25-NSIJ1ME1 / Arial 16

BACCALAUREAT GENERAL

EPREUVE D’ENSEIGNEMENT DE SPECIALITE

SESSION 2025

NUMERIQUE ET SCIENCES INFORMATIQUES

ra

EPREUVE DU MARDI 17 JUIN 2025
Durée de I'épreuve : 3 heures 30
L’'usage de la calculatrice n’est pas autorisé.
Dés que ce sujet vous est remis, assurez-vous qu’il est complet.
Ce sujet comporte 17 pages numérotées de 1/17 a 17/17 dans la version
originale et 29 pages numérotées de 1/29 a 29/29 dans la version en

caracteres agrandis.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSIJ1ME1 p. agr. 1 sur 29 1/17

EXERCICE 1 (6 points)

Cet exercice porte sur les bases de données relationnelles et les

requétes SQL.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

» construire des requétes d’interrogation a I'aide de SELECT, FROM,
WHERE (avec les opérateurs logiques AND, OR), JOIN ... ON;

* construire des requétes d’insertion et de mise a jour a 'aide de UPDATE,
INSERT, DELETE ;

e affiner les recherches a I'aide de DISTINCT, ORDER BY.

Dans un schéma relationnel, on utilisera les conventions suivantes :

* la clé primaire d’une relation est définie par son attribut souligné ;

* les attributs précédeés de # sont les clés étrangéres.

Le guitariste Slash posséde une incroyable collection de guitares.
Maud est une grande fan de Slash. Elle décide de faire un inventaire
de la collection de guitares sous la forme d’'une base de données

relationnelle.

25-NSIJ1ME1 p. agr. 2 sur 29 21117

Partie A

Dans cette partie, Maud utilise la relation suivante :

inventaire

num_ser représente le numero de série d’'une guitare. Il est unique pour

chaque guitare d’'une méme marque. Le prix est en euro.

Voici un extrait de la table inventaire.

(id, marque, modele, annee, num ser, pPrix)

inventaire

id |[marque |modele annee num_ ser prix

1 Gibson Les Paul 1956 @70562 100000
Goldtop

2 Gibson Les Paul 1988 81738349 20000
Goldtop

3 Gibson Les Paul 1959 @90663 250000
Standard

4 Gibson Les Paul 1987 81757532 25000
Standard

5 Fender Telecaster 1952 000230 150000

6 Fender Telecaster 1965 81345673 10000

7 Fender Stratocaster 1956 001359 200000

8 Fender Stratocaster 1965 81757532 15000

25-NSIJ1ME1 p. agr. 3 sur 29 2.2 117

1. Expliquer pourquoi I'attribut num ser ne peut pas étre une clé primaire

de la relation inventaire.

2. Donner, sous forme de tableau, le résultat de la requéte suivante

appliquée a l'extrait de table précédent.

SELECT marque, modele
FROM inventaire

WHERE annee = 1956

3. Ecrire une requéte SQL permettant d’obtenir toutes les années du

modeéle Les Paul Standard dans la collection.

4. Ecrire une requéte SQL permettant d’obtenir tous les modéles de
guitares de la marque Gibson par ordre croissant de I'année dans la

collection.
5. Maud a fait une erreur de saisie pour la guitare d’identifiant 1d=1.

L’année est en réalité 1957. Ecrire une requéte SQL permettant de

corriger cette erreur de saisie.

25-NSIJ1ME1 p. agr. 4 sur 29 3.1/17

Partie B

Maud change de représentation pour I'inventaire de la collection.

Dans cette partie, Maud utilise maintenant les trois relations suivantes :

marque (id, nom)

modele (id, nom, #id marque)

guitare (id, #id modele, annee, num ser, prix)

Dans la relation modele, #id marque est une clé étrangére reliée

a la clé primaire id de la relation marque. Dans la relation guitare,

#id modele est une clé étrangere reliée a la clé primaire id de la

relation modele.

