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BACCALAURÉAT GÉNÉRAL 

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ 

SESSION 2025  

MATHÉMATIQUES 

Jour 2 

Durée de l’épreuve : 4 heures  
 

L’usage de la calculatrice avec mode examen actif est 
autorisé. 
L’usage de la calculatrice sans mémoire « type 
collège » est autorisé. 
 

Dès que ce sujet vous est remis, assurez-vous qu’il est 

complet.  

Ce sujet comporte 5 pages numérotées de 1/5 à 5/5 dans 

la version initiale et 15 pages numérotées de 1/15 à 
15/15 dans la version en caractères agrandis. 
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La qualité de la rédaction, la clarté et la précision des 
raisonnements seront prises en compte dans 
l’appréciation de la copie. Les traces de recherche, 
même incomplètes ou infructueuses, seront 
valorisées.
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Exercice 1 (6 point s) 

On se propose de comparer l’évolution d’une population 

animale dans deux milieux distincts A et B.  

Au 1er janvier 2025, on introduit 6 000 individus dans 

chacun des milieux A et B. 

Partie A  

Dans cette partie, on étudie l’évolution de la population 

dans le milieu A.  

On suppose que dans ce milieu, l’évolution de la 

population est modélisée par une suite géométrique (𝑢௡) 

de premier terme 𝑢଴ = 6 et de raison 0,93.  

Pour tout entier naturel 𝑛, 𝑢௡ représente la population au 

1er janvier de l’année 2025 + 𝑛, exprimée en millier 

d’individus. 

1. Donner, selon ce modèle, la population au  

1er janvier 2026. 

2. Pour tout entier naturel 𝑛, exprimer 𝑢௡ en fonction de 𝑛. 

3. Déterminer la limite de la suite (𝑢௡).   

Interpréter ce résultat dans le contexte de l’exercice.
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Partie B 

Dans cette partie, on étudie l’évolution de la population 

dans le milieu B.  

On suppose que dans ce milieu, l’évolution de la 

population est modélisée par la suite (𝑣௡) définie par  𝑣଴ = 6 et pour tout entier naturel 𝑛, 

 𝑣௡ାଵ = −0,05𝑣௡² + 1,1𝑣௡.   

Pour tout entier naturel 𝑛, 𝑣௡ représente la population au 

1er janvier de l’année 2025 + 𝑛, exprimée en millier 

d’individus. 

1. Donner, selon ce modèle, la population au  

1er janvier 2026. 

Soit 𝑓 la fonction définie sur l’intervalle [0; +∞[ par 𝑓(𝑥) = −0,05𝑥² + 1,1𝑥.  

2. Démontrer que la fonction 𝑓 est croissante sur l’intervalle [0; 11]. 
3. Démontrer par récurrence que pour tout entier naturel 𝑛,  

on a 2 ≤ 𝑣௡ାଵ ≤ 𝑣௡ ≤ 6. 

4. En déduire que la suite (𝑣௡) est convergente vers une 

limite ℓ.
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5. a. Justifier que la limite ℓ vérifie 𝑓(ℓ) = ℓ puis en déduire 

la valeur de ℓ.  

b. Interpréter ce résultat dans le contexte de l’exercice. 

Partie C  
Cette partie a pour but de comparer l’évolution de la 

population dans les deux milieux. 

1. En résolvant une inéquation, déterminer l’année à partir 

de laquelle la population du milieu A sera strictement 

inférieure à 3 000 individus. 

2. À l’aide de la calculatrice, déterminer l’année à partir de 

laquelle la population du milieu B sera strictement 

inférieure à 3 000 individus. 

3. Justifier qu’à partir d’une certaine année, la population 

du milieu B dépassera la population du milieu A.
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4. On considère le programme Python ci-dessous. 

 
a. Recopier et compléter ce programme afin qu’après 

exécution, il affiche l’année à partir de laquelle la 

population du milieu B est strictement supérieure à la 

population du milieu A. 

b. Déterminer l’année affichée après exécution du 

programme. 

n = 0 
u = 6 
v = 6 
while ... : 
    u = ... 
    v = ... 
    n = n + 1    
print(2025 + n) 
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Exercice 2 (6 points) 

Partie A 
On considère la fonction 𝑓 définie sur l’intervalle [0 ; +∞[ 
par : 𝑓(𝑥) = 1𝑎 + eି௕௫ 

où 𝑎 et 𝑏 sont deux constantes réelles strictement 
positives.  

On admet que la fonction 𝑓 est dérivable sur 
l’intervalle [0; +∞[. 
La fonction 𝑓 admet pour représentation graphique la 
courbe 𝒞௙ page suivante :
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On considère les points 𝐴(0; 0,5) et 𝐵(10; 1). 

On admet que la droite (𝐴𝐵) est tangente à la courbe 𝒞௙ 

au point 𝐴. 

1. Par lecture graphique, donner une valeur approchée de 𝑓(10). 

2. On admet que lim௫→ାஶ𝑓(𝑥) = 1. 

Donner une interprétation graphique de ce résultat. 

3. Justifier que 𝑎 = 1. 

4. Déterminer le coefficient directeur de la droite (𝐴𝐵).

B 𝒞௙ 

A 
1 

0,5 

0 5 10 15 20 25 30 
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5. a. Déterminer l’expression de 𝑓′(𝑥) en fonction de 𝑥 et 

de la constante 𝑏. 

b. En déduire la valeur de 𝑏. 
 
