
25-NSIJ1ME1 p. agr. 1 sur 29 1 / 17

25-NSIJ1ME1 / Arial 16

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES INFORMATIQUES

ÉPREUVE DU MARDI 17 JUIN 2025

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 17 pages numérotées de 1/17 à 17/17 dans la version

originale et 29 pages numérotées de 1/29 à 29/29 dans la version en
caractères agrandis.

Le sujet est composé de trois exercices indépendants.
Le candidat traite les trois exercices.

25-NSIJ1ME1 p. agr. 2 sur 29 2.1 / 17

EXERCICE 1 (6 points)

Cet exercice porte sur les bases de données relationnelles et les

requêtes SQL.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT, FROM,

WHERE (avec les opérateurs logiques AND, OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE,

INSERT, DELETE ;

• affiner les recherches à l’aide de DISTINCT, ORDER BY.

Dans un schéma relationnel, on utilisera les conventions suivantes :

• la clé primaire d’une relation est définie par son attribut souligné ;

• les attributs précédés de # sont les clés étrangères.

Le guitariste Slash possède une incroyable collection de guitares.

Maud est une grande fan de Slash. Elle décide de faire un inventaire

de la collection de guitares sous la forme d’une base de données

relationnelle.

25-NSIJ1ME1 p. agr. 3 sur 29 2.2 / 17

Partie A

Dans cette partie, Maud utilise la relation suivante :

inventaire (id, marque, modele, annee, num_ser, prix)

num_ser représente le numéro de série d’une guitare. Il est unique pour
chaque guitare d’une même marque. Le prix est en euro.

Voici un extrait de la table inventaire.

inventaire

id marque modele annee num_ser prix

1 Gibson Les Paul
Goldtop

1956 @70562 100000

2 Gibson Les Paul
Goldtop

1988 81738349 20000

3 Gibson Les Paul
Standard

1959 @90663 250000

4 Gibson Les Paul
Standard

1987 81757532 25000

5 Fender Telecaster 1952 000230 150000

6 Fender Telecaster 1965 81345673 10000

7 Fender Stratocaster 1956 001359 200000

8 Fender Stratocaster 1965 81757532 15000

25-NSIJ1ME1 p. agr. 4 sur 29 3.1 / 17

1. Expliquer pourquoi l’attribut num_ser ne peut pas être une clé primaire

de la relation inventaire.

2. Donner, sous forme de tableau, le résultat de la requête suivante

appliquée à l’extrait de table précédent.

SELECT marque, modele

FROM inventaire

WHERE annee = 1956

3. Écrire une requête SQL permettant d’obtenir toutes les années du

modèle Les Paul Standard dans la collection.

4. Écrire une requête SQL permettant d’obtenir tous les modèles de

guitares de la marque Gibson par ordre croissant de l’année dans la

collection.

5. Maud a fait une erreur de saisie pour la guitare d’identifiant id=1.

L’année est en réalité 1957. Écrire une requête SQL permettant de

corriger cette erreur de saisie.

25-NSIJ1ME1 p. agr. 5 sur 29 3.2 / 17

Partie B

Maud change de représentation pour l’inventaire de la collection.

Dans cette partie, Maud utilise maintenant les trois relations suivantes :

marque (id, nom)

modele (id, nom, #id_marque)

guitare (id, #id_modele, annee, num_ser, prix)

Dans la relation modele, #id_marque est une clé étrangère reliée

à la clé primaire id de la relation marque. Dans la relation guitare,

#id_modele est une clé étrangère reliée à la clé primaire id de la

relation modele.

