
NSIJ2ME1 p. agr. 1 sur 52 1.1 / 15

25-NSIJ2ME1 / Arial 24

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE

SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES

INFORMATIQUES

ÉPREUVE DU MERCREDI 18 JUIN 2025

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

NSIJ2ME1 p. agr. 2 sur 52 1.2 / 15

Dès que ce sujet vous est remis, assurez-vous

qu’il est complet.

Ce sujet comporte 15 pages numérotées de 1/15

à 15/15 dans la version originale et 52 pages

numérotées de 1/52 à 52/52 dans la version

en caractères agrandis.

Le sujet est composé de trois exercices

indépendants.

Le candidat traite les trois exercices.

NSIJ2ME1 p. agr. 3 sur 52 2.1 / 15

EXERCICE 1 (6 points)

Cet exercice porte sur les arbres binaires et la

programmation Python.

Le codage de Shannon-Fano est un système de

codage utilisé pour la compression sans pertes

de données. Il a été mis au point par Robert

Fano d’après une idée de Claude Shannon.

Partie A

Dans cette partie, on va étudier l’utilisation des

arbres de codage.

Un arbre de codage est un arbre binaire où

chaque feuille contient un symbole du texte que

NSIJ2ME1 p. agr. 4 sur 52 2.2 / 15

l’on souhaite coder. Le code binaire d’un

symbole s’obtient alors en concaténant les 0 et

les 1 sur les branches qui mènent de la racine à

la feuille contenant ce symbole.

Par exemple, pour l’arbre de codage donné en

Figure 1, le symbole c est codé par le mot

binaire 1101, tandis que d est codé par le mot

binaire 11000. Les codes binaires des symboles

ne sont donc pas tous de la même taille. Pour

décoder un mot binaire, il suffit de descendre

dans l’arbre, depuis la racine, selon les 0 et les 1

qu’on lit jusqu’à trouver une feuille (et donc un

symbole), puis de recommencer avec la suite du

mot binaire pour décoder les symboles suivants.

NSIJ2ME1 p. agr. 5 sur 52 2.3 / 15

Figure 1. Exemple d’arbre de codage

1. Écrire le mot binaire qui sera utilisé pour

encoder le caractère espace, représenté par le

symbole _ dans l’arbre.

1

1

1

1 1 1 1

1

1 1

1

0

0

0

0

0

0 0

0

0 0

0

j n p ,

_

e

s

i u c

o d

NSIJ2ME1 p. agr. 6 sur 52 2.4 – 3.1 / 15

2. Déterminer le texte codé par le mot binaire

0001110101111110011001.

3. Citer le type de parcours de l’arbre qui

permettrait d’obtenir les symboles classés par

taille d’encodage croissante.

Partie B

Dans cette partie, on va utiliser le codage de

Shannon-Fano pour encoder le texte :

je pense, donc je suis

Dans la méthode de Shannon-Fano, l’arbre de

codage est calculé pour un texte donné par

l’algorithme page agrandie suivante.

NSIJ2ME1 p. agr. 7 sur 52 3.2 / 15

• Étape 1 : classer les symboles du texte par

nombre d’occurrences croissant ;

• Étape 2 : en gardant le classement obtenu,

séparer les symboles en deux sous-groupes de

sorte que les totaux des nombres d’occurrences

soient les plus proches possibles dans les deux

sous-groupes ;

• Étape 3 : placer tous les symboles du premier

groupe dans le fils gauche (côté étiqueté par 1),

et ceux du second groupe dans le fils droit (côté

étiqueté par 0) ;

• Étape 4 : recommencer récursivement pour

chacun des sous-groupes jusqu’à ce qu’ils

n’aient plus qu’un seul symbole ; on a alors une

feuille étiquetée par ce symbole.

NSIJ2ME1 p. agr. 8 sur 52 3.3 / 15

Après avoir classé les symboles par nombre

d’occurrences croissant (étape 1), on obtient le

tableau suivant :

symbole i u c o d , p n j s _ e

nombre

d’occur-

rences

1 1 1 1 1 1 1 2 2 3 4 4

NSIJ2ME1 p. agr. 9 sur 52 3.4 / 15

4. Justifier par le calcul que l’étape 2 mène à la

situation illustrée par la Figure 2.

