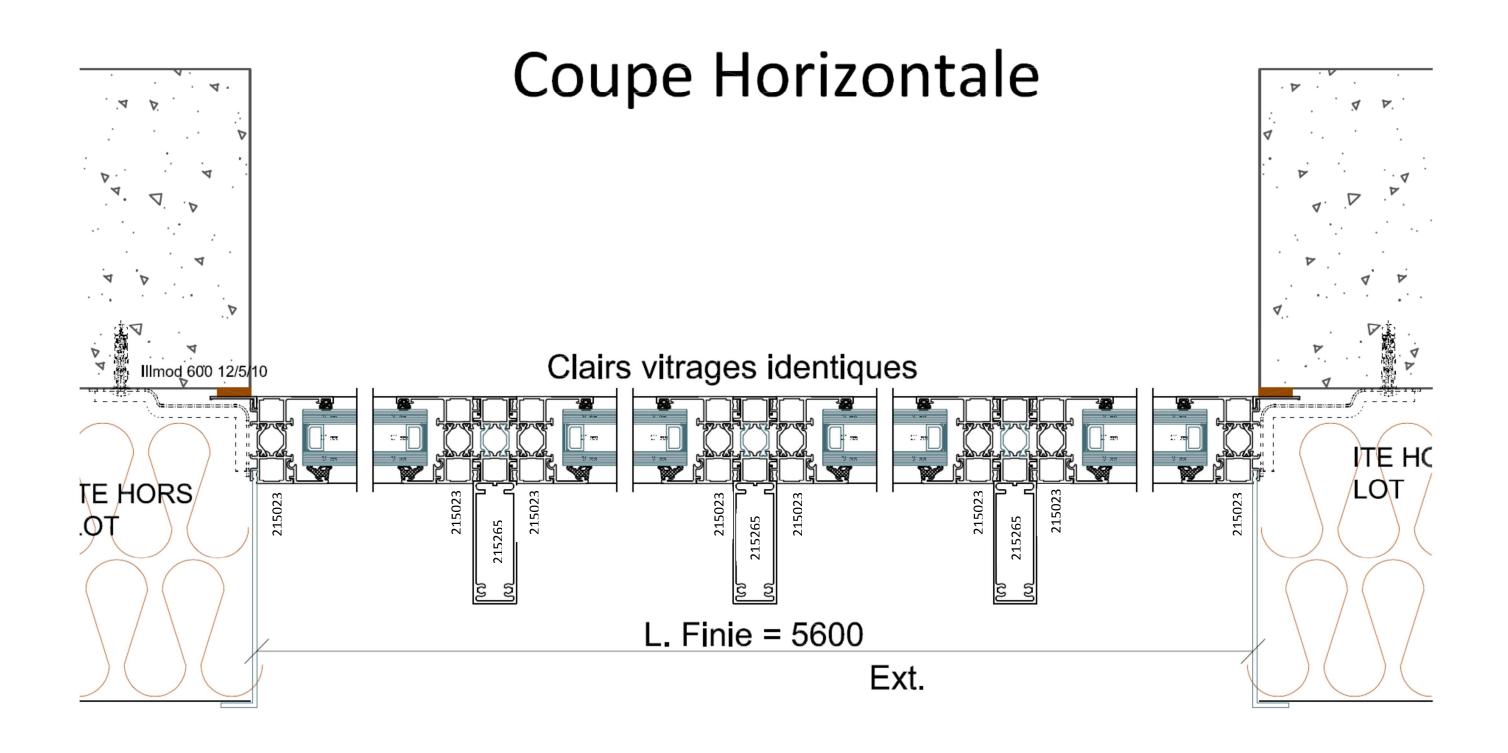
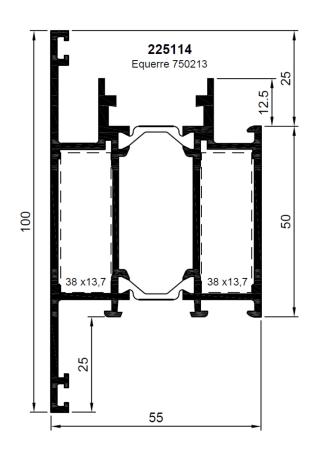
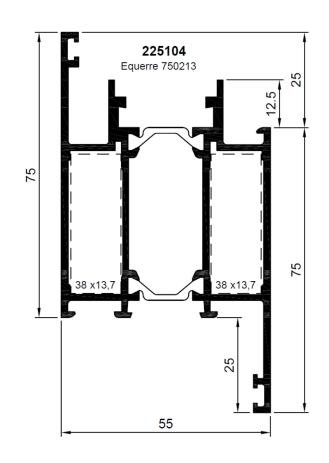
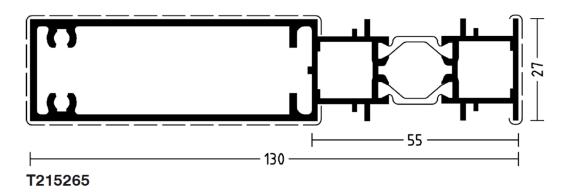
CONCOURS GÉNÉRAL DES MÉTIERS Menuiserie aluminium-verre

