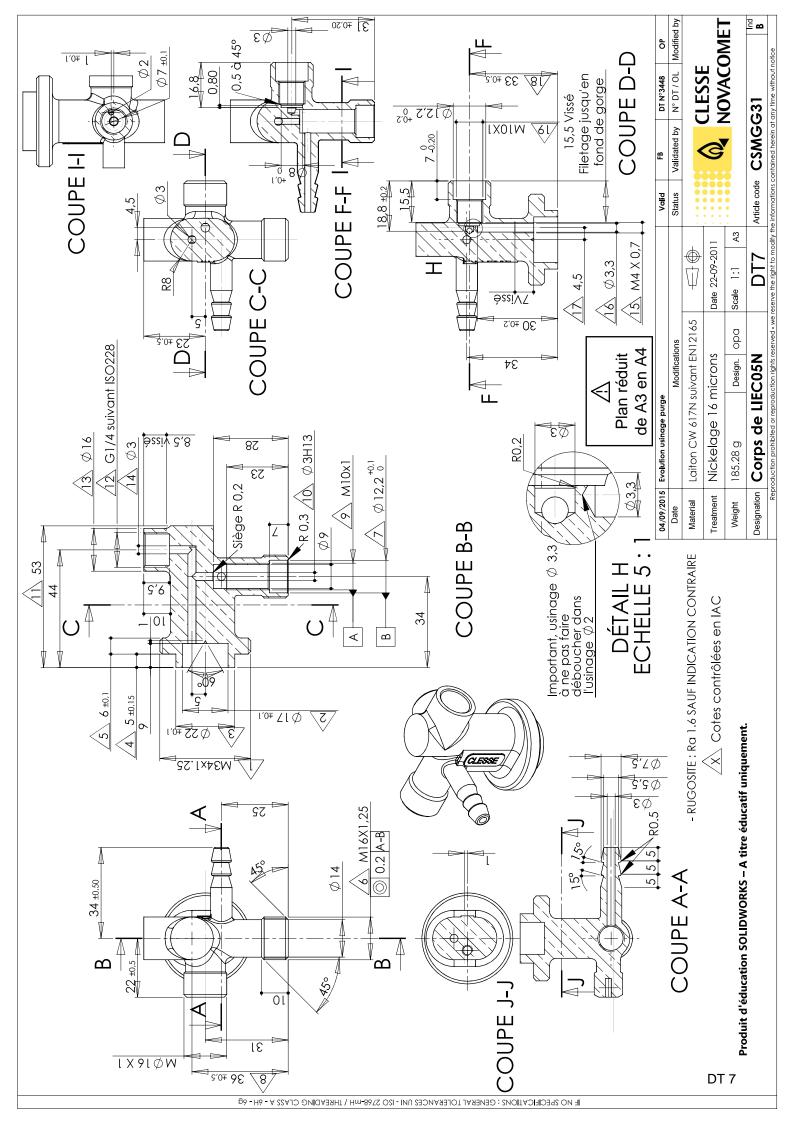
Mise en œuvre du doseur volumétrique (Enodoseur T500)

