
25-NSIJ1ME1 p. agr. 1 sur 43 1.1 / 17

25-NSIJ1ME1 / Arial 20

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES INFORMATIQUES

ÉPREUVE DU MARDI 17 JUIN 2025

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est

complet.

25-NSIJ1ME1 p. agr. 2 sur 43 1.2 / 17

Ce sujet comporte 17 pages numérotées de 1/17 à 17/17
dans la version originale et 43 pages numérotées de 1/43
à 43/43 dans la version en caractères agrandis.

Le sujet est composé de trois exercices indépendants.
Le candidat traite les trois exercices.

25-NSIJ1ME1 p. agr. 3 sur 43 2.1 / 17

EXERCICE 1 (6 points)

Cet exercice porte sur les bases de données relationnelles
et les requêtes SQL.

Dans cet exercice, on pourra utiliser les clauses du
langage SQL pour :
• construire des requêtes d’interrogation à l’aide de
SELECT, FROM, WHERE (avec les opérateurs logiques

AND, OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à
l’aide de UPDATE, INSERT, DELETE ;

• affiner les recherches à l’aide de DISTINCT, ORDER BY.

Dans un schéma relationnel, on utilisera les conventions
suivantes :
• la clé primaire d’une relation est définie par son attribut
souligné ;
• les attributs précédés de # sont les clés étrangères.

25-NSIJ1ME1 p. agr. 4 sur 43 2.2 / 17

Le guitariste Slash possède une incroyable collection de

guitares. Maud est une grande fan de Slash. Elle décide

de faire un inventaire de la collection de guitares sous la

forme d’une base de données relationnelle.

Partie A

Dans cette partie, Maud utilise la relation suivante :

inventaire (id, marque, modele, annee,

num_ser, prix)

num_ser représente le numéro de série d’une guitare.

Il est unique pour chaque guitare d’une même marque.

Le prix est en euro.

25-NSIJ1ME1 p. agr. 5 sur 43 2.3 / 17

Voici un extrait de la table inventaire.

inventaire

id marque modele annee num_ser prix

1 Gibson Les Paul

Goldtop

1956 @70562 100000

2 Gibson Les Paul

Goldtop

1988 81738349 20000

3 Gibson Les Paul

Standard

1959 @90663 250000

4 Gibson Les Paul

Standard

1987 81757532 25000

5 Fender Telecaster 1952 000230 150000

6 Fender Telecaster 1965 81345673 10000

7 Fender Stratocaster 1956 001359 200000

8 Fender Stratocaster 1965 81757532 15000

25-NSIJ1ME1 p. agr. 6 sur 43 3.1 / 17

1. Expliquer pourquoi l’attribut num_ser ne peut pas être

une clé primaire de la relation inventaire.

2. Donner, sous forme de tableau, le résultat de la requête

suivante appliquée à l’extrait de table précédent.

SELECT marque, modele

FROM inventaire

WHERE annee = 1956

3. Écrire une requête SQL permettant d’obtenir toutes les

années du modèle Les Paul Standard dans la collection.

4. Écrire une requête SQL permettant d’obtenir tous les

modèles de guitares de la marque Gibson par ordre

croissant de l’année dans la collection.

5. Maud a fait une erreur de saisie pour la guitare

d’identifiant id=1. L’année est en réalité 1957. Écrire une

requête SQL permettant de corriger cette erreur de saisie.

25-NSIJ1ME1 p. agr. 7 sur 43 3.2 / 17

Partie B

Maud change de représentation pour l’inventaire de la

collection. Dans cette partie, Maud utilise maintenant les

trois relations suivantes :

marque (id, nom)

modele (id, nom, #id_marque)

guitare (id, #id_modele, annee, num_ser,

prix)

Dans la relation modele, #id_marque est une clé

étrangère reliée à la clé primaire id de la relation marque.

Dans la relation guitare, #id_modele est une clé

étrangère reliée à la clé primaire id de la relation modele.

25-NSIJ1ME1 p. agr. 8 sur 43 3.3 / 17

Voici des extraits des trois tables marque, modele,

guitare.

marque

id nom

1 Gibson

2 Fender

modele

id nom id_marque

1 Les Paul Goldtop 1

2 Les Paul Standard 1

3 Telecaster 2

4 Stratocaster 2

25-NSIJ1ME1 p. agr. 9 sur 43 4.1 / 17

guitare

id id_modele annee num_ser prix

1 1 1956 @70562 100000

2 1 1988 81738349 20000

3 2 1959 @90663 250000

4 2 1987 81757532 25000

5 3 1952 000230 150000

6 3 1965 81345673 10000

7 4 1956 001359 200000

8 4 1965 81757532 15000

6. Expliquer brièvement, en justifiant, dans quel ordre les

trois tables doivent être créées.