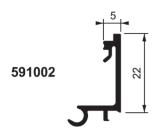


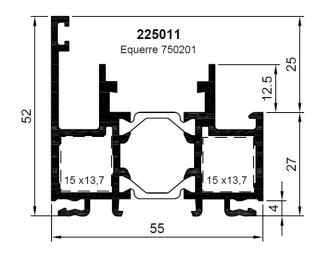
Sommaire

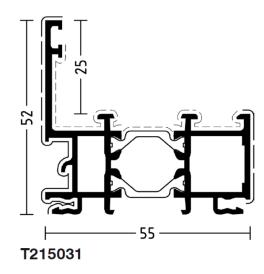

COUPE DE PRINCIPE - REPÈRE 6.4	DT 2/9
PLANCHE DE PROFILÉS – TECHNAL SÉRIE FY ET PY	DT 3/9
VÉRIFICATION ÉPAISSEUR DE VITRAGE - EXTRAIT DU DTU 39	DT 4/9 à 5/9
COUPES ET ÉLÉVATION ENSEMBLE COMPOSÉ - REPÈRE 3.2	DT 6/9
COUPE HORIZONTALE DE PRINCIPE - REPÈRE 3.2	DT 7/9
COUPES VERTICALES DE PRINCIPE - REPÈRE 3.2	DT 8/9
EXTRAIT DU CATALOGUE TECHNAL ACCESSOIRES ET JOINTS	DT 9/9

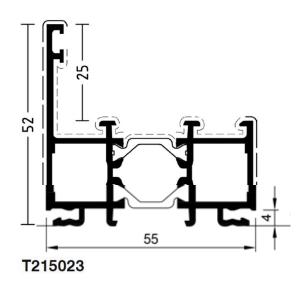

DOSSIER TECHNIQUE


COUPE DE PRINCIPE - REPÈRE 6.4




PLANCHE DE PROFILÉS – TECHNAL SÉRIE FY ET PY





VÉRIFICATION ÉPAISSEUR DE VITRAGE - Extrait du DTU 39

Facteur de réduction « C »

Un facteur de réduction c = 0.9 est à appliquer pour tous les vitrages extérieurs en rez-de-chaussée, et dont la partie supérieure est à moins de 6 m du sol extérieur.

Dans tous les autres cas, c = 1,0.

PRINCIPE:

- La pression de calcul selon l'Article 6 est utilisée dans les formules ci-après pour déterminer une épaisseur e1.
- Un facteur de réduction « C » lié à la situation du châssis est appliqué.
- L'épaisseur e_R intègre les facteurs d'équivalence ε du vitrage. Elle doit être au moins égale au produit $(e_1 \times c)$ $e_R \ge e1 \times c$
- Dans tous les cas, on calcule ensuite une épaisseur **e**_F suivant pour vérifier que la flèche respecte les critères fixés. Si la flèche dépasse la valeur admissible, l'épaisseur des composants doit être augmentée jusqu'au respect de l'ensemble des exigences.