IMPORTANT

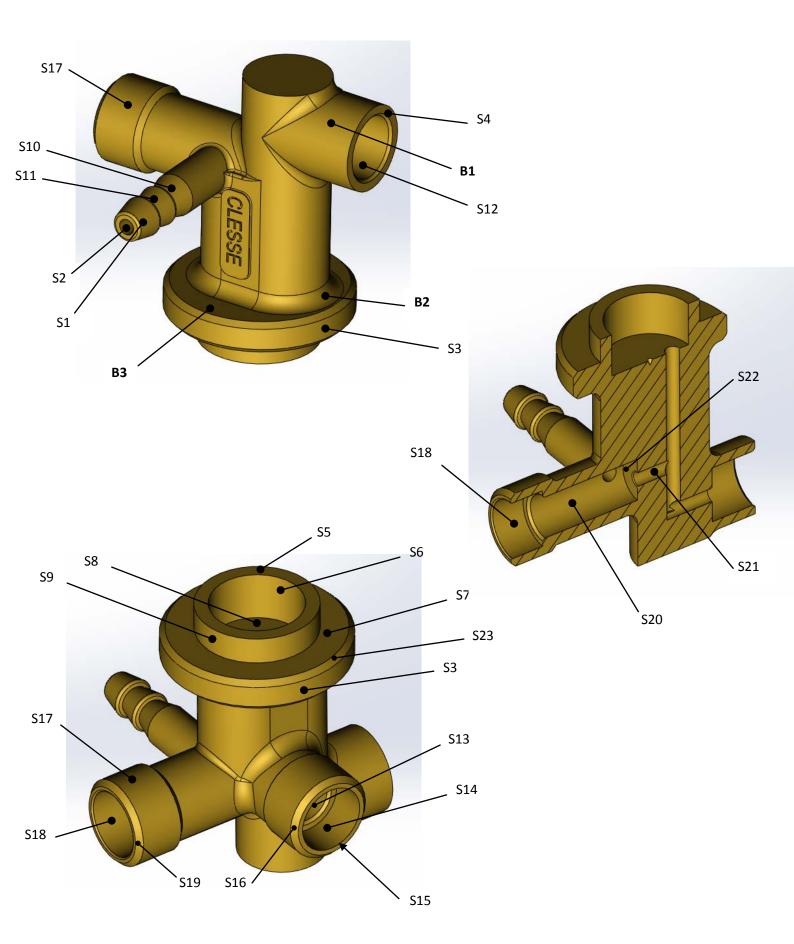

Empêcher tout retour de moût ou de vin dans la jauge qui entrainerait une corrosion du robinet et son blocage. Pour cela la bouteille doit toujours être positionnée au-dessus de la cuve pour éviter tout risque de retour par siphonage (voir schémas ci-dessous).

légèrement le robinet d'injection. Après vidange refermer le robinet.




Nomenclature dessin d'ensemble

Repère	QTE	Désignation	
1	1	Corps	
2	1	Volant marquage O.F (volant robinet d'injection)	
3	1	Volant de purge	
4	1	Vis pointeau d'ouverture	
5	1	Vis pointeau de purge	
6	1	Embout pour M25.4 X 1.5	
7	1	Ecrou 6 pans M25.4 X 1.5	
8	2	Ecrou 6 pans M16 X 1.25	
9	1	Tube de dégazage	
10	1	Vis RL S.M4-8.INOX 18-10	
11	1	Joint torique 15,54X2,62	
12	1	Joint plat	
13	4	Joint élastomère	
14	2	Joint fibre	



Eclatée

Repérage des surfaces du corps

Laiton CW617N

Laiton de décolletage et de matriçage

Le CW617N est le matériau de référence pour la transformation à chaud (matriçage).

La teneur en plomb moyenne est responsable de la bonne aptitude au décolletage de la pièce forgée dans la matriçe. Grâce à sa composition, ce laiton convient également à la réalisation de géométries de profilés hautement exigentes. Dans le domaine de l'eau potable nous fournissons ce laiton en Wieland Z41. Ce matériau a été spécialement optimisé pour la déformation à chaud sous la dénomination Wieland-Z48 et satisfait, tout comme le Z41, aux exigences de la norme DIN 50930-6.

Produits filés/étirés

Composition chimique*	Désignation de l'alliage		
Cu	E00/	⊏NI	Cu7=40Db2
Cu	58%	EN	CuZn40Pb2
Pb**	2%		CW617N
Zn	Rest	UNS	C38000
		DIN*	CuZn40Pb2-2.0402
		BS*	CZ122
Pourcentage en poids (valeurs indicatives)		NF	non normalisé

^{*}Anciennes normes nationales

Caractéristiques physiques*

Conductibilité électrique MS/m 14,9 % IACS 25 Conductibilité thermique W/(m*K) 113 Coefficient de dilatation thermique (0-300°C) 10 ⁻⁶/K 21,1 Densité g/cm3 8,43

GPa

96

Module d'élasticité

Aptitude à la mise en oeuvre

Façonnage	
Usinabilité	95%
(CuZn39Pb3 = 100 %)	
Déformation à froid	peu appropriée
Déformation à chaud	très bonne

Assemblage

Soudage par résistance	
(bout à bout)	moyen
Soudage à arc protégé	peu approprié
Soudo-brasage	moyen
Brasage à l'étain	très hon

Résistance à la corrosion

Les laitons de décolletage présentent en général une bonne résistance aux matières organiques et aux composés neutres ou alcalins.

Traitement de surface

Polissage	mécanique	bon
	électrolytique	peu approprié
Galvanisation		très bonne

Traitement thermique

Température de fusion	880-895 °C
Déformation à chaud	650-800 ℃
Recuit	450-600 ℃, 1-3 h
Détente	200-300 ℃,1-3 h

Normes de produits	
Barre	EN 12164
	EN 12165
Fil	EN 12166

Profil

Barre creuse EN 12168 Tube EN 12449

EN 12167

Caractéristiques mécaniques (les valeurs réalisables sont en fonction de la dimension et de la forme)

voir page suivante

^{*}Valeurs indicatives à température ambiante 1 GPa = 1 kN/mm²

 $^{1 \}text{ MS/m} = 1 \text{ m/}\Omega \cdot \text{mm}^2$

^{*} Lors de l'utilisation surtout dans un milieu ammoniacal et en cas de tensions mécaniques, il faut tenir compte du problème de la corrosion fissurante et de la dézincification en présence d'eaux chaudes et acides.