Voici des extraits des trois tables marque, modele, guitare.

marque modele

id nom id nom id_marque

1 Gibson 1 Les Paul Goldtop 1

2 Fender 2 Les Paul Standard 1

 3 Telecaster 2

 4 Stratocaster 2

25-NSIJ1ME1 p. agr. 6 sur 29 4.1 / 17

guitare

id id_modele annee num_ser prix

1 1 1956 @70562 100000

2 1 1988 81738349 20000

3 2 1959 @90663 250000

4 2 1987 81757532 25000

5 3 1952 000230 150000

6 3 1965 81345673 10000

7 4 1956 001359 200000

8 4 1965 81757532 15000

6. Expliquer brièvement, en justifiant, dans quel ordre les trois tables
doivent être créées.

7. Écrire une requête SQL permettant d’obtenir le numéro de série
et l’année de toutes les guitares Les Paul Standard de la collection.

Maud vient d’apprendre que Slash a fait cadeau d’une de ses guitares
à un ami. Elle doit donc la retirer de sa base de données.

8. Écrire une requête SQL permettant de retirer de la collection la guitare
d’identifiant id=3.

Slash a aussi acheté une guitare d’une marque qu’il n’avait pas encore
dans sa collection. Maud décide de la rajouter.

25-NSIJ1ME1 p. agr. 7 sur 29 4.2 – 5 / 17

9. Écrire l’ensemble des requêtes SQL permettant d’ajouter la guitare
suivante :

– marque : BC Rich
– modèle : Mockingbird
– année : 1992
– numéro de série : 92R
– prix : 5000.

On supposera que l’on peut attribuer la valeur 3 pour l’attribut id dans la

table marque pour la marque BC Rich, que l’on peut attribuer la valeur 5

pour l’attribut id dans la table modele pour le modèle Mockingbird et que

l’on peut attribuer la valeur 9 pour l’attribut id dans la table guitare

pour cette guitare.

Maud souhaite connaître la valeur totale des modèles Stratocaster de la
collection. Son ami David lui conseille de regarder la fonction SUM.

La syntaxe pour utiliser cette fonction SQL peut être similaire à celle-ci :

SELECT SUM(nom_colonne)

FROM tab

Cette requête SQL permet de calculer la somme des valeurs contenues
dans la colonne nom_colonne de la table tab.

10. Écrire une requête SQL permettant de calculer la valeur totale des
modèles Stratocaster de la collection de Slash.

25-NSIJ1ME1 p. agr. 8 sur 29 6.1 / 17

EXERCICE 2 (6 points)

Cet exercice porte sur l’algorithmique, les structures de données,

et la gestion de processus.

On cherche à créer une application de type liste de tâches à faire pour

aider Alice à planifier sa journée. Pour cela Alice saisit les informations

concernant chacune des tâches qu’elle doit effectuer : elle indique un

nom pour la tâche, ainsi que la durée qu’elle estime nécessaire afin de la

réaliser. On représente une tâche saisie par Alice à l’aide d’un objet de

type Tache, muni de quatre attributs :

• le numero de la tâche, saisi par Alice ;

• le nom de la tâche, saisi par Alice ;

• la duree (un entier exprimé en minute) nécessaire à la réalisation de la

tâche saisie par Alice ;

• la duree_restante (un entier exprimé en minute) avant la fin de la

tâche. Cet attribut sera initialisé avec la durée totale nécessaire à la

réalisation de la tâche.

Avancer de n minutes (n entier positif) dans une tâche consiste à

diminuer de n la durée restante de cette tâche. Une tâche est terminée

si la durée restante est négative ou nulle.

25-NSIJ1ME1 p. agr. 9 sur 29 6.2 – 7.1 / 17

Lors de la phase de planification de ses tâches (aucune d’entre elles
n’est commencée), Alice liste les tâches suivantes qui doivent être
effectuées :

Numéro Nom Durée Durée restante

1 Répondre aux e-mails 45 45

2 Ranger ma chambre 60 60

3 Réviser la NSI 90 90

4 S’entraîner aux échecs 30 30

5 Apprendre le vocabulaire de
chinois

30 30

6 Lire Fondation 60 60

7 Écrire ma lettre au Père Noël 20 20

On dispose de la classe Tache ci-dessous pour représenter les tâches :

1 class Tache:

2 def __init__(self, numero, nom, duree):

3 self.numero = numero

4 self.nom = nom

5 self.duree_initiale = duree

6 self.duree_restante = duree

7

8 def __repr__(self):

9 return '<t'+str(self.numero)+'>'

25-NSIJ1ME1 p. agr. 10 sur 29 7.2 / 17

1. Donner le code Python qui permet d’instancier deux variables tache1

et tache2 représentant les tâches :

– tâche numéro 1 : Répondre aux e-mails. Durée estimée : 45 minutes.