Vitrage pris en feuillure sur 4 côtés		Si L/l ≤ 2,5	$e_1 = \sqrt{\frac{S \times P}{100}}$
		Si L/l > 2,5	$e_1 = \frac{l \times \sqrt{P}}{6.3}$
		Le bord libre est le petit côté	$e_1 = \frac{l \times \sqrt{P}}{6.3}$
Vitrage pris en feuillure sur 3 côtés		Si L/l ≤ 7,5	$e_1 = \sqrt{\frac{3 \times S \times P}{100}}$
	Le bord libre est le grand côté	Si L/l > 7,5	$e_1 = \frac{3 \times l \times \sqrt{P}}{6.3}$
Vitrage pris en feuillure sur 2 côtés	long si ce	Dans ce cas I désigne la longueur des bords libres, même si cette longueur est le grand côté	

- e₁ = épaisseur du vitrage en mm
- L = plus grand côté en m
- I = plus petit côté en m ou longueur des bords libres pour les vitrages pris en feuillures sur 2 côtés
- S = surface du vitrage en m²
- P = pression conventionnelle en Pa

Facteur d'équivalence des vitrages is	olants suiva	nt DTU 39P4
Type de vitrage		ε1
Vitrage isolant NF EN 1279	Comportant deux produits verriers	1,60
Vittage isolatit NF EN 1279	Comportant trois produits verriers	2,00

Facteur d'équivalence des vitrages feuilletés		suivant DTU 39P4	
Type de vitrage		ε2	
	Deux composants verriers	1,30	
Vitrage feuilleté de sécurité NF EN ISO 12543-2	Trois composants verriers	1,50	
	Quatre composants verriers et plus	1,60	
Vitrage feuilleté	Deux composants verriers	1,60	
NF EN ISO 12543-3	Trois composants verriers et plus	2,00	

Facteur d'équivalence des vitrages simples monolithiques	suivant DTU 39P4
Type de vitrage	ε3
Vitrage recuit NF EN 572-2	1
Vitrage recuit armé NF EN 572-3	1,2
Vitrage étiré NF EN 572-4	1,1
Vitrage imprimé NF EN 572-5	1,1
Vitrage imprimé armé NF EN 572-6	1,3
Vitrage trempé NF EN 12150 ou NF EN 14179	0,61

VÉRIFICATION ÉPAISSEUR DE VITRAGE - Extrait du DTU 39 (suite)

Le coefficient α prend en compte le module d'élasticité du verre (E=70 GPa).

Vitrage en appui sur 4 côtés

Valeurs du coefficient		
Rapport largeur /longueur (I / L)	α	
1	0,6571	
0,9	0,8000	
0,8	0,9714	
0,7	1,1857	
0,6	1,4143	
0,5	1,6429	
0,4	1,8714	
0,3	2,1000	
0,2	2,1000	
0,1	2,1143	
< 0,1	2,1143	

NOTA : arrondir le rapport I / L au dixième inférieur

• Vérification de la résistance du vitrage **e**_R

 $e_{\rm R}$ est l'épaisseur équivalente pour le calcul de résistance.

La résistance d'un vitrage dépend de son épaisseur et de sa nature (recuit, trempé, imprimé, etc.). Dans le cas d'un assemblage associant des composants de nature différente, seule la valeur maximale des coefficients $\varepsilon 3$, MAX ($\varepsilon 3$), est à prendre en compte.

Lorsque l'épaisseur e_R est inférieure à l'épaisseur nominale du composant le plus épais, e_R est pris égal à l'épaisseur de ce seul composant.

Il faut vérifier que : $e_R \ge e1 \times c$

Pour un vitrage isolant

L'épaisseur e_R est égale à la somme des épaisseurs nominales des composants, monolithiques, le tout divisé par le produit du coefficient e_1 et de e_2 de e_3 .