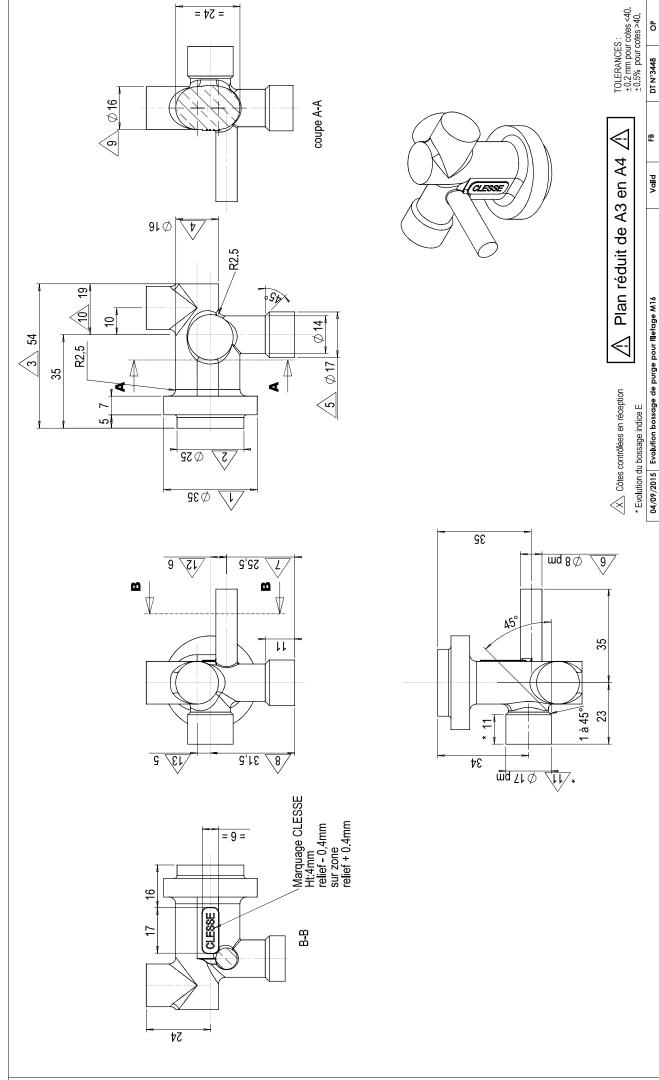
Caractéristiques mécaniques des laitons

Laitane hina	ires (valeurs moyenn	ctéristiques méd			
Laitons Dina		Charge de	Limite élastiq	ue Allongeme	nt Dureté
		ipture (MPa)	à 0,2 % (MPa		Vickers
CuZn10	Recuit	275	100	45	65
	H 11	320	250	25	85
	H 12	370	320	12	105
	H 14	430	380	5	127
CuZn33	Recuit	340	120	60	80
	H 11	375	280	42	105
	H 12	430	360	22	125
	H 14	525	430	8	150
CuZn36	Recuit	350	120	60	80
	H 11	375	280	43	105
	H 12	430	350	23	122
	H 14	520	425	8	150
CuZn40	Recuit	370	160	40	90
	H 11	390	265	30	120
	H 12	440	314	25	135
	H 14	510	440	8	162
Laitons au p	lomb (valeurs minima				1 - 11
	Diamètre ou épaisseur (D ou e) (m	Charge de m) (MP:		imite élastique à 0,2 % (MPa)	Allongement (A%)
	3 < D ou e < 7	450	320		7
CuZn35Pb2	7 < D ou e ≤ 15			300	10
	15 < D ou e ≤ 30	370	250		18
	3 ≤ D ou e ≤ 7	480)	350	5
	7 < D ou e ≤ 15	430)	300	8
CuZn39Pb2	15 < D ou e ≤ 30	380)	250	15
	30 < D ou e < 50	360		200	20
	50 < D ou e < 80	350		180	25
	3 < D ou e < 7	500		370	4
	7 < D ou e < 15	II DUCUNUS		360	6
CuZn40Pb2			450 400		12
CuZn40PbZ	15 < D ou e ≤ 30	2.00		300	
	30 < D ou e ≤ 50	380		250	18 22
• •	50 < D ou e < 80	370)	220	
Laitons com	plexes corroyés (vale				
	Etat	Charge de rupture (MPa)	à 0,2 % (MPa		Dureté Vickers
CuZn29Sn1	recuit H 34	380 450	180 380	50 20	90 165
CuZn22Al2	recuit H 34	400 550	200 450	45 20	100 165
Laitons com	plexes moulés (valeu		200.00		
	Mode* d'obtention	Charge de rupture (MPa)	Limite élastiq à 0,02% (MP		Dureté Brinell 10/3000
CuZn40	moulé Y30	340	_	8	-
CuZn23Al4	moulé Y20	500	250	8	160

Les traitements de surface

Zingage

La déposition de zinc et d'alliage de zinc est le traitement de surface électrolytique le plus communément utilisé. Il permet d'obtenir une résistance à la corrosion et/ou un revêtement décoratif peu onéreux sur une grande variété d'articles de fer et d'acier pour les industries automobiles, de la construction et d'autres. Par exemple, ils sont utilisés sur des feuilles d'acier ou des fils, des vis, des rondelles, des écrous, des boulons, des chariots de supermarché, des cadres (châssis) de construction et des boîtiers d'appareils ménager et dans des nombreux autres types d'applications.