7. Écrire une requête SQL permettant d’obtenir le numéro

de série et l’année de toutes les guitares Les Paul

Standard de la collection.

25-NSIJ1ME1 p. agr. 10 sur 43 4.2 / 17

Maud vient d’apprendre que Slash a fait cadeau d’une de

ses guitares à un ami. Elle doit donc la retirer de sa base

de données.

8. Écrire une requête SQL permettant de retirer de la

collection la guitare d’identifiant id=3.

Slash a aussi acheté une guitare d’une marque qu’il n’avait

pas encore dans sa collection. Maud décide de la rajouter.

9. Écrire l’ensemble des requêtes SQL permettant

d’ajouter la guitare suivante :

– marque : BC Rich

– modèle : Mockingbird

– année : 1992

– numéro de série : 92R

– prix : 5000.

25-NSIJ1ME1 p. agr. 11 sur 43 4.3 – 5 / 17

On supposera que l’on peut attribuer la valeur 3 pour
l’attribut id dans la table marque pour la marque BC Rich,

que l’on peut attribuer la valeur 5 pour l’attribut id dans la

table modele pour le modèle Mockingbird et que l’on peut

attribuer la valeur 9 pour l’attribut id dans la table

guitare pour cette guitare.

Maud souhaite connaître la valeur totale des modèles
Stratocaster de la collection. Son ami David lui conseille
de regarder la fonction SUM. La syntaxe pour utiliser cette

fonction SQL peut être similaire à celle-ci :

SELECT SUM(nom_colonne)

FROM tab

Cette requête SQL permet de calculer la somme des
valeurs contenues dans la colonne nom_colonne de la

table tab.

10. Écrire une requête SQL permettant de calculer la
valeur totale des modèles Stratocaster de la collection de
Slash.

25-NSIJ1ME1 p. agr. 12 sur 43 6.1 / 17

EXERCICE 2 (6 points)

Cet exercice porte sur l’algorithmique, les structures de

données, et la gestion de processus.

On cherche à créer une application de type liste de
tâches à faire pour aider Alice à planifier sa journée. Pour

cela Alice saisit les informations concernant chacune des

tâches qu’elle doit effectuer : elle indique un nom pour la

tâche, ainsi que la durée qu’elle estime nécessaire afin de

la réaliser. On représente une tâche saisie par Alice à

l’aide d’un objet de type Tache, muni de quatre attributs :

• le numero de la tâche, saisi par Alice ;

• le nom de la tâche, saisi par Alice ;

• la duree (un entier exprimé en minute) nécessaire à la

réalisation de la tâche saisie par Alice ;

• la duree_restante (un entier exprimé en minute) avant

la fin de la tâche. Cet attribut sera initialisé avec la durée

totale nécessaire à la réalisation de la tâche.

25-NSIJ1ME1 p. agr. 13 sur 43 6.2 / 17

Avancer de n minutes (n entier positif) dans une tâche
consiste à diminuer de n la durée restante de cette tâche.
Une tâche est terminée si la durée restante est négative
ou nulle.

Lors de la phase de planification de ses tâches (aucune
d’entre elles n’est commencée), Alice liste les tâches
suivantes qui doivent être effectuées :

Numéro Nom Durée Durée restante

1 Répondre aux e-mails 45 45

2 Ranger ma chambre 60 60

3 Réviser la NSI 90 90

4 S’entraîner aux
échecs

30 30

5 Apprendre le
vocabulaire de chinois

30 30

6 Lire Fondation 60 60

7 Écrire ma lettre au
Père Noël

20 20

25
-N

SI
J1

M
E1

p.

 a
gr

. 1
4

su
r 4

3
7.

1
/ 1

7
 O

n
di

sp
os

e
de

 la
 c

la
ss

e
T
a
c
h
e

 c
i-d

es
so

us
 p

ou
r r

ep
ré

se
nt

er
 le

s
tâ

ch
es

 :
1

c
l
a
s
s

T
a
c
h
e
:

2

d
e
f

_
_
i
n
i
t
_
_
(
s
e
l
f
,

n
u
m
e
r
o
,

n
o
m
,

d
u
r
e
e
)
:

3

s
e
l
f
.
n
u
m
e
r
o

=

n
u
m
e
r
o

4

 s
e
l
f
.
n
o
m

=

n
o
m

5

 s
e
l
f
.
d
u
r
e
e
_
i
n
i
t
i
a
l
e

=

d
u
r
e
e

6

 s
e
l
f
.
d
u
r
e
e
_
r
e
s
t
a
n
t
e

=

d
u
r
e
e

7

8

d
e
f

_
_
r
e
p
r
_
_
(
s
e
l
f
)
:

9

r
e
t
u
r
n

'
<
t
'
+
s
t
r
(
s
e
l
f
.
n
u
m
e
r
o
)
+
'
>
'

 1.
 D

on
ne

r l
e

co
de

 P
yt

ho
n

qu
i p

er
m

et
 d

’in
st

an
ci

er
 d

eu
x

va
ria

bl
es

 t
a
c
h
e
1

 e
t t
a
c
h
e
2

re
pr

és
en

ta
nt

 le
s

tâ
ch

es
 :

–
tâ

ch
e

nu
m

ér
o

1
: R

ép
on

dr
e

au
x

e-
m

ai
ls

. D
ur

ée
 e

st
im

ée
 :

45
 m

in
ut

es
.

–
tâ

ch
e

nu
m

ér
o

2
: R

an
ge

r m
a

ch
am

br
e.

 D
ur

ée
 e

st
im

ée
 :

60
 m

in
ut

es
.

25-NSIJ1ME1 p. agr. 15 sur 43 7.2 / 17

On supposera dans la suite que les variables tache1,

tache2, … , tache7 représentent les tâches établies

par Alice lors de la phase de planification.

La méthode __repr__ renvoie une représentation de

l’instance sous forme d’une chaîne de caractères. La
fonction print utilise cette méthode. Ainsi on a :

>>> print(tache1)

<t1>

2. Recopier et compléter le code de la méthode avancer

de la classe Tache qui permet d’avancer la tâche self de

n minutes.
1 def avancer(self, n):

2 ...

3. Recopier et compléter le code de la méthode
est_terminee de la classe Tache qui renvoie True si la

tâche est terminée, ou False sinon.
1 def est_terminee(self):

2 ...

25-NSIJ1ME1 p. agr. 16 sur 43 7.3 – 8.1 / 17

Afin d’aider Alice à planifier sa journée, on lui propose
d’associer à chacune des tâches une priorité. La priorité
d’une tâche est représentée par un entier de la manière
suivante : 1 est la priorité minimale et, plus le nombre est
grand, plus la tâche associée est prioritaire.

Pour stocker toutes les tâches à effectuer, on utilise une

file, dans laquelle les éléments sont des tuples

(tache, priorite). Les éléments stockés dans la file

doivent respecter les deux conditions ci-après.

• Condition 1 : les éléments sont rangés par ordre

décroissant de priorité. L’élément de priorité maximale se

trouve au début de la file, l’élément le moins prioritaire se

trouve à la fin de la file.

• Condition 2 : parmi les éléments de même priorité, les

éléments sont rangés dans l’ordre dans lequel ils ont été

insérés dans la file. Ainsi, le premier élément de priorité 𝑝

inséré se trouve devant les éléments de même priorité 𝑝

insérés plus tard.

25-NSIJ1ME1 p. agr. 17 sur 43 8.2 / 17

Par exemple, si la file de tâches f est la file :

[début] (<t3>, 4) (<t1>, 3) (<t2>, 3)

(<t4>, 1) (<t5>, 1) [fin]

Cela signifie que :

• la tâche de priorité maximale est la tâche numéro 3 ;

• les deux tâches à exécuter en priorité après la tâche

numéro 3 sont les tâches numéro 1 et numéro 2. La tâche

numéro 1 a été ajoutée à la file des tâches à traiter avant

la tâche numéro 2 ;

• il n’y a pas de tâche de priorité 2 ;

• les tâches les moins prioritaires de la file sont les tâches

numéro 4 et numéro 5. La tâche numéro 4 a été ajoutée

avant la tâche numéro 5.

4. Représenter l’état de la file f lorsqu’on lui ajoute

successivement la tâche numéro 6 avec la priorité 2, puis

la tâche numéro 7 avec la priorité 4 en respectant les

conditions 1 et 2 décrites page précédente agrandie.

25-NSIJ1ME1 p. agr. 18 sur 43 8.3 / 17

On suppose déjà définies les méthodes suivantes pour la

classe File :

• File() : crée et renvoie un objet de type File, vide.

• enfiler(self, e) : ajoute l’élément e à la fin de la

file f.

• defiler(self) : renvoie, en le supprimant de la file, le

premier élément de la file si cela est possible.

• examiner(self) : renvoie, sans le supprimer de la file,

le premier élément de la file si cela est possible.

• est_vide(self) : renvoie True si la file est vide, ou

False sinon.