Voici des extraits des trois tables marque, modele, guitare.

margue

id | nom

1 Gibson

2 Fender

25-NSIJ1TME1

modele

id | nom id marque
1 Les Paul Goldtop | 1

2 | Les Paul Standard | 1

3 | Telecaster 2

4 | Stratocaster 2

p. agr. 5 sur 29

3.2/17

guitare

id | id modele | annee |num ser |prix

1 11 1956 @70562 100000
2 |1 1988 81738349 | 20000
3 |2 1959 @90663 250000
4 |12 1987 81757532 | 25000
5 (3 1952 000230 150000
6 |3 1965 81345673 | 10000
7 |4 1956 001359 200000
8 |4 1965 81757532 | 15000

6. Expliquer brievement, en justifiant, dans quel ordre les trois tables
doivent étre créées.

7. Ecrire une requéte SQL permettant d’obtenir le numéro de série
et 'année de toutes les guitares Les Paul Standard de la collection.

Maud vient d’apprendre que Slash a fait cadeau d’'une de ses guitares
a un ami. Elle doit donc la retirer de sa base de données.

8. Ecrire une requéte SQL permettant de retirer de la collection la guitare

d’identifiant 1d=3.

Slash a aussi acheté une guitare d’'une marque qu’il n’avait pas encore

dans sa collection. Maud décide de la rajouter.

25-NSIJ1TME1

p. agr. 6 sur 29

4.1/17

9. Ecrire 'ensemble des requétes SQL permettant d’ajouter la guitare

suivante :

— marque : BC Rich

— modele : Mockingbird
—année : 1992

— numeéro de série : 92R
— prix : 5000.

On supposera que I'on peut attribuer la valeur 3 pour I'attribut id dans la
table marque pour la marque BC Rich, que I'on peut attribuer la valeur 5
pour I'attribut 1d dans la table modele pour le modéle Mockingbird et que
I'on peut attribuer la valeur 9 pour I'attribut 1d dans la table guitare

pour cette guitare.

Maud souhaite connaitre la valeur totale des modeéles Stratocaster de la

collection. Son ami David lui conseille de regarder la fonction SUM.

La syntaxe pour utiliser cette fonction SQL peut étre similaire a celle-ci :

SELECT SUM (nom colonne)
FROM tab

Cette requéte SQL permet de calculer la somme des valeurs contenues

dans la colonne nom colonne de la table tab.

10. Ecrire une requéte SQL permettant de calculer la valeur totale des

modeéles Stratocaster de la collection de Slash.

25-NSIJ1ME1 p. agr. 7 sur 29 4.2-5/17

EXERCICE 2 (6 points)

Cet exercice porte sur I'algorithmique, les structures de données,

et la gestion de processus.

On cherche a créer une application de type liste de taches a faire pour
aider Alice a planifier sa journée. Pour cela Alice saisit les informations
concernant chacune des taches qu’elle doit effectuer : elle indique un
nom pour la tache, ainsi que la durée gu’elle estime nécessaire afin de la
réaliser. On représente une tache saisie par Alice a I'aide d’un objet de

type Tache, muni de quatre attributs :

* le numero de la tache, saisi par Alice ;

* le nom de la tache, saisi par Alice ;

* la duree (un entier exprimé en minute) nécessaire a la réalisation de la
tache saisie par Alice ;

e la duree restante (un entier exprimé en minute) avant la fin de la
tache. Cet attribut sera initialisé avec la durée totale nécessaire a la

réalisation de la tache.

Avancer de n minutes (n entier positif) dans une tache consiste a
diminuer de n la durée restante de cette tache. Une tache est terminée

si la durée restante est négative ou nulle.

25-NSIJ1ME1 p. agr. 8 sur 29 6.1/17

Lors de la phase de planification de ses taches (aucune d’entre elles

n’est commenceée), Alice liste les taches suivantes qui doivent étre

effectuées :
Numéro | Nom Durée [Durée restante
1 Répondre aux e-mails 45 45
2 Ranger ma chambre 60 60
3 Réviser la NSI 90 90
4 S’entrainer aux échecs 30 30
5 Apprendre le vocabulaire de | 30 30
chinois
6 Lire Fondation 60 60
7 Ecrire ma lettre au Pére Noél | 20 20

On dispose de la classe Tache ci-dessous pour représenter les taches :

1
2
3
4
5
6
7
8
9

25-NSIJ1TME1

class Tache:

def init (self, numero,

self .numero = numero

self.nom = nom
self.duree initiale

self.duree restante

def repr (self):

duree

duree

nom, duree) :

return '<t'+str(self.numero) +'>"

p. agr. 9 sur 29

6.2-71/17

1. Donner le code Python qui permet d’instancier deux variables tachel

et tache?2 représentant les taches :

— tache numéro 1 : Répondre aux e-mails. Durée estimée : 45 minutes.