Nickelage

Le nickelage électrolytique et les traitements de dépôt autocatalytiques sont utilisés dans une grande variété d'applications industrielles et grand public. Bien que la fonction première de ces traitements soit d'améliorer la résistance des substrats à la corrosion, à l'usure et à l'abrasion, le nickel offre un revêtement lisse, un niveau élevé de réflectivité et un revêtement résistant à la corrosion au-dessous d'une gamme de revêtements de finition à but décoratif.

Chromage

Le chromage est largement utilisé à la fois en tant que finition de surface décorative (chromage brillant) et en tant que revêtement fonctionnel (chromage dur), grâce à ses propriétés classiques de dureté élevée et de résistance à l'usure. Il est également largement utilisé dans des applications d'emballage.

= 54 =

Produit d'éducation SOLIDWORKS - A titre éducatif uniquement.

<u>n</u>

DT12 Article code CSMGA36

A3

Scale]:]

Design. opa

277.46 g

Weight

Corps de LIEC 05

Designation

Date 07-09-2011 **\rightarrow**

Laiton CW 617N suivant EN12165

Sablage acier

Treatment Materia

Modifications

Date

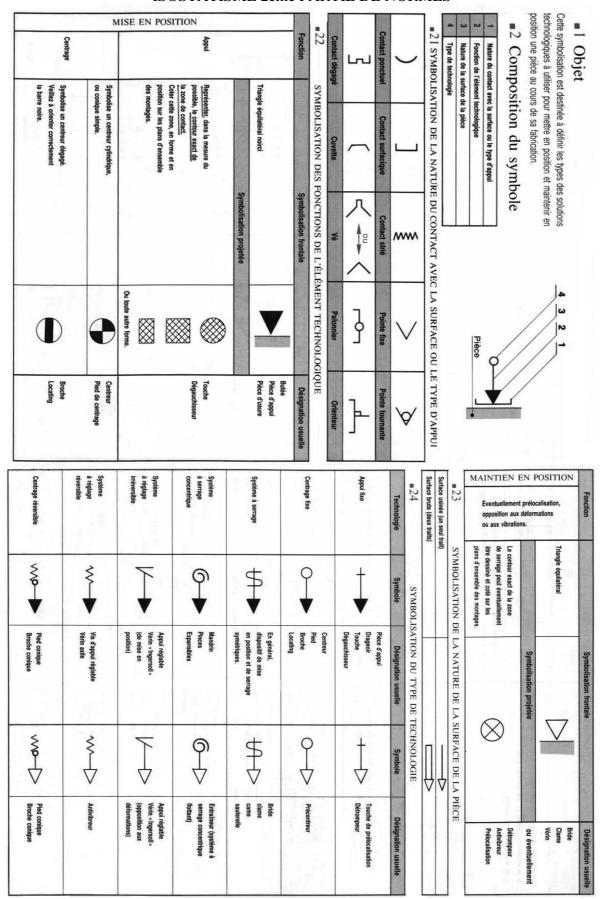
NOVACOMET

CLESSE

Validated by N° DT / OL Modified by

Status

Photos du corps brut



Symbolisation technologique

ISOSTATISME 2ème PARTIE DE NORMES

EXEMPLES DE SYMBOLES COMPOSÉS

Signification	Symbole	Degrés de liberté éliminés	Signification	Symbole	Degrés de liberté éliminés
Contact surfacique fixe de mise en position sur une surface usinée.	+-	Fonction de la surface	Index fixe d'orientation ou «Locating» en contact, avec une surface usinée.	+-	1
Mors striés à serrage concentrique en contact avec une surface brute.	G-3	Fonction de la surface	Centreur fixe court de mise en position en contact avec une surface usinée.	Centrage court	2
Contact ponctuel fixe de mise en position sur une surface brute.	+	1	Centreur fixe long de mise en position en contact avec une surface usinée.	Centrage long	4
Contact dégagé fixe de mise en position sur une surface usinée.	+->3	2	Palonnier de mise en position en contact avec une surface brute par deux touches bombées.		1
Cuvette de mise en position en contact avec une surface usinée.	\ \	2	Orienteur de mise en position angulaire à contacts ponctuels sur une surface usinée (« droite coulissante »).	₩	1
Vé fixe court de mise en position en contact avec une surface usinée.	Vé court	2	Dispositif de maintien en position à contact ponctuel sur une surface brute.	 	-
Vé fixe long de mise en position en contact avec une surface usinée.	Vé long) 4	Palonnier de maintien en contact avec une surface usinée par deux touches bombées.	₩	-
Vé court de mise en position à réglage réversible en contact avec une surface brute.	We court) 1	Précentrage sur une surface usinée par un alésage cylindrique.	0—1	-
Pointe fixe de mise en position en contact avec une surface usinée.	+	3	Entraîneur flottant à serrage concentrique sur une surface brute.	G-13	-
Pointe tournante de mise en position en contact avec une surface usinée à réglages irréversibles.	V->>	- 2	Appui de soutien à réglage irréversible.	V	-