– tâche numéro 2 : Ranger ma chambre. Durée estimée : 60 minutes.

On supposera dans la suite que les variables tache1, tache2, … ,

tache7 représentent les tâches établies par Alice lors de la phase de

planification.

La méthode __repr__ renvoie une représentation de l’instance sous

forme d’une chaîne de caractères. La fonction print utilise cette

méthode. Ainsi on a :

>>> print(tache1)

<t1>

2. Recopier et compléter le code de la méthode avancer de la classe

Tache qui permet d’avancer la tâche self de n minutes.
1 def avancer(self, n):

2 ...

3. Recopier et compléter le code de la méthode est_terminee de la

classe Tache qui renvoie True si la tâche est terminée, ou False sinon.

1 def est_terminee(self):

2 ...

25-NSIJ1ME1 p. agr. 11 sur 29 7.3 – 8.1 / 17

Afin d’aider Alice à planifier sa journée, on lui propose d’associer à

chacune des tâches une priorité. La priorité d’une tâche est représentée

par un entier de la manière suivante : 1 est la priorité minimale et, plus le

nombre est grand, plus la tâche associée est prioritaire.

Pour stocker toutes les tâches à effectuer, on utilise une file, dans

laquelle les éléments sont des tuples (tache, priorite).

Les éléments stockés dans la file doivent respecter les deux conditions

ci-après.

• Condition 1 : les éléments sont rangés par ordre décroissant de

priorité. L’élément de priorité maximale se trouve au début de la file,

l’élément le moins prioritaire se trouve à la fin de la file.

• Condition 2 : parmi les éléments de même priorité, les éléments sont

rangés dans l’ordre dans lequel ils ont été insérés dans la file.

Ainsi, le premier élément de priorité 𝑝 inséré se trouve devant les

éléments de même priorité 𝑝 insérés plus tard.

Par exemple, si la file de tâches f est la file :

[début] (<t3>, 4) (<t1>, 3) (<t2>, 3) (<t4>, 1)

(<t5>, 1) [fin]

25-NSIJ1ME1 p. agr. 12 sur 29 8.2 / 17

Cela signifie que :

• la tâche de priorité maximale est la tâche numéro 3 ;

• les deux tâches à exécuter en priorité après la tâche numéro 3 sont les

tâches numéro 1 et numéro 2. La tâche numéro 1 a été ajoutée à la file

des tâches à traiter avant la tâche numéro 2 ;

• il n’y a pas de tâche de priorité 2 ;

• les tâches les moins prioritaires de la file sont les tâches numéro 4 et

numéro 5. La tâche numéro 4 a été ajoutée avant la tâche numéro 5.

4. Représenter l’état de la file f lorsqu’on lui ajoute successivement la

tâche numéro 6 avec la priorité 2, puis la tâche numéro 7 avec la priorité

4 en respectant les conditions 1 et 2 décrites page agrandie précédente.

On suppose déjà définies les méthodes suivantes pour la classe File :

• File() : crée et renvoie un objet de type File, vide.

• enfiler(self, e) : ajoute l’élément e à la fin de la file f.

• defiler(self) : renvoie, en le supprimant de la file, le premier

élément de la file si cela est possible.

• examiner(self) : renvoie, sans le supprimer de la file, le premier

élément de la file si cela est possible.

• est_vide(self) : renvoie True si la file est vide, ou False sinon.