— tdche numeéro 2 : Ranger ma chambre. Durée estimée : 60 minutes.

On supposera dans la suite que les variables tachel, tache2, .. ,
tache?7 représentent les taches établies par Alice lors de la phase de

planification.

La méthode repr renvoie une représentation de l'instance sous
forme d’une chaine de caracteres. La fonction print utilise cette

méthode. Ainsion a :

>>> print (tachel)

<tl>

2. Recopier et compléter le code de la meéthode avancer de la classe
Tache qui permet d’avancer la tdche self de n minutes.

1 def avancer(self, n):

2

3. Recopier et compléter le code de la méthode est terminee de la
classe Tache qui renvoie True si la tache est terminée, ou False sinon.

1 def est terminee(self):

2

25-NSIJ1ME1 p. agr. 10 sur 29 7.2117

Afin d’aider Alice a planifier sa journée, on lui propose d’associer a
chacune des taches une priorité. La priorité d’'une tache est représentée
par un entier de la maniére suivante : 1 est la priorité minimale et, plus le

nombre est grand, plus la tache associée est prioritaire.

Pour stocker toutes les taches a effectuer, on utilise une file, dans
laquelle les éléments sont des tuples (tache, priorite).
Les éléments stockés dans la file doivent respecter les deux conditions

ci-apres.

* Condition 1 : les éléments sont rangés par ordre décroissant de
priorité. L’élément de priorité maximale se trouve au début de la file,

I'élément le moins prioritaire se trouve a la fin de la file.

» Condition 2 : parmi les éléments de méme priorité, les éléments sont
rangés dans 'ordre dans lequel ils ont été insérés dans la file.

Ainsi, le premier élément de priorité p inséré se trouve devant les
eléments de méme priorité p inséreés plus tard.

Par exemple, si la file de taches £ est lafile :

[début] (<t3>, 4) (<tl>, 3) (<t2>, 3) (<t4>, 1)
(<t5>, 1) [fin]

25-NSIJ1ME1 p.agr. 11 sur 29 7.3—-81/17

Cela signifie que :

* la tache de priorité maximale est la tache numéro 3 ;

* les deux taches a exécuter en priorité aprés la tache numéro 3 sont les
taches numeéro 1 et numéro 2. La tache numéro 1 a été ajoutée a la file
des taches a traiter avant la tache numeéro 2 ;

* il N’y a pas de tache de priorité 2 ;

* les taches les moins prioritaires de la file sont les taches numéro 4 et

numéro 5. La tdche numéro 4 a été ajoutée avant la tache numéro 5.

4. Représenter 'état de la file £ lorsqu’on lui ajoute successivement la
tache numéro 6 avec la priorité 2, puis la tache numéro 7 avec la priorité

4 en respectant les conditions 1 et 2 décrites page agrandie précédente.

On suppose déja définies les méthodes suivantes pour la classe File :

e File () : crée et renvoie un objet de type File, vide.
eenfiler(self, e) :ajoute'élément e a la fin de lafile £.
edefiler (self) :renvoie, en le supprimant de la file, le premier
élément de la file si cela est possible.

*» examiner (self) :renvoie, sans le supprimer de la file, le premier
élément de la file si cela est possible.

e est vide(self) :renvoie True sila file est vide, ou False sinon.

25-NSIJ1ME1 p. agr. 12 sur 29 8.2/17

5. En repartant de la file £ suivante :

[début] (<t3>, 4) (<tl>, 3) (<t2>, 3)
(<td4>, 1) (<t5>, 1) [fin]

donner la valeur de £ .defiler () [0], et représenter le contenu de la

file £ aprés I'exécution de cette instruction.

6. En repartant de la file £ suivante :

[début] (<t3>, 4) (<tl>, 3) (<t2>, 3)
(<t4>, 1) (<t5>, 1) [fin]

donner la valeur de f .examiner () [1], et représenter le contenu de la

file £ aprés I'exécution de cette instruction.