Calcul de *e*_R pour un vitrage isolant double avec deux composants feuilletés :

$$eR = \frac{\frac{ei + ej}{0.9 \times \varepsilon 2} + \frac{ek + el}{0.9 \times \varepsilon 2}}{0.9 \times \varepsilon 1 \times MAX(\varepsilon 3)}$$

• Calcul de la flèche du vitrage :

Dans tous les cas, la flèche du vitrage doit être vérifiée.

$$f = \alpha \times \frac{P}{1.5} \times \frac{b^4}{e_F^3}$$

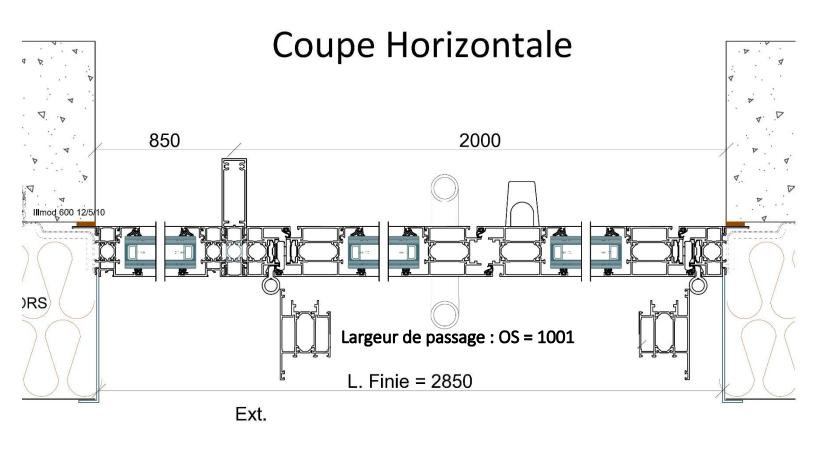
Avec

b = largeur du plus petit côté du vitrage en m

P = pression en Pa

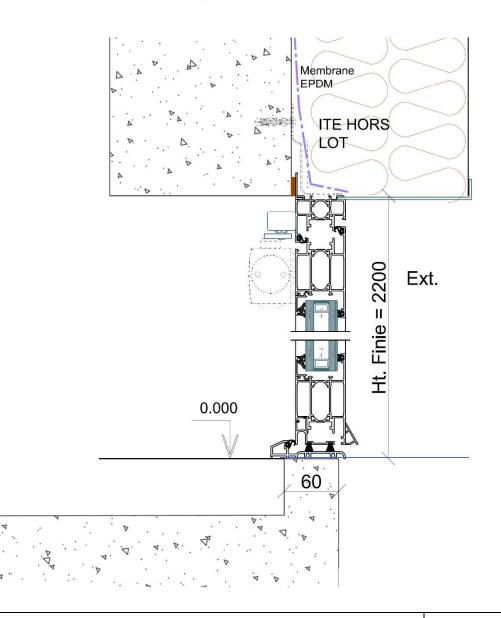
 $e_F = en mm$

Calcul de *e*_F pour un vitrage isolant double avec deux composants feuilletés :


Avec $e_F =$

$$eF = \frac{\frac{ei + ej}{\varepsilon^2} + \frac{ek + el}{\varepsilon^2}}{\varepsilon^1}$$

Dans le cas des vitrages extérieurs en appui sur leur périphérie, la flèche maximale (admissible) au centre doit être inférieure au **1/60e du petit côté**, et **limitée à 30 mm maximum**.