25-NSIJ1ME1 p. agr. 13 sur 29 8.3 – 9.1 / 17

5. En repartant de la file f suivante :

[début](<t3>, 4)(<t1>, 3)(<t2>, 3)

(<t4>, 1)(<t5>, 1)[fin]

donner la valeur de f.defiler()[0], et représenter le contenu de la

file f après l’exécution de cette instruction.

6. En repartant de la file f suivante :

[début](<t3>, 4)(<t1>, 3)(<t2>, 3)

(<t4>, 1)(<t5>, 1)[fin]

donner la valeur de f.examiner()[1], et représenter le contenu de la

file f après l’exécution de cette instruction.

On souhaite écrire une fonction ajouter_file_prio qui prend en

paramètres :

• une file f dont les éléments sont des tuples (tache, priorite)

respectant les deux conditions de l’énoncé ;

• une tâche t ;

• la priorité p de la tâche t ;

et qui ajoute le tuple (t, p) à la bonne position dans la file f.

25-NSIJ1ME1 p. agr. 14 sur 29 9.2 / 17

On utilise une file auxiliaire f_aux que l’on remplit en défilant les

éléments en début de file f tant que la priorité du premier élément de la

file est supérieure ou égale à p. Puis on enfile l’élément (t, p) dans la

file auxiliaire. On défile ensuite tous les éléments restants de f dans

f_aux et enfin on enfile dans f tous les éléments de f_aux.

7. Recopier et compléter le code de la fonction ajouter_file_prio.

1 def ajouter_file_prio(f, t, p):

2 f_aux = File()

3 while ...:

4 ...

5 ...enfiler(...)

6 while not ...:

7 ...

8 while not ...:

9 ...

8. Donner le coût d’exécution temporel dans le pire des cas de la fonction
ajouter_file_prio, en fonction du nombre m d’éléments de la file f.

Une fois qu’Alice a entré les tâches qu’elle doit effectuer, leur durée
estimée, ainsi que la priorité à laquelle elle doit les effectuer, l’application
lui propose un planning en utilisant la technique dite Pomodoro :

• la tâche à effectuer est la tâche qui se trouve en tête de file ;
• on défile cette tâche de la file des tâches à effectuer ;

25-NSIJ1ME1 p. agr. 15 sur 29 9.3 – 10.1 / 17

• on avance cette tâche de 25 minutes ;

• si cette tâche n’est pas terminée, on rajoute cette tâche dans la file des

tâches à effectuer, avec la même priorité qu’initialement (en utilisant la

fonction ajouter_file_prio) ;

• si cette tâche se termine au cours des 25 minutes, alors Alice attend la

fin des 25 minutes en se reposant ;

• on continue ces étapes tant que la file des tâches à effectuer n’est pas

vide.

On rappelle les tâches à effectuer ci-dessous, classées par ordre de

priorité. On considérera que les tâches sont ajoutées à la file de priorité

dans l’ordre du tableau ci-dessous :

Numéro Nom Durée Priorité

3 Réviser la NSI 90 4

7 Écrire ma lettre au Père Noël 20 4

1 Répondre aux e-mails 45 3

2 Ranger ma chambre 60 3

6 Lire Fondation 60 2

4 S’entraîner aux échecs 30 1

5 Apprendre le vocabulaire de

chinois

30 1

25-NSIJ1ME1 p. agr. 16 sur 29 10.2 / 17

9. Indiquer pour chaque bloc de 25 minutes la tâche qui avance,

en suivant le modèle proposé, jusqu’à la fin de toutes les tâches.

On fera particulièrement attention au cas où la tâche n’est pas terminée :

celle-ci est rajoutée à la file des tâches à effectuer (dont elle avait été

supprimée) avec la même priorité qu’initialement, en respectant les

conditions 1 et 2 de l’énoncé.

10. Écrire le code d’une fonction planning qui prend en paramètre une

file de priorité f dont les éléments sont des tuples (tache, prio),

et qui renvoie une liste de tâches, dans l’ordre dans lequel elles vont être

effectuées par tranche de 25 minutes avec la méthode Pomodoro.