On souhaite écrire une fonction ajouter file prio qui prend en

parametres :

* une file £ dont les éléments sont des tuples (tache, priorite)
respectant les deux conditions de I'énoncé ;

e une tache t ;

e la priorité p de la tache t ;

et qui ajoute le tuple (t, p) ala bonne position dans la file £.

25-NSIJ1ME1 p. agr. 13 sur 29 83-91/17

On utilise une file auxiliaire £ aux que I'on remplit en défilant les
éléments en début de file £ tant que la priorité du premier élément de la
file est supérieure ou égale a p. Puis on enfile 'élément (t, p) dansla
file auxiliaire. On défile ensuite tous les éléments restants de £ dans

f aux et enfin on enfile dans £ tous les éléments de £ aux.
7. Recopier et compléter le code de la fonction ajouter file prio.
def ajouter file prio(f, t, p):

f aux = File()

while

...enfiler(...)

while not

while not

O 00 I o U1 B w NN

8. Donner le colt d’exécution temporel dans le pire des cas de la fonction

ajouter file prio, en fonction du nombre m d’éléments de la file £.

Une fois qu’Alice a entré les taches qu’elle doit effectuer, leur durée
estimée, ainsi que la priorité a laquelle elle doit les effectuer, I'application

lui propose un planning en utilisant la technique dite Pomodoro :

* la tdche a effectuer est la tache qui se trouve en téte de file ;

* on défile cette tache de la file des taches a effectuer ;

25-NSIJ1ME1 p. agr. 14 sur 29 9.2/17

» on avance cette tache de 25 minutes ;

* si cette tache n’est pas terminée, on rajoute cette tache dans la file des
taches a effectuer, avec la méme priorité qu’initialement (en utilisant la
fonction ajouter file prio);

* si cette tache se termine au cours des 25 minutes, alors Alice attend la
fin des 25 minutes en se reposant ;

* on continue ces étapes tant que la file des taches a effectuer n'est pas

vide.

On rappelle les taches a effectuer ci-dessous, classées par ordre de
priorité. On considérera que les taches sont ajoutées a la file de priorité

dans l'ordre du tableau ci-dessous :

Numéro Nom Duree Priorité
3 Réviser la NSI 90 4
14 Ecrire ma lettre au Pére Noél | 20 4
1 Répondre aux e-mails 45 3
2 Ranger ma chambre 60 3
6 Lire Fondation 60 2
4 S’entrainer aux échecs 30 1
) Apprendre le vocabulaire de | 30 1
chinois

25-NSIJ1ME1 p. agr. 15 sur 29 9.3-10.1/17

9. Indiquer pour chaque bloc de 25 minutes la tache qui avance,

en suivant le modeéle proposé, jusqu’a la fin de toutes les taches.

On fera particulierement attention au cas ou la tache n’est pas terminée :
celle-ci est rajoutée a la file des taches a effectuer (dont elle avait été
supprimée) avec la méme priorité qu’initialement, en respectant les

conditions 1 et 2 de I'énonceé.

10. Ecrire le code d’une fonction planning qui prend en paramétre une
file de priorité £ dont les éléments sont des tuples (tache, prio),
et qui renvoie une liste de taches, dans l'ordre dans lequel elles vont étre

effectuées par tranche de 25 minutes avec la méthode Pomodoro.

Par exemple, si tachel, tache2 et tache3 sont les taches numéro 1,

numéro 2 et numéro 3, alors le programme suivant :

1 file = File ()
2 for t, p in [(tachel, 3), (tache2, 3), (tache3, 4)]:
3 ajouter file prio(file, t, p)

4 print (planning(file))

produit I'affichage :
[<t3>, <t3>, <t3>, <t3>, <tl>, <t2>, <tl>, <t2>, <t2>]

25-NSIJ1ME1 p. agr. 16 sur 29 10.2 /17

EXERCICE 3 (8 points)

Cet exercice porte sur I'architecture matérielle (réseau), les arbres

binaires de recherche et la programmation Python.