Figure 2. Le résultat de l’étape 2

i

1

 u

 1

 c

 1

 o

 1

 d

 1

 ,

 1

 p

 1

 n

 2

 j

 2

 s

 3

 _

 4

e

4

i

1

 u

 1

 c

 1

 o

 1

 d

 1

 ,

 1

 p

 1

 n

 2

 j

 2

En appliquant l’algorithme de Shannon-Fano, on

peut obtenir l’arbre de la Figure 3.

s _ e

3 4 4

1 0

NSIJ2ME1 p. agr. 10 sur 52 4.1 / 15

Figure 3. Arbre de codage obtenu par l’algorithme de Shannon-Fano

1

1

1

1 1 1 1

1

1 1

1

0

0

0

0

0

0 0

0

0 0

0

i u c

e

s

o d

i u c o d , p n j s _ e

1 1 1 1 1 1 1 2 2 3 4 4

i u c o d

1 1 1 1 1

i u c o d , p n j

1 1 1 1 1 1 1 2 2
s _ e

3 4 4

, p n j

1 1 2 2

s _

3 4

i u

1 1

c o d

1 1 1

o d

1 1

, p

1 1

n j

2 2
_

j n p ,

1 0

NSIJ2ME1 p. agr. 11 sur 52 4.2 / 15

On rappelle qu’un arbre réduit à un seul nœud, c’est-à-dire réduit à une

feuille, est de hauteur 0.

5. Donner la hauteur de l’arbre de la Figure 3 et préciser dans le

contexte de l’exercice ce qu’elle représente.

On rappelle que dans le code ASCII, chaque symbole est codé sur un

octet.

NSIJ2ME1 p. agr. 12 sur 52 4.3 / 15

6. Justifier, en comparant le codage ASCII et le codage de

Shannon-Fano, que ce second codage permet d’utiliser environ deux

fois moins d’octets pour le texte :

je pense, donc je suis

7. Dessiner, en vous inspirant de l’arbre de la Figure 1, un arbre de

codage qui permettrait d’encoder le mot « chiffrer » en utilisant

l’algorithme de Shannon-Fano.

NSIJ2ME1 p. agr. 13 sur 52 4.4 – 5.1 / 15

Partie C

Dans cette partie, on souhaite écrire une fonction Python qui donnera le

mot binaire obtenu pour coder un texte avec l’algorithme de

Shannon-Fano. On commence par la fonction creer_dico_occ :

1 def creer_dico_occ(texte):

2 """renvoie un dictionnaire dont les clés sont les

3 symboles de texte et les valeurs associées leur

4 nombre d'occurences dans texte"""

5 dico = {}

6 for symbole in texte:

7 if symbole in dico:

NSIJ2ME1 p. agr. 14 sur 52 5.2 / 15

8 dico[symbole] = ...

9 else:

10 dico[symbole] = ...

11 return dico

8. Recopier et compléter les lignes 8 et 10 du code de la fonction

creer_dico_occ.

On dispose d’une fonction creer_tab_trie qui prend en paramètre

un dictionnaire construit avec la fonction creer_dico_occ et qui

renvoie une liste de tuples classés dans l’ordre croissant d’occurrences

des symboles.

NSIJ2ME1 p. agr. 15 sur 52 5.3 / 15

Par exemple :

>>> texte = 'je pense, donc je suis'

>>> dico = creer_dico_occ(texte)

>>> creer_tab_trie(dico)

[('i', 1), ('u', 1), ('c', 1), ('o', 1), ('d', 1),

(',', 1), ('p', 1), ('n', 2), ('j', 2), ('s', 3),

(' ', 4), ('e', 4)]

9. Écrire une fonction somme_occ qui prend en paramètres un tableau

tab de tuples (symbole, nb_occ) et qui renvoie la somme des

nombres d’occurrences des symboles du tableau. Les tuples utilisés

sont de même structure que l’élément renvoyé dans l’exemple

précédent.