5. En repartant de la file f suivante :

[début](<t3>, 4)(<t1>, 3)(<t2>, 3)

(<t4>, 1)(<t5>, 1)[fin]

donner la valeur de f.defiler()[0], et représenter le

contenu de la file f après l’exécution de cette instruction.

25-NSIJ1ME1 p. agr. 19 sur 43 8.4 – 9.1 / 17

6. En repartant de la file f suivante :

[début](<t3>, 4)(<t1>, 3)(<t2>, 3)

(<t4>, 1)(<t5>, 1)[fin]

donner la valeur de f.examiner()[1], et représenter le

contenu de la file f après l’exécution de cette instruction.

On souhaite écrire une fonction ajouter_file_prio qui

prend en paramètres :

• une file f dont les éléments sont des tuples (tache,

priorite) respectant les deux conditions de l’énoncé ;

• une tâche t ;

• la priorité p de la tâche t ;

et qui ajoute le tuple (t, p) à la bonne position dans la

file f.

25-NSIJ1ME1 p. agr. 20 sur 43 9.2 / 17

On utilise une file auxiliaire f_aux que l’on remplit en

défilant les éléments en début de file f tant que la priorité

du premier élément de la file est supérieure ou égale à p.

Puis on enfile l’élément (t, p) dans la file auxiliaire. On

défile ensuite tous les éléments restants de f dans f_aux

et enfin on enfile dans f tous les éléments de f_aux.

7. Recopier et compléter le code de la fonction

ajouter_file_prio.

1 def ajouter_file_prio(f, t, p):

2 f_aux = File()

3 while ...:

4 ...

5 ...enfiler(...)

6 while not ...:

7 ...

8 while not ...:

9 ...

25-NSIJ1ME1 p. agr. 21 sur 43 9.3 / 17

8. Donner le coût d’exécution temporel dans le pire des

cas de la fonction ajouter_file_prio, en fonction du

nombre m d’éléments de la file f.

Une fois qu’Alice a entré les tâches qu’elle doit effectuer,

leur durée estimée, ainsi que la priorité à laquelle elle doit

les effectuer, l’application lui propose un planning en

utilisant la technique dite Pomodoro :

• la tâche à effectuer est la tâche qui se trouve en tête de

file ;

• on défile cette tâche de la file des tâches à effectuer ;

• on avance cette tâche de 25 minutes ;

• si cette tâche n’est pas terminée, on rajoute cette tâche

dans la file des tâches à effectuer, avec la même priorité

qu’initialement (en utilisant la fonction

ajouter_file_prio) ;

• si cette tâche se termine au cours des 25 minutes, alors

Alice attend la fin des 25 minutes en se reposant ;

• on continue ces étapes tant que la file des tâches à

effectuer n’est pas vide.

25-NSIJ1ME1 p. agr. 22 sur 43 10.1 / 17

On rappelle les tâches à effectuer ci-dessous, classées

par ordre de priorité. On considérera que les tâches sont

ajoutées à la file de priorité dans l’ordre du tableau

ci-dessous :

Numéro Nom Durée Priorité

3 Réviser la NSI 90 4

7 Écrire ma lettre au

Père Noël

20 4

1 Répondre aux e-mails 45 3

2 Ranger ma chambre 60 3

6 Lire Fondation 60 2

4 S’entraîner aux échecs 30 1

5 Apprendre le

vocabulaire de chinois

30 1

25-NSIJ1ME1 p. agr. 23 sur 43 10.2 / 17

9. Indiquer pour chaque bloc de 25 minutes la tâche qui

avance, en suivant le modèle proposé, jusqu’à la fin de

toutes les tâches.

On fera particulièrement attention au cas où la tâche n’est

pas terminée : celle-ci est rajoutée à la file des tâches à

effectuer (dont elle avait été supprimée) avec la même

priorité qu’initialement, en respectant les conditions 1 et 2

de l’énoncé.

10. Écrire le code d’une fonction planning qui prend en

paramètre une file de priorité f dont les éléments sont des

tuples (tache, prio), et qui renvoie une liste de

tâches, dans l’ordre dans lequel elles vont être effectuées

par tranche de 25 minutes avec la méthode Pomodoro.

25
-N

SI
J1

M
E1

p.

 a
gr

. 2
4

su
r 4

3
10

.3
 –

 1
1.