NOMENCLATURE DES PHASES

Pièce Corps du doseur

Matière CuZn39Pb2

1

	Matière Matière		CUZN39Pb2] // / 1
Nom	CGM Date 22/04	1/2017 Série	300	EFICNSW
Phase	DESIGNATION		MACHINE	OBSERVATIONS
10	MATRICAGE Obtention du brut par matriçage.			T. C.
20	FRAISAGE Usinage poche diam. 17mm Usinage épaulement diam.2 Filetage M 34x1.25 Perçage diam. 3mm Perçage diam. 3.3mm Taraudage M4x0.7		CN 4axes <u>Porte-pièce:</u> Montage d'usinage 01	- TOTESSE
30	FRAISAGE Perçage diam. 3mm Usinage de forme diam. 7.5n	nm	CN 4axes <u>Porte-pièce:</u> Montage d'usinage 01	
40	FRAISAGE Lamage diam. 9mm Taraudage M10x1 Filetage M16x1.25 Lamage diam. 12.2 mm Perçage diam. 3mm		CN 4axes <u>Porte-pièce:</u> Montage d'usinage 01	
50	FRAISAGE Lamage diam.12.2 mm Lamage diam. 9mm Taraudage M10x1 Filetage M16x1		CN 4axes <u>Porte-pièce:</u> Montage d'usinage 01	
60	FRAISAGE Lamage +filetage G1/4 (suiv Perçage diam. 3mm Usinage diam. 16mm	rant ISO228)	CN 3 axes	
70	TRAITEMENT DE SU Traitement thermique de su Nickelage			

Groupes de matières SECO

Matières - Groupes matières Seco

Aciore dure	de cémentation.	Aciar inay	martoneitique
Aciers durs	de cementation.	ACIET INOX	martensitiques.

ISO	Matière	Exemples	Description	R _m (N/mm²)
P 1		S275J2G3	Aciers doux et très collants. Aciers bas carbone et ferritiques.	<450
	2	11 SMn30	Aciers de bonne usinabilité hors aciers inox.	400 < 700
	3	S355JR	Aciers structurés. Aciers à basse et moyenne teneur en carbone. (<0,5%C) Aciers à haute teneur en carbone (<0,5%C),	450 <550
	4	42 CrMo 4	Aciers à haute teneur en carbone (>0,5%C). Aciers faiblement alliés, moulés. Aciers mi-durs de cémentation. Aciers moulés moyennement alliés.	550 < 700
	5	34CrNiMo6	Acier à outil. Acier moulés moyennement alliés. Acier inox martensitiques.	700 <900
	6	X 40 CrMoV 5 1	Aciers à outils difficiles. Aciers moulés fortement alliés durs. Aciers inox martensitiques.	900 <1200
Н	7	X 120 Mn 12 (50 HRC)	Aciers difficiles à haute résistance avec des duretés de 42 à 56 HRc Aciers traités du groupe 3-6. Aciers inoxydables martensitiques.	>1200

k _{c1.1} (N/mm²)	m _c
1350	0,21
1500	0,22
1500	0,25
1700	0,24
1900	0,24
2000	0,24
2900	0,22

Aciers de bonne usinabilité, de décolletage, duplex et inox

M	8	X 8 CrNiS 18 9	Aciers inoxydables de bonne usinabilité et traités calcium.	
	9	X 2 CrNiMo 17 12 2	Aciers inoxydables difficiles (500-1100 N/mm). Aciers inoxydables moulés, austénitiques et duplex.	
	10	X 5 CrNiMo 17 12 2	Aciers inoxydables difficiles. Aciers inoxydables austénitiques et binaires	
	11	X 2 CrNiMoN 22 5 3	Aciers inoxydables très difficiles. Aciers inoxydables austenitiques et duplex.	