L’entreprise CaféNet posséde plusieurs cafés répartis dans différentes
villes. Le réseau de la chaine de cafés est représenté en Figure 1 page

agrandie suivante.

25-NSIJ1TME1 p.agr. 17 sur 29 11.1/17

ANEAN 6¢ ins g| "16e d LIWLIISN-GZ
| 9jeD neasay
4 1102891261)
7.._. 01'02'891°Z61 JouIuT
_ TR
Z
\ apJebannes ap L:mzmy
‘0°0L" 2 LoLelL egror
— - 2'091¢L) mo_._vamFN@
11'0€'89L°26L 01°0£891°261 ~ 0L0L'89L'Z6l
g ~
_U ;U cyobell N.OAS.NE
N P 10012/ L 1’1912l e
T D0 (a0
1'0€'891 26l == L'l CLLE=
JlIM
7S v 2T9L'Tll ob'galzel_ OMMS W

Z 9JeD neasay

|e100g 9b91S neasoy

neasal np ailed aun p ewayos *| ainbi4

Sur le schéma sont représentés 4 routeurs, le réseau du siége social,

le réseau du café 1, le réseau du café 2. Dans les réseaux du café 1

et du café 2, des bornes de commandes sont connectées a des switchs
(ce sont des boitiers de connexion qui n'ont pas eux-mémes

d’adresse IP). Les 4 routeurs représentés sont composés d’au moins

3 interfaces réseau capable de relier des réseaux ensembile.

Chaque interface possede donc une adresse IPV4 sur le réseau auquel

elle est reliée.

Les masques des sous-réseaux sont tous 255.255.255.0. Avec ce
masque, les trois premiers octets des adresses IP codent I'adresse
réseau. Le dernier octet, c’est-a-dire les 8 derniers bits, code I'adresse

des machines a l'intérieur de chaque sous-réseau.
Partie A

Le gérant veut faire installer une troisieme borne de commande dans le

café 1.

1. Indiquer les deux seules adresses IP valides pour cette nouvelle

borne, parmi les quatre adresses IP proposées.

(a) 192.168.20.2
(b) 192.168.20.157
(c) 192.168.20.261
(d)

d) 192.168.24.10

25-NSIJ1ME1 p. agr. 19 sur 29 11.3/17

L’adresse de diffusion, appelée aussi adresse de broadcast, est la

derniére adresse disponible a I'intérieur d’'un réseau local.

2. Déterminer I'adresse de diffusion du réseau du café 1.

3. Déterminer combien de machines informatiques il est encore possible
de connecter au réseau du café 1 apres l'installation de la troisiéme

borne de commande.

Le réseau local du café 1 n’a pas besoin de plus de 8 adresses IP
différentes. Ce décompte d’adresses IP inclut les adresses IP réservées
(a savoir I'adresse de diffusion et I'adresse du réseau). Il est rappelé que
la longueur du masque de sous-réseau est actuellement de 24 bits

(C’est-a-dire 3 octets).

4. Expliquer quelle est la longueur maximale du masque de sous-réseau

que I'on pourrait choisir pour le réseau local du café 1.

Partie B

RIP (Routing Information Protocol) est un protocole de routage utilisé
dans les réseaux IP. Il est concu pour réduire le nombre de sauts

entre deux réseaux. Un “saut” correspond au transfert des données
d’un routeur a un autre. Le protocole RIP utilise le nombre de sauts
comme critére principal pour évaluer le colt d’'un chemin. Autrement dit,
il considére que le chemin le plus optimal est celui qui traverse le moins

de routeurs.

25-NSIJ1ME1 p. agr. 20 sur 29 12.1 /17

La table de routage du routeur 2 de la Figure 1 est représentée

ci-dessous :
Routeur 2
Reéseau Interface Prochain Nombre
destination de sortie routeur de sauts
192.168.20.0 | 192.168.20.1 | aucun 0
172.16.3.0 172.16.3.1 aucun 0
172.16.4.0 172.16.4.1 aucun 0
192.168.10.0 [172.16.3.1 172.16.3.2 |2
172.16.0.0 172.16.4.1 172.16.4.2 1
172.16.2.0 172.16.4.1 172.16.4.2 1
192.168.30.0
172.16.1.0

5. Recopier et compléter les deux derniéres lignes de la table de routage

du routeur 2.