NSIJ2ME1 p. agr. 16 sur 52 5.4 / 15

On suppose pour la suite qu’on dispose d’une fonction separe qui

sépare un tableau trié en deux sous-tableaux de manière à ce que les

sommes de ces derniers soient les plus proches possible :

1 def separe(tab):

2 moitie = somme_occ(tab) // 2

3 somme = 0

4 i = 0

5 while moitie > somme:

6 somme = somme + tab[i][1]

7 i = i + 1

8 tab1 = [tab[k] for k in range(0, i)]

NSIJ2ME1 p. agr. 17 sur 52 5.5 – 6.1 / 15

9 tab2 = [tab[k] for k in range(i, len(tab))]

10 return tab1, tab2

10. Recopier et compléter les lignes 9 et 11 du code de la fonction

récursive shannon qui prend en paramètres un caractère symbole et

un tableau trié tab et qui renvoie l’écriture binaire associée à symbole

dans le tableau tab.

1 def shannon(symbole, tab):

2 """renvoie l'écriture binaire associée à symbole

3 dans le tableau trié tab"""

NSIJ2ME1 p. agr. 18 sur 52 6.2 / 15

4 if len(tab) == 1:

5 return ""

6 else:

7 t1, t2 = separe(tab)

8 if symbole in [elt[0] for elt in t1]:

9 return "1" + ...

10 else:

11 return "0" + ...

11. Décrire ce qui garantit la terminaison de la fonction récursive

shannon.

NSIJ2ME1 p. agr. 19 sur 52 6.3 / 15

12. Écrire une fonction encode_shannon qui prend en paramètre un

texte de type str et renvoie un mot binaire de type str obtenu après

encodage par l’algorithme de Shannon-Fano.

On pourra utiliser les fonctions vues précédemment qui sont recensées

ci-après.

creer_dico_occ(texte)

renvoie un dictionnaire dont les clés sont les

symboles

du texte et les valeurs associées leur nombre

d'occurrences

NSIJ2ME1 p. agr. 20 sur 52 6.4 / 15

creer_tab_trie(dico)

renvoie la liste crée à partir d'un dictionnaire

de couples (symbole, nb_occ)

separe(tab)

renvoie le tuple composé des 2 sous-tableaux triés

avec des sommes d'occurences proches

shannon(symbole, tab)

renvoie l'écriture binaire associée au symbole dans le

tableau trié tab

NSIJ2ME1 p. agr. 21 sur 52 7.1 / 15

EXERCICE 2 (6 points)

Cet exercice porte sur les bases de données

relationnelles, le langage SQL et la

programmation.

Une ludothèque municipale a décidé de

moderniser sa gestion en créant une base de

données informatique. Cette base de données

permettra de suivre les jeux disponibles, les

emprunts effectués par les adhérents, ainsi que

les avis laissés sur les différents jeux.

Pour commencer, quatre tables principales ont

été identifiées : jeu, adhérent, emprunt et

avis. Ces tables et leurs relations vont

permettre de stocker toutes les informations

NSIJ2ME1 p. agr. 22 sur 52 7.2 / 15

essentielles au bon fonctionnement de la

ludothèque. On va considérer que la ludothèque

n’a qu’un exemplaire de chaque jeu (deux jeux

de la ludothèque ne peuvent donc pas avoir le

même nom).

NSIJ2ME1 p. agr. 23 sur 52 7.3 / 15

Figure 1. La base de données de la ludothèque

jeu

nomJeu

editeur

anneeSortie

ageMinimum

categorie

emprunt

idEmprunt

nomJeu

idAdherent

dateEmprunt

dateRendu

avis

idAvis

nomJeu

idAdherent

commentaire

adherent

idAdherent

nom

prenom

dateNaissance

adresse

NSIJ2ME1 p. agr. 24 sur 52 7.4 – 8.1 / 15

Dans la figure page agrandie précédente, les

clés primaires de chacune des tables sont

soulignées et les clés étrangères sont précédées

du symbole #.

Dans cet exercice, on pourra utiliser les clauses

du langage SQL pour :

• construire des requêtes d’interrogation à l’aide

de SELECT, FROM, WHERE (avec les opérateurs

logiques AND, OR) et JOIN ... ON ;

• construire des requêtes d’insertion et de mise à

jour à l’aide de UPDATE, INSERT et DELETE ;

• affiner les recherches à l’aide de DISTINCT et

ORDER BY ;

• réaliser des agrégations à l’aide de COUNT.