1750	0,22
1900	0,20
2050	0,20
2150	0,20

Fontes

K	12	GJL-150	Fonte moyennement dure et grise	
	13	GJL-250	Fonte faiblement alliée Fonte malléable Fonte nodulaire.	
	14	GJS-700-2	Fonte modérément difficile Fonte modérément malléable Fonte nodulaire	
	15	GJL-350	Fonte modérément difficile Fonte modérément malléable Fonte nodulaire	

1150	0,22
1225	0,25
1350	0,28
1470	0,30

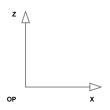
Autres matières

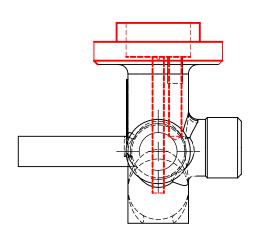
N	16	AW7075	Alliages d'aluminium Low Si
	17	AlSi12	Alliages d'aluminium High Si
	18	CuZn37	Alliages de cuivre
S	19	Discalloy	Superalliages base Fer
	20	Stellite 21	Superalliages base Cobalt
	21	Inconel 718 (barres, pièc. forgées,	Superalliages à base de Nickel
	22	Ti 6Al-4V (recuit et coulé)	Alliages Titane

	19
3300	0,24
1450	0,23

Remarque : les valeurs de R_m- sont données à titre indicatif pour le choix du groupe matière.

CONTRAT DE PHASE Phase 20


Ensemble	FAO PHASE 20 CORPS
Pièce	CORPS DOSEUR
Matière	Laiton CW 617N suivant EN12165
Série	300
Drogramma	9/ 1000



1

FRAISAGE CN ARROW 751

Série	300	EF	ICN SW
Programme	% 1000	Nom	CGM18
Fichier	FAO PHASE 20 CORPS10.xpi	Date	07/06/2017

Appui plan sur Appui linéaire sur Appui ponctuel sur Serrage sur Porte-Pièce: Montage

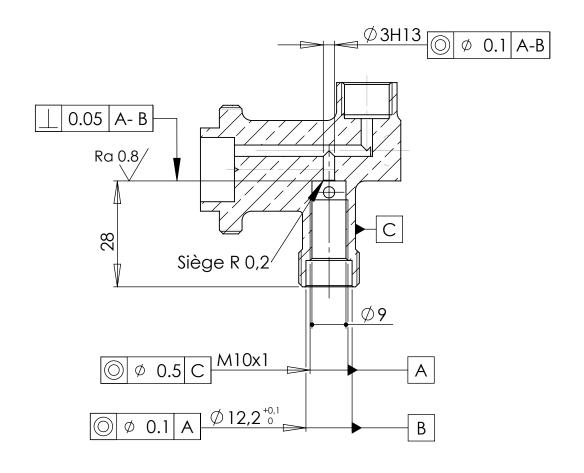
Temps Total de Coupe 00.9 min
Temps Total Improductif 3.67 min
Temps de Montage 0 min
Temps Total de Phase 4.56 min

OPERATIONS	OUTILS	Vc m/min	n tr/min	f / fz mm/tr mm/dent	Vf mm/min	Т	D
a) Vider poche POCHE FERMEE b) Contourner Extérieur SURFACAGE c) Surfacer SURFACAGE d) Contourner PROFIL	Fraise ébauche 3 dents série courte DIN 6527K D = 12 TITEX D 3578*12	200		0.2		1 1 1	1 1 1
f) Confourner PROFIL e) Finir fond de poche POCHE FERMEE f) Finir parois de poche POCHE FERMEE g) Finir parois POCHE OUVERTE h) Confourner PROFIL i) Surfacer SURFACAGE	Fraise à rainurer en carbure D = 12 R215.3C-12030-BC26H	250		0.05		2 2 2 2 2	2 2 2 2 2
j) Filetage M34 x 1.25	Fraise à peigne	120		0.04		6	6
k) Percer TROU diamètre 3 mm	Foret court HSS DIN 338 118° d = 3	100		0.03		3	3
I) Percer TROU	Foret court HSS DIN 338 118° d = 3,3	100		0.03		4	4
m) Tarauder TROU	Taraud court, entrée C, rainures droites, hélice à droite, DIN 352 M4	15		0.75		5	5

Descriptif MMT

Le contrôle numérique du corps 1 du robinet doseur est réalisé par une Machine à Mesurer Tridimensionnelle (MMT).

La société Clesse-Industries utilise une MMT de marque DEA-Hexagon Metrology robotisée qui va chercher ses palpeurs sur un rack de chargement disposé à proximité de la pièce à contrôler.


Ci-dessous, les palpeurs utilisés.

N° de palpeur	1	2	3	4
Forme du palpeur			3.2 3.3 3.4 3.5	

ATTENTION, ce plan est incomplet. Il apparait essentiellement sur ce dernier la cotation qui a été modifiée.