Par exemple, si tache1, tache2 et tache3 sont les tâches numéro 1,

numéro 2 et numéro 3, alors le programme suivant :

1 file = File()

2 for t, p in [(tache1, 3), (tache2, 3),(tache3, 4)]:

3 ajouter_file_prio(file, t, p)

4 print(planning(file))

produit l’affichage :
[<t3>, <t3>, <t3>, <t3>, <t1>, <t2>, <t1>, <t2>, <t2>]

25-NSIJ1ME1 p. agr. 17 sur 29 11.1 / 17

EXERCICE 3 (8 points)

Cet exercice porte sur l’architecture matérielle (réseau), les arbres

binaires de recherche et la programmation Python.

L’entreprise CaféNet possède plusieurs cafés répartis dans différentes

villes. Le réseau de la chaîne de cafés est représenté en Figure 1 page

agrandie suivante.

25
-N

SI
J1

M
E1

p.

 a
gr

. 1
8

su
r 2

9
11

.2
 /

17

 Fi
gu

re
 1

. S
ch

ém
a

d’
un

e
pa

rti
e

du
 ré

se
au

R
és

ea
u

Si
èg

e
So

ci
al

19
2.

16
8.

10
.2

19
2.

16
8.

10
.1

0

19
2.

16
8.

10
.3

Se
rv

eu
r d

e
sa

uv
eg

ar
de

Sw
itc

h
19

2.
16

8.
10

.1

17
2.

16
.2

.1

17
2.

16
.2

.2

17
2.

16
.1

.1

17
2.

16
.1

.2

20
3.

0.
11

3.
1

In
te

rn
et

17
2.

16
.0

.2

17
2.

16
.4

.2

17
2.

16
.0

.1

17
2.

16
.4

.1

17
2.

16
.3

.2

17
2.

16
.3

.1

19
2.

16
8.

30
.1

19
2.

16
8.

20
.1

19
2.

16
8.

20
.1

0 19
2.

16
8.

20
.1

1 Sw
itc

h

R
és

ea
u

C
af

é
1

Sw
itc

h

R
és

ea
u

C
af

é
2

19
2.

16
8.

30
.1

0
19

2.
16

8.
30

.1
1

1
2 3

4

25-NSIJ1ME1 p. agr. 19 sur 29 11.3 / 17

Sur le schéma sont représentés 4 routeurs, le réseau du siège social,

le réseau du café 1, le réseau du café 2. Dans les réseaux du café 1

et du café 2, des bornes de commandes sont connectées à des switchs

(ce sont des boitiers de connexion qui n’ont pas eux-mêmes

d’adresse IP). Les 4 routeurs représentés sont composés d’au moins

3 interfaces réseau capable de relier des réseaux ensemble.

Chaque interface possède donc une adresse IPV4 sur le réseau auquel

elle est reliée.

Les masques des sous-réseaux sont tous 255.255.255.0. Avec ce

masque, les trois premiers octets des adresses IP codent l’adresse

réseau. Le dernier octet, c’est-à-dire les 8 derniers bits, code l’adresse

des machines à l’intérieur de chaque sous-réseau.

Partie A

Le gérant veut faire installer une troisième borne de commande dans le

café 1.

1. Indiquer les deux seules adresses IP valides pour cette nouvelle

borne, parmi les quatre adresses IP proposées.

(a) 192.168.20.2

(b) 192.168.20.157

(c) 192.168.20.261

(d) 192.168.24.10

25-NSIJ1ME1 p. agr. 20 sur 29 12.1 / 17

L’adresse de diffusion, appelée aussi adresse de broadcast, est la
dernière adresse disponible à l’intérieur d’un réseau local.

2. Déterminer l’adresse de diffusion du réseau du café 1.

3. Déterminer combien de machines informatiques il est encore possible
de connecter au réseau du café 1 après l’installation de la troisième
borne de commande.