La table de routage du routeur 2 contient un réseau de destination pour
lequel deux routes différentes sont possibles. La ligne correspondante
dans la table de routage aurait donc pu étre remplie différemment tout en

respectant le protocole RIP.

12.2-13.1/17

25-NSIJ1ME1 p. agr. 21 sur 29

6. Identifier, dans la table de routage du routeur 2, le réseau de
destination que I'on peut atteindre d’une autre facon et indiquer comment

cette ligne de la table de routage pourrait étre modifiée.

Une adresse IP qui n'est pas référencée dans la table de routage doit

étre routée par défaut vers Internet.

7. Recopier et compléter la ligne a ajouter a la table de routage du

routeur 2.
Réseau Interface Prochain
destination de sortie routeur
autre

Partie C

OSPF est également un protocole d’échanges de données entre les
routeurs qui prend en compte le colt des routes. Le colt est lié au débit

des liaisons entre les routeurs par la formule suivante :

10°

cout = —— avec le débit en bit.s™ 1.
debit

25-NSIJ1ME1 p. agr. 22 sur 29 13.2 /17

8. Recopier et compléter la derniére colonne du tableau ci-dessous :

Tableau des codlts

Type de Débit en bit.s™1 colt
connexion
Ethernet 10 Mbit.s~1 =107 pit.s~ 1 100

Fast Ethernet | 100 Mbit.s™1 = 108 bit.s™1

Fibre optique | 1 Gbit.s™! = 10° bit.s™?!

Le schéma ci-dessous met en évidence les types de connexion qui relient

les routeurs.

Figure 2. Schéma des types de connexion

Siege == Fibre == Réseau
social 4 w3 café 1
Ethernet Fast
Ethernet Ethernet
== Fast Ethernet (== Réseau
—GJ 2 café 2
Internet

9. Déterminer la route dont le colt est minimal pour aller du routeur 1

jusqu’au routeur 4 et calculer son cout au sens du protocole OSPF.

25-NSIJ1ME1 p. agr. 23 sur 29 13.3-14.1/17

Partie D

Le but de cette partie est de classer les adresses IP des différents

réseaux afin de faciliter leur recherche.

La fonction ip bin prend en argument une chaine de caractéres
décrivant une adresse IP en notation décimale, et renvoie une chaine de

caractéres, de longueur 35 (32 bits et les 3 points), décrivant 'adresse IP

en notation binaire.

Exemple :

>>> 1p bin('192.168.10.1")
"11000000.10101000.00001010.00000001"

10. Donner la chaine de caractéres renvoyée par

ip bin('192.168.20.12").

La fonction precede prend en paramétres deux adresses IP en notation

binaire, sous forme de chaines de caracteres identiques a celles

renvoyeées par la fonction ip bin. La fonction precede renvoie un
booléen qui vaut True si la premiére adresse IP en paramétre précede la

seconde adresse IP.

25-NSIJ1TME1 p. agr. 24 sur 29 142 /17

Exemple :

>>> a = '11000000.10101000.00001010.00000001"
>>> b = '11000000.10101000.00001111.00000001"
>>> precede(a, b)

True

L’algorithme compare bit a bit les deux chaines binaires, en lisant les
chaines de caractéres dans le sens usuel (de gauche a droite).

Dans I'exemple ci-dessus, tous les caracteres sont identiques jusqu’au
sixieme caractére du troisieme octet. Comme le bit de I'adresse a est

inférieur a celui de I'adresse b, on en déduit que I'adresse IP a précéde

’adresse IP b.

Si la premiére adresse IP ne précede pas la seconde, la fonction doit

renvoyer False.

L’algorithme de comparaison est traduit dans le langage Python sous la

forme suivante :

1 def precede(ip 1, ip 2):

2 for 1 in range(35):

3 if ip 1[i] < ip 2[i]:

4 return

5 elif ip 1[i] > ip 2[1]:
6 return

7 return

25-NSIJ1ME1 p. agr. 25 sur 29 14.3-151/17

11. Expliquer dans quel cas la fonction precede exécutera la derniere

instruction return de la ligne 7.

12. Recopier et compléter les lignes 4, 6 et 7 du code de la fonction

precede.