1
/ 1

7
 Pa

r e
xe

m
pl

e,
 s

i t
a
c
h
e
1

, t
a
c
h
e
2

 e
t t
a
c
h
e
3

 s
on

t l
es

 tâ
ch

es
 n

um
ér

o
1,

 n
um

ér
o

2
et

nu

m
ér

o
3,

 a
lo

rs
 le

 p
ro

gr
am

m
e

su
iv

an
t :

1

f
i
l
e

=

F
i
l
e
(
)

2

f
o
r

t
,

p

i
n

[
(
t
a
c
h
e
1
,

3
)
,

(
t
a
c
h
e
2
,

3
)
,
(
t
a
c
h
e
3
,

4
)
]
:

3

a
j
o
u
t
e
r
_
f
i
l
e
_
p
r
i
o
(
f
i
l
e
,

t
,

p
)

4

p
r
i
n
t
(
p
l
a
n
n
i
n
g
(
f
i
l
e
)
)

 pr
od

ui
t l

’a
ffi

ch
ag

e
:

[
<
t
3
>
,

<
t
3
>
,

<
t
3
>
,

<
t
3
>
,

<
t
1
>
,

<
t
2
>
,

<
t
1
>
,

<
t
2
>
,

<
t
2
>
]

 EX
ER

C
IC

E
3

(8
 p

oi
nt

s)

C
et

 e
xe

rc
ic

e
po

rte
 s

ur
 l’

ar
ch

ite
ct

ur
e

m
at

ér
ie

lle
 (r

és
ea

u)
, l

es
 a

rb
re

s
bi

na
ire

s
de

re

ch
er

ch
e

et
 la

 p
ro

gr
am

m
at

io
n

Py
th

on
.

L’
en

tre
pr

is
e

C
af

éN
et

 p
os

sè
de

 p
lu

si
eu

rs
 c

af
és

 ré
pa

rti
s

da
ns

 d
iff

ér
en

te
s

vi
lle

s.

Le
 ré

se
au

 d
e

la
 c

ha
în

e
de

 c
af

és
 e

st
 re

pr
és

en
té

 e
n

Fi
gu

re
 1

 p
ag

e
ag

ra
nd

ie
 s

ui
va

nt
e.

25
-N

SI
J1

M
E1

p.

 a
gr

. 2
5

su
r 4

3
11

.2
 /

17

 Fi
gu

re
 1

. S
ch

ém
a

d’
un

e
pa

rti
e

du
 ré

se
au

R
és

ea
u

Si
èg

e
So

ci
al

19
2.

16
8.

10
.2

19
2.

16
8.

10
.1

0

19
2.

16
8.

10
.3

Se
rv

eu
r d

e
sa

uv
eg

ar
de

Sw
itc

h
19

2.
16

8.
10

.1

17
2.

16
.2

.1
 17

2.
16

.2
.2

17
2.

16
.1

.1

17
2.

16
.1

.2

20
3.

0.
11

3.
1

In
te

rn
et

17
2.

16
.0

.2

17
2.

16
.4

.2

17
2.

16
.0

.1

17
2.

16
.4

.1

17
2.

16
.3

.2
 17

2.
16

.3
.1

19
2.

16
8.

30
.1

19
2.

16
8.

20
.1

19
2.

16
8.

20
.1

0 19
2.

16
8.

20
.1

1 Sw
itc

h

R
és

ea
u

C
af

é
1

Sw
itc

h

R
és

ea
u

C
af

é
2

19
2.

16
8.

30
.1

0
19

2.
16

8.
30

.1
1

1
2 3

4

25-NSIJ1ME1 p. agr. 26 sur 43 11.3 / 17

Sur le schéma sont représentés 4 routeurs, le réseau du

siège social, le réseau du café 1, le réseau du café 2.

Dans les réseaux du café 1 et du café 2, des bornes de

commandes sont connectées à des switchs (ce sont des

boitiers de connexion qui n’ont pas eux-mêmes

d’adresse IP). Les 4 routeurs représentés sont composés

d’au moins 3 interfaces réseau capable de relier des

réseaux ensemble. Chaque interface possède donc une

adresse IPV4 sur le réseau auquel elle est reliée.

Les masques des sous-réseaux sont tous 255.255.255.0.

Avec ce masque, les trois premiers octets des adresses IP

codent l’adresse réseau. Le dernier octet, c’est-à-dire les

8 derniers bits, code l’adresse des machines à l’intérieur

de chaque sous-réseau.

25-NSIJ1ME1 p. agr. 27 sur 43 11.4 – 12.1 / 17

Partie A

Le gérant veut faire installer une troisième borne de
commande dans le café 1.

1. Indiquer les deux seules adresses IP valides pour cette

nouvelle borne, parmi les quatre adresses IP proposées.

(a) 192.168.20.2
(b) 192.168.20.157
(c) 192.168.20.261
(d) 192.168.24.10

L’adresse de diffusion, appelée aussi adresse de
broadcast, est la dernière adresse disponible à l’intérieur
d’un réseau local.