Le réseau local du café 1 n’a pas besoin de plus de 8 adresses IP

différentes. Ce décompte d’adresses IP inclut les adresses IP réservées

(à savoir l’adresse de diffusion et l’adresse du réseau). Il est rappelé que

la longueur du masque de sous-réseau est actuellement de 24 bits
(c’est-à-dire 3 octets).

4. Expliquer quelle est la longueur maximale du masque de sous-réseau
que l’on pourrait choisir pour le réseau local du café 1.

Partie B

RIP (Routing Information Protocol) est un protocole de routage utilisé

dans les réseaux IP. Il est conçu pour réduire le nombre de sauts

entre deux réseaux. Un “saut” correspond au transfert des données

d’un routeur à un autre. Le protocole RIP utilise le nombre de sauts

comme critère principal pour évaluer le coût d’un chemin. Autrement dit,
il considère que le chemin le plus optimal est celui qui traverse le moins
de routeurs.

25-NSIJ1ME1 p. agr. 21 sur 29 12.2 – 13.1 / 17

La table de routage du routeur 2 de la Figure 1 est représentée

ci-dessous :

Routeur 2

Réseau

destination
Interface

de sortie

Prochain

routeur

Nombre

de sauts

192.168.20.0 192.168.20.1 aucun 0

172.16.3.0 172.16.3.1 aucun 0

172.16.4.0 172.16.4.1 aucun 0

192.168.10.0 172.16.3.1 172.16.3.2 2

172.16.0.0 172.16.4.1 172.16.4.2 1

172.16.2.0 172.16.4.1 172.16.4.2 1

192.168.30.0 … … …

172.16.1.0 … … …

5. Recopier et compléter les deux dernières lignes de la table de routage

du routeur 2.

La table de routage du routeur 2 contient un réseau de destination pour

lequel deux routes différentes sont possibles. La ligne correspondante

dans la table de routage aurait donc pu être remplie différemment tout en

respectant le protocole RIP.

25-NSIJ1ME1 p. agr. 22 sur 29 13.2 / 17

6. Identifier, dans la table de routage du routeur 2, le réseau de

destination que l’on peut atteindre d’une autre façon et indiquer comment

cette ligne de la table de routage pourrait être modifiée.

Une adresse IP qui n’est pas référencée dans la table de routage doit

être routée par défaut vers Internet.

7. Recopier et compléter la ligne à ajouter à la table de routage du

routeur 2.

Réseau

destination
Interface

de sortie

Prochain

routeur

autre … …

Partie C

OSPF est également un protocole d’échanges de données entre les

routeurs qui prend en compte le coût des routes. Le coût est lié au débit

des liaisons entre les routeurs par la formule suivante :

 𝑐𝑜𝑢𝑡 = ଵ଴వௗ௘௕௜௧ avec le débit en 𝑏𝑖𝑡. 𝑠ିଵ.

25-NSIJ1ME1 p. agr. 23 sur 29 13.3 – 14.1 / 17

8. Recopier et compléter la dernière colonne du tableau ci-dessous :

Tableau des coûts

Type de

connexion
Débit en 𝑏𝑖𝑡. 𝑠ିଵ coût

Ethernet 10 𝑀𝑏𝑖𝑡. 𝑠ିଵ = 10଻ 𝑏𝑖𝑡. 𝑠ିଵ 100

Fast Ethernet 100 𝑀𝑏𝑖𝑡. 𝑠ିଵ = 10଼ 𝑏𝑖𝑡. 𝑠ିଵ …

Fibre optique 1 𝐺𝑏𝑖𝑡. 𝑠ିଵ = 10ଽ 𝑏𝑖𝑡. 𝑠ିଵ …

Le schéma ci-dessous met en évidence les types de connexion qui relient

les routeurs.

Figure 2. Schéma des types de connexion

9. Déterminer la route dont le coût est minimal pour aller du routeur 1

jusqu’au routeur 4 et calculer son coût au sens du protocole OSPF.