NSIJ2ME1 p. agr. 25 sur 52 8.2 / 15

Par exemple, l’instruction SQL :

SELECT COUNT(nomJeu) FROM jeu;

donne le nombre de jeux présents dans la table

jeu.

1. Expliquer pourquoi on ne peut pas prendre

l’attribut nom comme clé primaire pour la relation

adherent.

2. Décrire ce que donne la requête SQL

suivante :

SELECT nomJeu, editeur

FROM jeu

ORDER BY nomJeu;

Lorsque qu’un jeu est emprunté et n’a pas

encore été rendu, la valeur de l’attribut

dateRendu de la table emprunt est à NULL.

NSIJ2ME1 p. agr. 26 sur 52 8.3 / 15

3. Écrire une requête permettant de connaitre le

nom de tous les jeux qui sont en cours

d’emprunt.

4. Écrire une requête SQL pour afficher le nom

et le prénom de tous les adhérents qui ont

emprunté le jeu “Catan”.

5. Claire VOYANT, adhérente de longue date à

cette ludothèque, a emprunté le jeu “Catan” et l’a

rendu le 3 juin 2025. Lors de l’emprunt, la valeur

de id_emprunt était 1538.

Écrire une requête SQL qui a permis de mettre à

jour la base de données afin qu’elle prenne en

compte que ce jeu a été rendu. Toutes les dates

de la base de données sont écrites sous le

format 'AAAA-MM-JJ'.

NSIJ2ME1 p. agr. 27 sur 52 8.4 / 15

6. Écrire une requête SQL qui permet de trouver

le nom et la catégorie de tous les jeux de la

ludothèque sortis à partir de 2010 et dont l’âge

minimum est strictement inférieur à 10 ans.

La ludothèque décide d’organiser des

événements. Pour cela, elle ajoute une relation

evenement à sa base de données. En outre,

pour chaque événement, elle souhaite garder en

mémoire une trace des adhérents qui y ont

participé. À cette fin, elle complète sa base avec

une relation participation.

NSIJ2ME1 p. agr. 28 sur 52 9.1 / 15

Figure 2. La base de données de la ludothèque actualisée

Partie 1/2

avis

idAvis

nomJeu

idAdherent

commentaire

evenement

nom

dateEvenement

heure

jeu

nomJeu

editeur

anneeSortie

ageMinimum

categorie

Vers adherent

(Partie 2/2)

Vers emprunt

(Partie 2/2)

NSIJ2ME1 p. agr. 29 sur 52 9.2 / 15

Partie 2/2

 participation

idParticipation

…

…

adherent

idAdherent

nom

prenom

dateNaissance

adresse

emprunt

idEmprunt

nomJeu

idAdherent

dateEmprunt

dateRendu

Vers jeu

(Partie 1/2)

Vers avis

(Partie 1/2)

NSIJ2ME1 p. agr. 30 sur 52 9.3 / 15

7. Proposer les clés étrangères de la table participation en

précisant le nom des attributs auxquels elles font référence.

Le programme Python suivant permet de créer la liste de tous les jeux

empruntés, sachant que, dans celle-ci, un jeu va apparaître autant de

fois qu’il a été emprunté.

1 import sqlite3

2

3 # Connexion à la base de données

4 connection = sqlite3.connect("ludotheque.db")

NSIJ2ME1 p. agr. 31 sur 52 9.4 / 15

5 curseur = connection.cursor()

6

7 # Exécution de la requête

8 curseur.execute("SELECT nomJeu FROM emprunt")

9

10 # Récupération des résultats

11 jeux = curseur.fetchall()

12

13 liste = []

14 # Création de la liste des jeux empruntés

15 for jeu in jeux:

NSIJ2ME1 p. agr. 32 sur 52 9.5 – 10.1 / 15

16 liste.append(jeu[0])

17

18 # Fermeture de la connexion

19 curseur.close()

20 connection.close()

8. Écrire un script Python permettant de créer le

dictionnaire dict_emprunts qui, à chaque jeu

emprunté, associe le nombre de fois où il a été

emprunté.

On veut créer un podium des jeux les plus

souvent empruntés. Comme il peut y avoir des

égalités à la première, deuxième ou troisième

place, il peut y avoir plus de trois jeux

sélectionnés sur le podium.