2. Déterminer l’adresse de diffusion du réseau du café 1.

3. Déterminer combien de machines informatiques il est
encore possible de connecter au réseau du café 1 après
l’installation de la troisième borne de commande.

25-NSIJ1ME1 p. agr. 28 sur 43 12.2 / 17

Le réseau local du café 1 n’a pas besoin de plus de

8 adresses IP différentes. Ce décompte d’adresses IP

inclut les adresses IP réservées (à savoir l’adresse de

diffusion et l’adresse du réseau). Il est rappelé que la

longueur du masque de sous-réseau est actuellement de

24 bits (c’est-à-dire 3 octets).

4. Expliquer quelle est la longueur maximale du masque

de sous-réseau que l’on pourrait choisir pour le réseau

local du café 1.

Partie B

RIP (Routing Information Protocol) est un protocole de

routage utilisé dans les réseaux IP. Il est conçu pour

réduire le nombre de sauts entre deux réseaux. Un “saut”

correspond au transfert des données d’un routeur à un

autre. Le protocole RIP utilise le nombre de sauts comme

critère principal pour évaluer le coût d’un chemin.

Autrement dit, il considère que le chemin le plus optimal

est celui qui traverse le moins de routeurs.

25
-N

SI
J1

M
E1

p.

 a
gr

. 2
9

su
r 4

3
12

.3
 /

17

 La
 ta

bl
e

de
 ro

ut
ag

e
du

 ro
ut

eu
r 2

 d
e

la
 F

ig
ur

e
1

es
t r

ep
ré

se
nt

ée
 c

i-d
es

so
us

 :
 R

ou
te

ur
 2

R
és

ea
u

de
st

in
at

io
n

In
te

rfa
ce

 d
e

so
rti

e
Pr

oc
ha

in
 ro

ut
eu

r
N

om
br

e
de

 s
au

ts

19
2.

16
8.

20
.0

19

2.
16

8.
20

.1

au
cu

n
0

17
2.

16
.3

.0

17
2.

16
.3

.1

au
cu

n
0

17
2.

16
.4

.0

17
2.

16
.4

.1

au
cu

n
0

19
2.

16
8.

10
.0

17

2.
16

.3
.1

17

2.
16

.3
.2

2

17
2.

16
.0

.0

17
2.

16
.4

.1

17
2.

16
.4

.2

1

17
2.

16
.2

.0

17
2.

16
.4

.1

17
2.

16
.4

.2

1

19
2.

16
8.

30
.0

…

…

…

17
2.

16
.1

.0

…

…

…

25-NSIJ1ME1 p. agr. 30 sur 43 12.4 – 13.1 / 17

5. Recopier et compléter les deux dernières lignes de la

table de routage du routeur 2.

La table de routage du routeur 2 contient un réseau de

destination pour lequel deux routes différentes sont

possibles. La ligne correspondante dans la table de

routage aurait donc pu être remplie différemment tout en

respectant le protocole RIP.

6. Identifier, dans la table de routage du routeur 2,

le réseau de destination que l’on peut atteindre d’une autre

façon et indiquer comment cette ligne de la table de

routage pourrait être modifiée.

Une adresse IP qui n’est pas référencée dans la table de

routage doit être routée par défaut vers Internet.

25-NSIJ1ME1 p. agr. 31 sur 43 13.2 / 17

7. Recopier et compléter la ligne à ajouter à la table de

routage du routeur 2.

Réseau

destination
Interface

de sortie

Prochain

routeur

autre … …

Partie C

OSPF est également un protocole d’échanges de données

entre les routeurs qui prend en compte le coût des routes.

Le coût est lié au débit des liaisons entre les routeurs par

la formule suivante :

 𝑐𝑜𝑢𝑡 = ଵ଴వௗ௘௕௜௧ avec le débit en 𝑏𝑖𝑡. 𝑠ିଵ.

25-NSIJ1ME1 p. agr. 32 sur 43 13.3 / 17

8. Recopier et compléter la dernière colonne du tableau

ci-dessous :

Tableau des coûts

Type de

connexion
Débit en 𝑏𝑖𝑡. 𝑠ିଵ coût

Ethernet 10 𝑀𝑏𝑖𝑡. 𝑠ିଵ = 10଻ 𝑏𝑖𝑡. 𝑠ିଵ 100

Fast Ethernet 100 𝑀𝑏𝑖𝑡. 𝑠ିଵ = 10଼ 𝑏𝑖𝑡. 𝑠ିଵ …

Fibre optique 1 𝐺𝑏𝑖𝑡. 𝑠ିଵ = 10ଽ 𝑏𝑖𝑡. 𝑠ିଵ …

25-NSIJ1ME1 p. agr. 33 sur 43 14.1 / 17

Le schéma ci-dessous met en évidence les types de

connexion qui relient les routeurs.