Siège
social

Fibre

Internet

Réseau
café 1

Réseau
café 2

Fast Ethernet

Fast
Ethernet

1 2

3 4

Ethernet
Ethernet

25-NSIJ1ME1 p. agr. 24 sur 29 14.2 / 17

Partie D

Le but de cette partie est de classer les adresses IP des différents

réseaux afin de faciliter leur recherche.

La fonction ip_bin prend en argument une chaîne de caractères

décrivant une adresse IP en notation décimale, et renvoie une chaîne de

caractères, de longueur 35 (32 bits et les 3 points), décrivant l’adresse IP

en notation binaire.

Exemple :

>>> ip_bin('192.168.10.1')

'11000000.10101000.00001010.00000001'

10. Donner la chaîne de caractères renvoyée par

ip_bin('192.168.20.12').

La fonction precede prend en paramètres deux adresses IP en notation

binaire, sous forme de chaînes de caractères identiques à celles

renvoyées par la fonction ip_bin. La fonction precede renvoie un

booléen qui vaut True si la première adresse IP en paramètre précède la

seconde adresse IP.

25-NSIJ1ME1 p. agr. 25 sur 29 14.3 – 15.1 / 17

Exemple :

>>> a = '11000000.10101000.00001010.00000001'

>>> b = '11000000.10101000.00001111.00000001'

>>> precede(a, b)

True

L’algorithme compare bit à bit les deux chaînes binaires, en lisant les
chaînes de caractères dans le sens usuel (de gauche à droite).
Dans l’exemple ci-dessus, tous les caractères sont identiques jusqu’au
sixième caractère du troisième octet. Comme le bit de l’adresse a est

inférieur à celui de l’adresse b, on en déduit que l’adresse IP a précède

l’adresse IP b.

Si la première adresse IP ne précède pas la seconde, la fonction doit

renvoyer False.

L’algorithme de comparaison est traduit dans le langage Python sous la
forme suivante :

1 def precede(ip_1, ip_2):

2 for i in range(35):

3 if ip_1[i] < ip_2[i]:

4 return ...

5 elif ip_1[i] > ip_2[i]:

6 return ...

7 return ...

25-NSIJ1ME1 p. agr. 26 sur 29 15.2 / 17

11. Expliquer dans quel cas la fonction precede exécutera la dernière

instruction return de la ligne 7.

12. Recopier et compléter les lignes 4, 6 et 7 du code de la fonction

precede.

Les tables de routage de chaque routeur sont implémentées sous la

forme d’arbre binaire de recherche avec la classe Abr.

1 class Abr:

2 def __init__(self, adresse_ip,

3 interface, passerelle,

4 cout):

5 self.adresse_ip = adresse_ip

6 self.interface = interface

7 self.passerelle = passerelle

8 self.cout = cout

9 if adresse_ip != '':

10 self.gauche = Abr('','','',0)

11 self.droite = Abr('','','',0)

12

13 def est_vide(self):

14 return ...

25-NSIJ1ME1 p. agr. 27 sur 29 15.3 – 16.1 / 17

Dans cette représentation :

• adresse_ip désigne l’adresse IP de la destination ;

• interface désigne l’interface réseau ;

• passerelle désigne l’adresse IP du prochain routeur ;

• cout désigne le nombre de sauts pour atteindre la destination.

• par convention, l’arbre binaire vide est une instance de Abr pour

laquelle adresse_ip est une chaîne de caractères vide ;

• un arbre binaire de recherche non vide possède nécessairement un

sous-arbre gauche et un sous-arbre droit, éventuellement vides, qui sont

tous les deux des arbres binaires de recherche. Ces sous-arbres sont

désignés par gauche et droite dans la classe Abr ;

• si elle n’est pas vide, l’adresse IP du sous-arbre gauche précède

l’adresse IP de l’instance parent ;

• si le sous-arbre droit n’est pas vide, alors l’adresse IP de l’instance

parent précède l’adresse IP du sous-arbre droit.