Partie B 
On admet, dans la suite de l’exercice, que le taux 

d’équipement en réfrigérateurs est représenté par la 

fonction 𝑓 définie sur l’intervalle [0; +∞[ par : 

𝑓(𝑥) = 11 + eି଴,ଶ௫ 

1. Déterminer lim௫→ାஶ𝑓(𝑥) .  

2. Étudier les variations de la fonction 𝑓 sur l’intervalle [0; +∞[ . 
3. Montrer qu’il existe un unique réel 𝛼 positif tel que 𝑓(𝛼) = 0,97. 

4. À l’aide de la calculatrice, donner un encadrement du 

réel 𝛼 par deux nombres entiers consécutifs.
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Partie C 
 
1. Montrer que, pour tout 𝑥 appartenant à  

l’intervalle [0; +∞[ , 𝑓(𝑥) =  ୣబ,మೣଵାୣబ,మೣ . 
2. En déduire une primitive de la fonction 𝑓 sur l’intervalle [0; +∞[. 
3. Calculer la valeur moyenne de la fonction 𝑓 sur 

l’intervalle [0; 40], c’est-à-dire :  𝐼 = 140න 11 + eି଴,ଶ௫  𝑑𝑥ସ଴
଴  

On donnera la valeur exacte et une valeur 

approchée au millième. 

 
Exercice 3 (4 points) 
Le codage « base64 », utilisé en informatique, permet de 

représenter et de transmettre des messages et d’autres 

données telles que des images, en utilisant 64 caractères : 

les 26 lettres majuscules, les 26 lettres minuscules, les 

chiffres de 0 à 9 et deux autres caractères spéciaux.
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Les parties A, B et C sont indépendantes.  

 
Partie A   

Dans cette partie, on s’intéresse aux séquences de 

4 caractères en base64.  

Par exemple, « gP3g » est une telle séquence.  

Dans une séquence, l’ordre est à prendre en compte : les 

séquences « m5C2 » et « 5C2m » ne sont pas identiques. 

1. Déterminer le nombre de séquences possibles. 

2. Déterminer le nombre de séquences si l’on impose que 

les 4 caractères sont différents deux à deux. 

3. a. Déterminer le nombre de séquences ne comportant 

pas de lettre A majuscule 

b. En déduire le nombre de séquences comportant au 

moins une lettre A majuscule. 

c. Déterminer le nombre de séquences comportant 

exactement une fois la lettre A majuscule. 

d. Déterminer le nombre de séquences comportant 

exactement deux fois la lettre A majuscule. 
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Partie B  
On s’intéresse à la transmission d’une séquence de 250 caractères d’un ordinateur à un autre. On suppose 

que la probabilité qu’un caractère soit mal transmis est 

égale à 0,01 et que les transmissions des différents 

caractères sont indépendantes entre elles.  

On note 𝑋 la variable aléatoire égale au nombre de 

caractères mal transmis. 

1. On admet que la variable aléatoire 𝑋 suit la loi 

binomiale. Donner ses paramètres. 

2. Déterminer la probabilité que tous les caractères soient 

bien transmis. On donnera l’expression exacte, 

puis une valeur approchée à 10ିଷ près. 

3. Que pensez-vous de l’affirmation suivante :  

« La probabilité que plus de 16 caractères soient mal 

transmis est négligeable » ?
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Partie C  

On s’intéresse maintenant à la transmission de 4 séquences de 250 caractères. 

On note 𝑋ଵ, 𝑋ଶ, 𝑋ଷ et 𝑋ସ les variables aléatoires 

correspondant aux nombres de caractères mal transmis 

lors de la transmission de chacune des 4 séquences. 

On admet que les variables aléatoires 𝑋ଵ, 𝑋ଶ, 𝑋ଷ et 𝑋ସ sont 

indépendantes entre elles et suivent la même loi que la 

variable aléatoire 𝑋 définie en partie B. 

On note 𝑆 = 𝑋ଵ + 𝑋ଶ + 𝑋ଷ + 𝑋ସ.  

Déterminer, en justifiant, l’espérance et la variance de la 

variable aléatoire 𝑆. 
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Exercice 4 (4 points) 

On se place dans un repère orthonormé (𝑂; 𝚤, 𝚥, 𝑘ሬ⃗ ) de 

l’espace. 

On considère les points 𝐴(1; 0; 3), 𝐵(−2; 1; 2) et 𝐶(0; 3; 2). 

1. a. Montrer que les points 𝐴, 𝐵 et 𝐶 ne sont pas alignés. 

b. Soit 𝑛ሬ⃗  le vecteur de coordonnées ൭−114 ൱. Vérifier que  

le vecteur 𝑛ሬ⃗  est orthogonal au plan (𝐴𝐵𝐶). 

c. En déduire que le plan (𝐴𝐵𝐶) admet pour équation  

cartésienne −𝑥 + 𝑦 + 4𝑧 − 11 = 0. 

On considère le plan 𝒫 d’équation cartésienne  3𝑥 − 3𝑦 + 2𝑧 − 9 = 0 et le plan 𝒫′ d’équation 

cartésienne 𝑥 − 𝑦 − 𝑧 + 2 = 0. 

2. a. Démontrer que les plans 𝒫 et 𝒫′ sont sécants. 

On note (𝑑) leur droite d’intersection. 

b. Déterminer si les plans 𝒫 et 𝒫′ sont 

perpendiculaires. 
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3. Montrer que la droite (𝑑) est dirigée par le vecteur 𝑢ሬ⃗ ൭110൱. 

4. Montrer que le point 𝑀(2; 1; 3) appartient aux plans  𝒫 et 𝒫′.  
En déduire une représentation paramétrique de la 

droite (𝑑). 

5. Montrer que la droite (𝑑) est aussi incluse dans le plan (𝐴𝐵𝐶).  

Que peut-on dire des trois plans (𝐴𝐵𝐶), 𝒫 et 𝒫′ ? 

 