NSIJ2ME1 p. agr. 33 sur 52 10.2 / 15

Par exemple, si le dictionnaire des emprunts

est :

1 dict_emprunts = {

2 "Terraforming Mars": 25,

3 "Codenames": 22,

4 "Agricola": 18,

5 "Puerto Rico": 18,

6 "Caylus": 18,

7 "Dominion": 22,

8 "Dixit": 12

9 }

il y aura sur le podium les jeux “Agricola”,

“Puerto Rico” et “Caylus” puis les jeux

“Dominion” et “Codenames” et enfin le jeu

“Terraforming Mars”.

NSIJ2ME1 p. agr. 34 sur 52 10.3 / 15

Pour modéliser ce podium en Python, on va

utiliser une liste de trois listes.

Pour l’exemple précédent, cette liste sera :

[["Agricola", "Puerto Rico",

"Caylus"], ["Dominion",

"Codenames"], ["Terraforming

Mars"]].

9. Proposer un script Python permettant de

générer ce podium.

NSIJ2ME1 p. agr. 35 sur 52 10.4 / 15

EXERCICE 3 (8 points)

Cet exercice porte sur la programmation de base

en Python, la sécurisation des communications

et les réseaux.

Partie A – La méthode du masque jetable

Dans cette partie, on s’intéresse à une méthode

de chiffrement dite du masque jetable. Voici ce

que l’on peut lire sur le site Wikipédia :

Le chiffrement par la méthode du masque

jetable consiste à combiner le message en clair

avec une clé présentant les caractéristiques très

particulières suivantes :

• la clé doit être une suite de caractères au

moins aussi longue que le message à chiffrer ;

NSIJ2ME1 p. agr. 36 sur 52 11.1 / 15

• les caractères composant la clé doivent être

choisis de façon totalement aléatoire ;

• chaque clé, ou « masque », ne doit être utilisée

qu’une seule fois (d’où le nom de masque

jetable).

Illustrons cette méthode par un exemple : on

souhaite chiffrer le message HELLO avec la clé

aléatoire, ou « masque », WMCKL.

Pour cela, on attribue un nombre à chaque lettre,

par exemple le rang dans l’alphabet, de 0 à 25.

Tableau de correspondance

Lettre A B C D E F G H I J K L M

Rang 0 1 2 3 4 5 6 7 8 9 10 11 12

NSIJ2ME1 p. agr. 37 sur 52 11.2 / 15

Tableau de correspondance

Lettre N O P Q R S T U V W X Y Z

Rang 13 14 15 16 17 18 19 20 21 22 23 24 25

Ensuite, on additionne la valeur du rang de chaque lettre du message

avec la valeur du rang correspondante dans le masque.

Enfin, si le résultat est supérieur à 25 on soustrait 26 (calcul dit

« modulo 26 »).

NSIJ2ME1 p. agr. 38 sur 52 11.3 / 15

Ainsi, le chiffrement du message HELLO avec la clé WMCKL donne le

message chiffré DQNVZ comme le montre l’illustration suivante.

Figure 1. Exemple de chiffrement par la méthode du masque jetable

 7(H) 4(E) 11(L) 11(L) 14(0) message

+ 22(W) 12(M) 2(C) 10(K) 11(L) masque

= 29 16 13 21 25 masque + message

= 3(D) 16(Q) 13(N) 21(V) 25(Z) masque + message

modulo 26

Source : d’après l’article Masque jetable de Wikipédia en français

(https://fr.wikipedia.org/wiki/Masque_jetable)

NSIJ2ME1 p. agr. 39 sur 52 11.4 – 12.1 / 15

Dans cet exercice, on ne travaillera que sur des

chaînes de caractères écrites en majuscules non

accentuées (les 26 caractères allant de ‘A’ à ‘Z’).

1. Chiffrer, par la méthode du masque jetable,

le message LIBRE à l’aide de la clé EYQMT.