COUPE B-B

SPECIFICATIONS GENERALES:

- GENERAL TOLERANCES UNI ISO 2768-mH / THREADING CLASS A 6H 6g
- RUGOSITE: Ra 1.6 SAUF INDICATION CONTRAIRE

14/04/2017	Evolution cotation des su	ırfaces du	robinet d'inj	Valid		DT N°3448	CD			
Date		Modificat	tions	Status	Validated by		Modified by			
Material	Laiton CW 617N su	uivant E	N12165	-{	$\Rightarrow $)			CLESSE	:
Treatment		Date 22-09-2011					NOVAC			
Weight	185.28 g	Design.	opa	Scale	1:1	A4	• • • • •		NOVAC	OIVIE I
Designation	Corps du Dos	eur vo	lumétr	ique	DT	20	Article code	CSMG	G31	Ind C

Tolérances ISO 2768

Usinage mm												
Classe de			Angle (chanfrein	cassé ou ray		Dimension angulaire (côté plus court)			ôté le			
précision	>0,5 à 3 inclus	>3 à 6	>6 à 30	>30 à 120	>120 à 400	>0,5 à 3 inclus	>3 à 6	>6	≤10	>10 à 50 inclus	>50 à 120	>120 à 400
f (fin)	± 0,05	± 0,05	± 0,1	± 0,15	± 0,2	± 0,2	± 0,5	± 1	± 1°	± 30'	± 20'	± 10'
m (moyen)	± 0,1	± 0,1	± 0,2	± 0,3	± 0,5	± 0,2	± 0,5	± 1	± 1°	± 30'	± 20'	± 10'
c (large)	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 0,4	± 1	± 2	± 1°30'	± 1°	± 30'	± 15'
v (très large)		± 0,5	± 1	± 1,5	± 2,5	± 0,4	± 1	±2	±3°	±2°	± 1°	± 30'

Tolérances géométriques mm												
Classe de précision	R	Rectitude (—) - PI	anéité (□)	Per	pendicul (上)	arité	Sy	/métrie (=)	Battement († ½†)
	≤10	>10 à 30 inclus	>30 à 100	>100 à 300	>300 à 1000	≤100	>100 à 300	>300 à 1000	≤100	>100 à 300	>300 à 1000	_
H (fin)	0,02	0,06	0,1	0,2	0,3	0,2	0,3	0,4	0,5	0,5	0,5	0,1
K (moyen)	0,05	0,1	0,2	0,4	0,6	0,4	0,6	0,8	0,6	0,6	0,8	0,2
L (large)	0,1	0,2	0,4	0,8	1,2	0,6	1	1,5	0,6	1	1,5	0,5

Tolérances ISO des alésages (extrait)

Alésages	Jusqu'à 3 inclus	de 3 à 6 inclus	de 6 à 10 inclus	de 10 à 18 inclus	de 18 à 30 inclus	de 30 à 50 inclus	de 50 à 80 inclus	de 80 à 120 inclus	de 120 à 180 inclus	de 180 à 250 inclus	de 250 à 315 inclus	de 315 à 400 inclus	de 400 à 500 inclus
D 10	+ 60	+ 78	+ 98	+ 120	+ 149	+ 180	+ 220	+ 260	+ 305	+ 355	+ 400	+ 440	+ 480
D 10	+ 20	+ 30	+ 40	+ 50	+ 65	+ 80	+ 100	+ 120	+ 145	+ 170	+ 190	+ 210	+ 230
F 7	+ 16	+ 22	+ 28	+ 34	+ 41	+ 50	+ 60	+ 71	+ 83	+ 96	+ 108	+ 119	+ 121
F /	+ 6	+ 10	+ 13	+ 16	+ 20	+ 25	+ 30	+ 36	+ 43	+ 50	+ 56	+ 62	+ 68
G 6	+ 8	+ 12	+ 14	+ 17	+ 20	+ 25	+ 29	+ 34	+ 39	+ 44	+ 49	+ 54	+ 60
9.6	+ 2	+ 4	+ 5	+ 6	+ 7	+ 9	+ 10	+ 12	+ 14	+ 15	+ 17	+ 18	+ 20
Н6	+ 6	+ 8	+ 9	+ 11	+ 13	+ 16	+ 19	+ 22	+ 25	+ 29	+ 32	+ 36	+ 40
по	0	0	0	0	0	0	0	0	0	0	0	0	0
Н7	+ 10	+ 12	+ 15	+ 18	+ 21	+ 25	+ 30	+ 35	+ 40	+ 46	+ 52	+ 57	+ 63
п,	0	0	0	0	0	0	0	0	0	0	0	0	0
н 8	+ 14	+ 18	+ 22	+ 27	+ 33	+ 39	+ 46	+ 54	+ 63	+ 72	+ 81	+ 89	+ 97
по	0	0	0	0	0	0	0	0	0	0	0	0	0
Н9	+ 25	+ 30	+ 36	+ 43	+ 52	+ 62	+ 74	+ 87	+ 100	+ 115	+ 130	+ 140	+ 155
по	0	0	0	0	0	0	0	0	0	0	0	0	0
H 10	+ 40	+ 48	+ 58	+ 70	+ 84	+ 100	+ 120	+ 140	+160	+ 185	+ 210	+ 230	+ 250
11 10	0	0	0	0	0	0	0	0	0	0	0	0	0
H 11	+ 60	+ 75	+ 90	+ 110	+ 130	+ 160	+ 190	+ 210	+ 250	+ 290	+ 320	+ 360	+ 400
	0	0	0	0	0	0	0	0	0	0	0	0	0
H 12	+ 100	+ 120	+ 150	+ 180	+ 210	+ 250	+ 300	+ 350	+ 400	+ 460	+ 520	+ 570	+ 630
	0	0	0	0	0	0	0	0	0	0	0	0	0
H 13	+ 140	+ 180	+ 220	+ 270	+ 330	+ 390	+ 460	+ 540	+ 630	+ 720	+ 810	+ 890	+ 970
11 10	0	0	0	0	0	0	0	0	0	0	0	0	0
J 7	+ 4	+ 6	+ 8	+ 10	+ 12	+ 14	+ 18	+ 22	+ 26	+ 30	+ 36	+ 39	+ 43
37	- 6	- 6	- 7	- 8	- 9	- 11	- 12	- 13	- 14	- 16	- 16	- 18	- 20
К 6	0	+ 2	+ 2	+ 2	+ 2	+ 3	+ 4	+ 4	+ 4	+ 5	+ 5	+ 7	+ 8
	- 6	- 6	- 7	- 9	- 11	- 13	- 15	- 18	- 21	- 24	- 27	- 29	- 32
К7	0	+ 3	+ 5	+ 6	+ 6	+ 7	+ 9	+ 10	+ 12	+ 13	+ 16	+ 17	+ 18
K7	- 10	- 9	- 10	- 12	- 15	- 18	- 21	- 25	- 28	- 33	- 36	- 40	- 45
M 7	- 2	0	0	0	0	0	0	0	0	0	0	0	0
IVI 7	- 12	- 12	- 15	- 18	- 21	- 25	- 30	- 35	- 40	- 46	- 52	- 57	- 63