13. Citer un attribut et citer une méthode de la classe Abr.

14. Recopier et compléter la ligne 14 du code de la classe Abr.

15. Justifier, en mobilisant des connaissances de cours, l’intérêt qu’il peut

y avoir à représenter la table de routage par un arbre binaire de

recherche.

25-NSIJ1ME1 p. agr. 28 sur 29 16.2 – 17.1 / 17

La section de code qui définit modifie est incluse dans la classe Abr.

16 def modifie(self, adresse_ip,

17 interface, passerelle,

18 cout):

19 if self.est_vide():

20 self.adresse_ip = adresse_ip

21 self.interface = interface

22 self.passerelle = passerelle

23 self.cout = cout

24 self.gauche = Abr('','','',0)

25 self.droite = Abr('','','',0)

26 else:

27 self.adresse_ip = adresse_ip

28 self.interface = interface

29 self.passerelle = passerelle

30 self.cout = cout

Les lignes 20 à 23 sont exactement les mêmes que les lignes 27 à 30.

16. Réécrire le code de la fonction modifie en évitant cette répétition.

La classe Abr est complétée afin de permettre l’ajout de nouvelles lignes

à la table de routage, tout en conservant les propriétés que doit posséder

un arbre binaire de recherche.

25
-N

SI
J1

M
E1

p.

 a
gr

. 2
9

su
r 2

9
17

.2
 /

17

 3
2

d
e
f

r
e
c
h
e
r
c
h
e
r
(
s
e
l
f
,

a
d
r
e
s
s
e
_
i
p
)
:

3
3

i
f

s
e
l
f
.
e
s
t
_
v
i
d
e
(
)

o
r

a
d
r
e
s
s
e
_
i
p
=
=
s
e
l
f
.
a
d
r
e
s
s
e
_
i
p
:

3
4

r
e
t
u
r
n

s
e
l
f

3
5

e
l
i
f

p
r
e
c
e
d
e
(
.
.
.
)
:

3
6

r
e
t
u
r
n

s
e
l
f
.
g
a
u
c
h
e
.
r
e
c
h
e
r
c
h
e
r
(
a
d
r
e
s
s
e
_
i
p
)

3
7

e
l
s
e
:

3
8

r
e
t
u
r
n

s
e
l
f
.
d
r
o
i
t
e
.
r
e
c
h
e
r
c
h
e
r
(
a
d
r
e
s
s
e
_
i
p
)

3
9

4
0

d
e
f

i
n
s
e
r
e
r
(
s
e
l
f
,

a
d
r
e
s
s
e
_
i
p
,

4
1

i
n
t
e
r
f
a
c
e
,

p
a
s
s
e
r
e
l
l
e
,

4
2

c
o
u
t
)
:

4
3

d
e
s
t
i
n
a
t
i
o
n

=

s
e
l
f
.
r
e
c
h
e
r
c
h
e
r
(
a
d
r
e
s
s
e
_
i
p
)

4
4

d
e
s
t
i
n
a
t
i
o
n
.
m
o
d
i
f
i
e
(
a
d
r
e
s
s
e
_
i
p
,

4
5

i
n
t
e
r
f
a
c
e
,

p
a
s
s
e
r
e
l
l
e
,

4
6

c
o
u
t
)

 O
n

ra
pp

el
le

 q
ue

 la
 fo

nc
tio

n
p
r
e
c
e
d
e

 p
re

nd
 e

n
ar

gu
m

en
ts

 d
es

 a
dr

es
se

s
IP

 é
cr

ite
s

so
us

 fo
rm

e
bi

na
ire

.

 17
. R

ec
op

ie
r e

t c
om

pl
ét

er
 la

 li
gn

e
35

 d
u

co
de

 d
e

la
 fo

nc
tio

n
r
e
c
h
e
r
c
h
e
r

.