COUPES ET ÉLÉVATION ENSEMBLE COMPOSÉ - REPÈRE 3.2

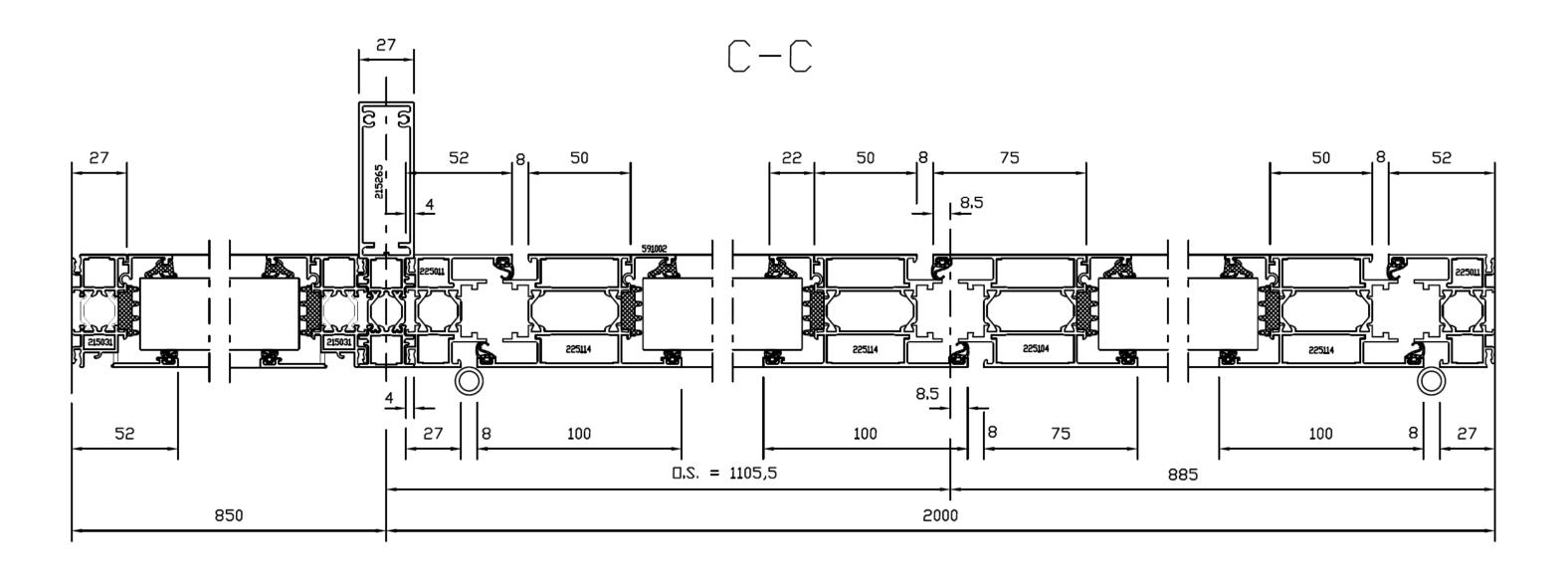
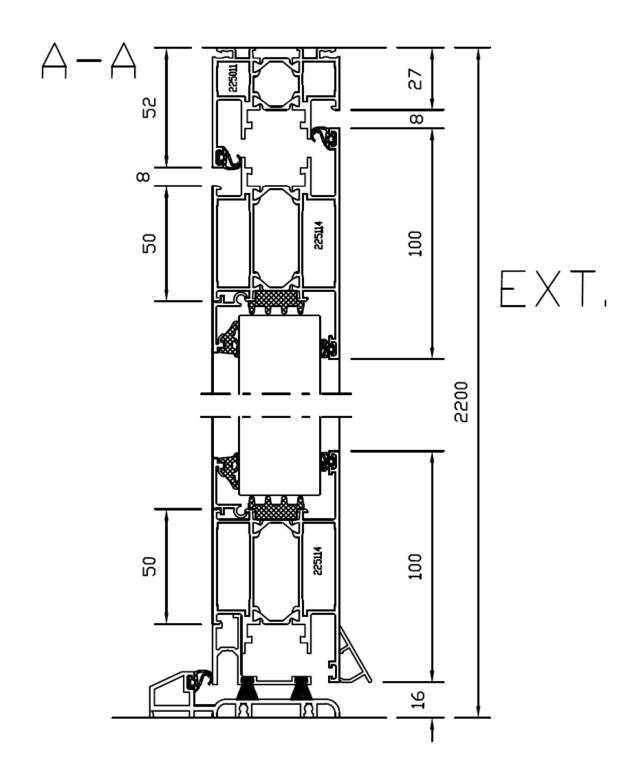
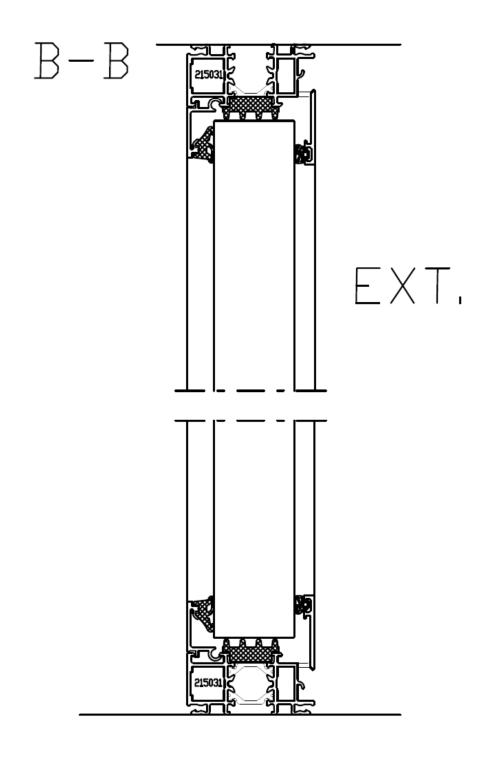