En Python, on crée une fois pour toute la

variable alphabet qui sera accessible et

utilisable dans toutes les fonctions. Celle-ci

contient la liste des 26 lettres de l’alphabet

rangées dans l’ordre alphabétique :

alphabet = ['A', 'B', 'C', 'D', 'E',

'F', 'G', 'H', 'I', 'J', 'K', 'L',

'M', 'N', 'O', 'P', 'Q', 'R', 'S',

'T', 'U', 'V', 'W', 'X', 'Y', 'Z']

NSIJ2ME1 p. agr. 40 sur 52 12.2 / 15

2. Écrire une fonction Python indice qui prend

pour paramètre une liste L et renvoie l’indice de

element dans la liste L.

On supposera que chaque élément de la liste L

n’y apparaît qu’une seule fois et que element

est bien présent dans la liste L.

Par exemple, l’appel indice(alphabet,

'K') renvoie l’entier 10.

3. Écrire une fonction Python

lettres_vers_indices qui prend pour

paramètre une chaîne de caractères et renvoie,

dans l’ordre, la liste des indices de ces

caractères dans l’alphabet.

Par exemple, l’appel

lettres_vers_indices('HELLO') renvoie

la liste d’entiers [7, 4, 11, 11, 14].

NSIJ2ME1 p. agr. 41 sur 52 12.3 / 15

On dispose également d’une fonction

indices_vers_lettres, qu’on ne demande

pas d’écrire, permettant de convertir une liste

d’entiers, compris entre 0 et 25, en une chaîne

de caractères.

Par exemple, l’appel

indices_vers_lettres([3, 16, 13, 21,

25]) renvoie la chaîne de caractères 'DQNVZ'.

Ci-après, on donne une fonction Python

chiffrement incomplète, qui, à partir d’un

message msg et d’une clé cle entrés en

paramètres, renvoie la chaîne de caractères

représentant le message chiffré par la méthode

du masque jetable.

NSIJ2ME1 p. agr. 42 sur 52 12.4 / 15

1 def chiffrement(msg, cle):

2 assert len(cle) >= len(msg), 'impossible'

3 indices_msg = lettres_vers_indices(msg)

4 indices_cle = lettres_vers_indices(cle)

5 n = len(msg)

6 indices_msg_chiffre = []

7 for k in range(n):

8 ind = ...

9 if ind >= 26:

10 ind = ...

11 indices_msg_chiffre.append(ind)

12 msg_chiffre = indices_vers_lettres(...)

13 return msg_chiffre

NSIJ2ME1 p. agr. 43 sur 52 12.5 – 13.1 / 15

4. Recopier et compléter les lignes 7 à 13 de la

fonction chiffrement.

5. Indiquer, en justifiant, ce que l’on observe lors

de l’appel chiffrement('RESEAU',

'GFTZ').

On s’intéresse maintenant au déchiffrement d’un

message chiffré par la méthode du masque

jetable.

Par exemple, le déchiffrement du message

DQNVZ avec la clé WMCKL donne le message

HELLO.

6. Déchiffrer le message GMEDH avec la clé

FVEIT.

NSIJ2ME1 p. agr. 44 sur 52 13.2 / 15

7. Expliquer comment procéder pour déchiffrer

un message lorsqu’on connaît la clé.

On souhaite maintenant écrire, en Python, une

fonction dechiffrement qui permet de

déchiffrer un message chiffré par la méthode du

masque jetable.

Pour cela, on s’inspire de la fonction

chiffrement dans laquelle les paramètres

ainsi que les lignes 2 à 5 sont inchangées. On

décide cependant de remplacer, ligne 6, le nom

de la variable indices_msg_chiffre par le

nom plus explicite indices_msg_dechiffre.

8. Adapter les lignes 6 à 13 de la fonction

chiffrement pour obtenir la nouvelle fonction

dechiffrement.

NSIJ2ME1 p. agr. 45 sur 52 13.3 / 15

Partie B – Sécurisation des communications

9. Expliquer la différence entre un algorithme de

chiffrement symétrique et un algorithme de

chiffrement asymétrique.

Alice souhaite envoyer un message à Bob par

l’intermédiaire d’un réseau informatique en

utilisant un algorithme de chiffrement

asymétrique.

Pour cela, Bob envoie à Alice sa clé publique.

Alice chiffre ensuite le message à l’aide de la clé

publique de Bob qu’elle vient de recevoir, puis

elle envoie ce message chiffré à Bob.

10. Indiquer comment Bob peut déchiffrer le

message que lui envoie Alice.