Les tables de routage de chaque routeur sont implémentées sous la

forme d’arbre binaire de recherche avec la classe Abr.

1 class Abr:

2 def init (self, adresse 1ip,

3 interface, passerelle,
4 cout) :

5 self.adresse ip = adresse_ 1ip

6 self.interface = interface

7 self .passerelle = passerelle

8 self.cout = cout

9 if adresse ip != '':

10 self.gauche = Abxr('','"',"'',0)
11 self.droite = Abxr('','"',"'',0)
12

13 def est vide(self):

14 return

25-NSIJ1ME1 p. agr. 26 sur 29 15.2 /17

Dans cette représentation :

* adresse ip désigne I'adresse IP de la destination ;

* interface désigne l'interface réseau ;

* passerelle désigne I'adresse IP du prochain routeur ;

» cout deésigne le nombre de sauts pour atteindre la destination.

* par convention, I'arbre binaire vide est une instance de Abr pour
laquelle adresse ip est une chaine de caractéres vide ;

 un arbre binaire de recherche non vide posséde nécessairement un
sous-arbre gauche et un sous-arbre droit, éventuellement vides, qui sont
tous les deux des arbres binaires de recherche. Ces sous-arbres sont
désignés par gauche et droite dans la classe Abr ;

* si elle n'est pas vide, I'adresse IP du sous-arbre gauche précéde
I'adresse IP de I'instance parent ;

* si le sous-arbre droit n’est pas vide, alors I'adresse IP de I'instance

parent précéde I'adresse IP du sous-arbre droit.

13. Citer un attribut et citer une méthode de la classe 2br.

14. Recopier et compléter la ligne 14 du code de la classe 2br.

15. Justifier, en mobilisant des connaissances de cours, I'intérét qu’il peut

y avoir a représenter la table de routage par un arbre binaire de

recherche.

25-NSIJ1TME1 p. agr. 27 sur 29 15.3-16.1/17

La section de code qui définit modifie estincluse dans la classe Abr.

16 def modifie(self, adresse 1ip,

17 interface, passerelle,

18 cout) :

19 if self.est vide():

20 self.adresse ip = adresse 1ip
21 self.interface = interface
22 self.passerelle = passerelle
23 self.cout = cout

24 self.gauche = Abxr('','','',0)
25 self.droite = Abxr('','','',0)
26 else:

27 self.adresse ip = adresse 1ip
28 self.interface = interface
29 self.passerelle = passerelle
30 self.cout = cout

Les lignes 20 a 23 sont exactement les mémes que les lignes 27 a 30.

16. Réécrire le code de la fonction modifie en évitant cette répétition.

La classe Abr est complétée afin de permettre I'ajout de nouvelles lignes

a la table de routage, tout en conservant les propriétés que doit posséder

un arbre binaire de recherche.

25-NSIJ1ME1 p. agr. 28 sur 29 16.2-17.1/17

LV/CL) 6¢ 4ns 6¢ "be 'd LANLFISN-GC

"I9UDISYDSI UOIJOUO) B| 8p 9p02 Np G¢ aubi| e| 1819|dwo9 18 181dooay "/ |

‘2Jleulq BuWL.0) SNOS S8)l109 J] Sossalpe sop sjuawnbie us puaid spsosxd uonouoy e anb ajladdel up

(3nood oV

‘STToa9ssed ‘soeJasjur S¥
‘dT ossoJpe)oTITPOW UOT1RUTIISSOP i

(dT ossoipe)IsydIaydaI JTSS = UOTIRUTIISOP %7

: (3noo v

‘ST1ox9ssed ‘sopeIjISjuUT 1%

‘dT ossoape ‘JToS)ISISSUT JFOP (0%7

6¢

(dT ossaipe)ISUdIaydal 21TOIp IT9S uaniax 8¢
:9sT® L€

(dT ossaxpe)IoUdIoydal ayoneb JTSS uanisl 9¢
t (")opeoaad FTI® 13

JI9S uanjisax a3

:d1 ossoape-JTos==dT ossaipe IO ()OPIA 13SS°IToS 3IT c¢

: (dT ossoape ‘JT198)I9ydIioydal Fop A3