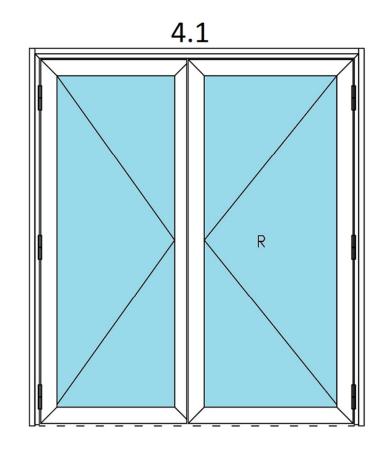
TABLEAU QUINCAILLERIE		
Quincaillerie	Qté	Teinte
Serrure 3pts rouleau	1	Noir
Cylindre avec Bouton molleté int.	1	1
Baton de maréchal sur VS	2	inox
Ferme porte TS3000	1	Noir
Crémone pompier	1	Noir

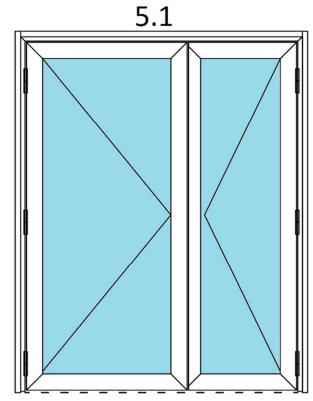

Coupe Verticale



COUPE HORIZONTALE DE PRINCIPE - REPÈRE 3.2

COUPES VERTICALES DE PRINCIPE - REPÈRE 3.2




EXTRAIT DU CATALOGUE TECHNAL ACCESSOIRES ET JOINTS

Accessoires et joints pour une porte		
	Accessoires	Qté
T1110	Clip pour rejet d'eau	3/ml
T740012	Support cale vitrage	8
T740015	Bouchon seuil PMR	1
T740018	Bouchon rejet eau clipper	2
T740038	Raccord seuil PMR	1
T740039	Raccord seuil PMR	1
T740061	Bouchon haut battement central	1
T750201	Équerre d'assemblage 15x13.7	4
T750213	Équerre d'assemblage 38x13.7	16
T7970	Barillet 40/40	1
T910002	Paumelle feuillure 2 lames 130 kg	8
T920010	Kit serrure 3 pts relevage	1
T920012	Verrou semi-fixe et va-et-vient	2
T920015	Gâches haut et bas 1 vantail	1
T960010	Béquille double rosette	1
T960013	Rosette barrillet	1

Vis		Qté
T770011	Vis pour fixation joint brosse	3/ml
TAY0002	Vis goupille équerre d'assemblage	40

	Joints	Débits
T410010	Joint multifonction	4H+2L
T710041	Joint de battement	6H+4L
TAS0017	Joint de parclose 7mm	4H+2L