NSIJ2ME1 p. agr. 46 sur 52 13.4 / 15

11. Expliquer comment une tierce personne

pourrait se faire passer pour Alice sans que Bob

ne s’en aperçoive.

12. Expliquer brièvement le fonctionnement du

protocole HTTPS.

13. Expliquer pourquoi, pour sécuriser

intégralement les communications sur Internet,

on utilise le protocole HTTPS plutôt qu’un

chiffrement asymétrique.

Partie C – Réseaux

Bob et Marc travaillent pour une petite

compagnie d’assurances.

NSIJ2ME1 p. agr. 47 sur 52 14.1 / 15

Leurs postes de travail font partie d’un même

réseau local géré par l’administratrice système

qui dispose du bloc d’adresses IPv4

192.168.110.0/24.

La notation /24 situé à la suite de l’adresse

192.168.110.0 signifie que le masque de

sous-réseau du réseau de cette entreprise est

255.255.255.0 : les trois premiers octets d’une

adresse IP sur ce réseau permettent donc

d’identifier la partie réseau de l’adresse, alors

que le dernier octet permet d’identifier la partie

hôte et est propre à chaque machine sur le

réseau. Ce sous-réseau permet donc d’attribuer

256 adresses IPv4 différentes.

NSIJ2ME1 p. agr. 48 sur 52 14.2 / 15

L’administratrice choisit alors d’attribuer, en

représentation décimale, l’identifiant 115 pour la

partie hôte du poste de travail de Bob et

l’identifiant 153 pour celui de Marc.

Depuis son poste de travail, Marc souhaite tester

la communication avec celui de Bob. Pour cela, il

exécute la commande

ping 192.168.100.115 et obtient l’affichage

suivant :

--- 192.168.100.115 ping statistics

4 packets transmitted, 0 received,

100% packet loss, time 3060ms

NSIJ2ME1 p. agr. 49 sur 52 14.3 / 15

14. Expliquer l’affichage obtenu et corriger

l’erreur de Marc.

Afin d’améliorer les performances et la sécurité

du réseau de l’entreprise, l’administratrice

système décide de séparer le réseau local en

plusieurs sous-réseaux et de les relier entre eux

par des routeurs. Pour cela, elle modifie le

masque de sous-réseau qui devient

11111111.11111111.11111111.11100000,

donné ici en représentation binaire.

15. Donner la représentation décimale de ce

masque de sous-réseau.

Pour obtenir l’adresse IPv4 du sous-réseau

auquel appartient une machine, il suffit

NSIJ2ME1 p. agr. 50 sur 52 14.4 / 15

d’appliquer l’opérateur binaire ET, bit à bit, entre

le masque de sous-réseau et l’adresse IPv4 de

la machine.

Par exemple, prenons le dernier octet de

l’adresse IPv4 de Bob dont la représentation

binaire est 01110011 : en appliquant bit à bit

l’opérateur binaire ET entre cet octet et l’octet

correspondant dans le masque, on obtient le

dernier octet de l’adresse du sous-réseau, soit

01100000.

1 1 1 0 0 0 0 0 (224)

ET 0 1 1 1 0 0 1 1 (115)

0 1 1 0 0 0 0 0 (96)

NSIJ2ME1 p. agr. 51 sur 52 14.5 – 15.1 / 15

Le poste de travail de Bob est donc sur le

sous-réseau d’adresse 192.168.110.96.

16. Indiquer le nombre total d’adresses IPv4

pouvant être attribuées sur le sous-réseau

d’adresse 192.168.110.96 sur lequel se trouve

Bob.

L’administratrice système attribue maintenant

l’adresse IPv4 192.168.110.134 au poste de

travail de Zoé, nouvelle employée de la

compagnie d’assurances.

17. Donner la représentation binaire du nombre

134.

NSIJ2ME1 p. agr. 52 sur 52 15.2 / 15

Depuis son poste de travail, Zoé exécute les

deux commandes suivantes :

• commande n°1 : ping 192.168.110.115 ;

• commande n°2 : ping 192.168.110.153.

18. Indiquer, en justifiant, laquelle de ces deux

commandes a produit l’affichage :

4 packets transmitted, 4 received,

0% packet loss, time 3002ms