Figure 2. Schéma des types de connexion

9. Déterminer la route dont le coût est minimal pour aller

du routeur 1 jusqu’au routeur 4 et calculer son coût au

sens du protocole OSPF.

Siège
social

Fibre

Internet

Réseau
café 1

Réseau
café 2

Fast
Ethernet

Fast
Ethernet

1 2

3 4

Ethernet
Ethernet

25-NSIJ1ME1 p. agr. 34 sur 43 14.2 / 17

Partie D

Le but de cette partie est de classer les adresses IP des

différents réseaux afin de faciliter leur recherche.

La fonction ip_bin prend en argument une chaîne de

caractères décrivant une adresse IP en notation décimale,

et renvoie une chaîne de caractères, de longueur 35

(32 bits et les 3 points), décrivant l’adresse IP en notation

binaire.

Exemple :

>>> ip_bin('192.168.10.1')

'11000000.10101000.00001010.00000001'

10. Donner la chaîne de caractères renvoyée par

ip_bin('192.168.20.12').

25-NSIJ1ME1 p. agr. 35 sur 43 14.3 – 15.1 / 17

La fonction precede prend en paramètres deux adresses

IP en notation binaire, sous forme de chaînes de

caractères identiques à celles renvoyées par la fonction

ip_bin. La fonction precede renvoie un booléen qui vaut

True si la première adresse IP en paramètre précède la

seconde adresse IP.

Exemple :

>>> a =

'11000000.10101000.00001010.00000001'

>>> b =

'11000000.10101000.00001111.00000001'

>>> precede(a, b)

True

L’algorithme compare bit à bit les deux chaînes binaires,

en lisant les chaînes de caractères dans le sens usuel

(de gauche à droite). Dans l’exemple ci-dessus, tous les

caractères sont identiques jusqu’au sixième caractère du

troisième octet.

25-NSIJ1ME1 p. agr. 36 sur 43 15.2 / 17

Comme le bit de l’adresse a est inférieur à celui de

l’adresse b, on en déduit que l’adresse IP a précède

l’adresse IP b.

Si la première adresse IP ne précède pas la seconde,

la fonction doit renvoyer False.

L’algorithme de comparaison est traduit dans le langage

Python sous la forme suivante :

1 def precede(ip_1, ip_2):

2 for i in range(35):

3 if ip_1[i] < ip_2[i]:

4 return ...

5 elif ip_1[i] > ip_2[i]:

6 return ...

7 return ...

11. Expliquer dans quel cas la fonction precede

exécutera la dernière instruction return de la ligne 7.

25-NSIJ1ME1 p. agr. 37 sur 43 15.3 / 17

12. Recopier et compléter les lignes 4, 6 et 7 du code de la

fonction precede.

Les tables de routage de chaque routeur sont

implémentées sous la forme d’arbre binaire de recherche

avec la classe Abr.

1 class Abr:

2 def __init__(self, adresse_ip,

3 interface, passerelle,

4 cout):

5 self.adresse_ip = adresse_ip

6 self.interface = interface

7 self.passerelle = passerelle

8 self.cout = cout

9 if adresse_ip != '':

10 self.gauche = Abr('','','',0)

11 self.droite = Abr('','','',0)

12

13 def est_vide(self):

14 return ...

25-NSIJ1ME1 p. agr. 38 sur 43 15.4 – 16.1 / 17

Dans cette représentation :

• adresse_ip désigne l’adresse IP de la destination ;

• interface désigne l’interface réseau ;

• passerelle désigne l’adresse IP du prochain routeur ;

• cout désigne le nombre de sauts pour atteindre la

destination.

• par convention, l’arbre binaire vide est une instance de

Abr pour laquelle adresse_ip est une chaîne de

caractères vide ;

• un arbre binaire de recherche non vide possède

nécessairement un sous-arbre gauche et un sous-arbre

droit, éventuellement vides, qui sont tous les deux des

arbres binaires de recherche. Ces sous-arbres sont

désignés par gauche et droite dans la classe Abr ;

• si elle n’est pas vide, l’adresse IP du sous-arbre gauche

précède l’adresse IP de l’instance parent ;

• si le sous-arbre droit n’est pas vide, alors l’adresse IP de

l’instance parent précède l’adresse IP du sous-arbre droit.

25-NSIJ1ME1 p. agr. 39 sur 43 16.2 / 17

13. Citer un attribut et citer une méthode de la classe Abr.

14. Recopier et compléter la ligne 14 du code de la classe

Abr.

15. Justifier, en mobilisant des connaissances de cours,

l’intérêt qu’il peut y avoir à représenter la table de routage

par un arbre binaire de recherche.