Formulaire de Résistance Des Matériaux

Formule de Kellerman-Klein simplifiée :

$$F_t = \frac{1000 \times C}{0.16 \times P + 0.85}$$

Ft: force de tension dans la vis en N

C: couple de serrage en N.m

0,16x**P**: paramètre géométrique transformant l'effort circulaire en tension linéaire. Avec **P** : pas du filet en **mm**

0,85 : variable dépendante du coefficient de frottement et des surfaces de contact vis/corps.

Condition de résistance à l'arrachement des filets du taraudage :

$$F_{ft} \ge F_t$$

Formule de la résistance à l'arrachement du filet du taraudage :

$$F_{ft} = k \times A_{ft} \times Reg$$

F_{ft}: résistance à l'arrachement du filet du taraudage en N

k : coefficient de sécurité égale à 0,75

A_{ft}: surface résistante du filet du taraudage en mm² Reg: Résistance au glissement du matériau en MPa

Formule de la surface résistante des filets du taraudage :

$$A_{ft} = \frac{7}{8} \times \pi \times d \times le$$

Aft: surface résistante du filet du taraudage en mm²

le : longueur engagée entre filetage et taraudage en mm

d : diamètre nominal du taraudage en mm

Définition de R_{p0,2}:

Quand il n'est pas possible de déterminer la limite apparente d'élasticité par l'essai de traction, on définit une limite élastique à 2% appelée $R_{p0.2}$ correspondant à un allongement relatif de 0,2 %.

On accepte la relation entre la limite élastique Re et la limite à 2% comme suivant :

$$Re = R_{p0,2}$$

Formulaire de Résistance Des Matériaux

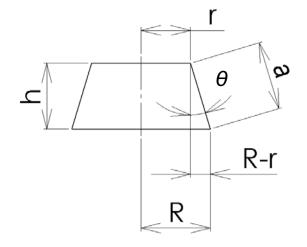
Relation entre la résistance au glissement et la résistance élastique en fonction du matériau :

Aciers doux, alliages d'alu (Re \leq 270 MPa) Reg = 0,5 \times Re Alliage de cuivre (250 \leq Re \leq 400 MPa) Reg = 0,6 \times Re Aciers mi-durs (320 \leq Re \leq 520 MPa) Reg = 0,7 \times Re Aciers durs, fontes (Re \geq 600 MPa) Reg = 0,8 \times Re

Expression de la contrainte de traction/compression :

$$\sigma = \frac{F}{S}$$

 σ : contrainte de traction/compression sigma en MPa


F: effort normal en N

S: surface sollicitée en mm²

Hauteur du tronc de cône

$$h = \frac{\sqrt{\frac{S \times \sin \theta}{\pi} + r^2} - r}{tan\theta}$$

avec S surface latérale du tronc de cône