La section de code qui définit modifie est incluse dans la

classe Abr.

25
-N

SI
J1

M
E1

p.

 a
gr

. 4
0

su
r 4

3
16

.3
 /

17

 1
6

d
e
f

m
o
d
i
f
i
e
(
s
e
l
f
,

a
d
r
e
s
s
e
_
i
p
,

1
7

i
n
t
e
r
f
a
c
e
,

p
a
s
s
e
r
e
l
l
e
,

1
8

c
o
u
t
)
:

1
9

i
f

s
e
l
f
.
e
s
t
_
v
i
d
e
(
)
:

2
0

s
e
l
f
.
a
d
r
e
s
s
e
_
i
p

=

a
d
r
e
s
s
e
_
i
p

2
1

s
e
l
f
.
i
n
t
e
r
f
a
c
e

=

i
n
t
e
r
f
a
c
e

2
2

s
e
l
f
.
p
a
s
s
e
r
e
l
l
e

=

p
a
s
s
e
r
e
l
l
e

2
3

s
e
l
f
.
c
o
u
t

=

c
o
u
t

2
4

s
e
l
f
.
g
a
u
c
h
e

=

A
b
r
(
'
'
,
'
'
,
'
'
,
0
)

2
5

s
e
l
f
.
d
r
o
i
t
e

=

A
b
r
(
'
'
,
'
'
,
'
'
,
0
)

2
6

e
l
s
e
:

2
7

s
e
l
f
.
a
d
r
e
s
s
e
_
i
p

=

a
d
r
e
s
s
e
_
i
p

2
8

s
e
l
f
.
i
n
t
e
r
f
a
c
e

=

i
n
t
e
r
f
a
c
e

2
9

s
e
l
f
.
p
a
s
s
e
r
e
l
l
e

=

p
a
s
s
e
r
e
l
l
e

3
0

s
e
l
f
.
c
o
u
t

=

c
o
u
t

25-NSIJ1ME1 p. agr. 41 sur 43 16.4 – 17.1 / 17

Les lignes 20 à 23 sont exactement les mêmes que les

lignes 27 à 30.

16. Réécrire le code de la fonction modifie en évitant

cette répétition.

La classe Abr est complétée afin de permettre l’ajout de

nouvelles lignes à la table de routage, tout en conservant

les propriétés que doit posséder un arbre binaire de

recherche.

25
-N

SI
J1

M
E1

p.

 a
gr

. 4
2

su
r 4

3
17

.2
 /

17

 3
2

d
e
f

r
e
c
h
e
r
c
h
e
r
(
s
e
l
f
,

a
d
r
e
s
s
e
_
i
p
)
:

3
3

i
f

s
e
l
f
.
e
s
t
_
v
i
d
e
(
)

o
r

a
d
r
e
s
s
e
_
i
p
=
=
s
e
l
f
.
a
d
r
e
s
s
e
_
i
p
:

3
4

r
e
t
u
r
n

s
e
l
f

3
5

e
l
i
f

p
r
e
c
e
d
e
(
.
.
.
)
:

3
6

r
e
t
u
r
n

s
e
l
f
.
g
a
u
c
h
e
.
r
e
c
h
e
r
c
h
e
r
(
a
d
r
e
s
s
e
_
i
p
)

3
7

e
l
s
e
:

3
8

r
e
t
u
r
n

s
e
l
f
.
d
r
o
i
t
e
.
r
e
c
h
e
r
c
h
e
r
(
a
d
r
e
s
s
e
_
i
p
)

3
9

4
0

d
e
f

i
n
s
e
r
e
r
(
s
e
l
f
,

a
d
r
e
s
s
e
_
i
p
,

4
1

i
n
t
e
r
f
a
c
e
,

p
a
s
s
e
r
e
l
l
e
,

4
2

c
o
u
t
)
:

4
3

d
e
s
t
i
n
a
t
i
o
n

=

s
e
l
f
.
r
e
c
h
e
r
c
h
e
r
(
a
d
r
e
s
s
e
_
i
p
)

4
4

d
e
s
t
i
n
a
t
i
o
n
.
m
o
d
i
f
i
e
(
a
d
r
e
s
s
e
_
i
p
,

4
5

i
n
t
e
r
f
a
c
e
,

p
a
s
s
e
r
e
l
l
e
,

4
6

c
o
u
t
)

25-NSIJ1ME1 p. agr. 43 sur 43 17.3 / 17

On rappelle que la fonction precede prend en arguments

des adresses IP écrites sous forme binaire.

17. Recopier et compléter la ligne 35 du code de la

fonction rechercher.

