
25-NSIJ2JA1 p. agr. 1 sur 26 1 / 14

25-NSIJ2JA1 / Arial 16

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES INFORMATIQUES

JOUR 2

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 14 pages numérotées de 1/14 à 14/14 dans la version

originale et 26 pages numérotées de 1/26 à 26/26 dans la version en
caractères agrandis.

Le sujet est composé de trois exercices indépendants.
Le candidat traite les trois exercices.

25
-N

SI
J2

JA
1

p.
 a

gr
. 2

 s
ur

 2
6

2.
1

/ 1
4

 EX
ER

C
IC

E
1

(6
 p

oi
nt

s)

 C
et

 e
xe

rc
ic

e
po

rt
e

su
r l

a
pr

og
ra

m
m

at
io

n
or

ie
nt

ée
 o

bj
et

 e
t l

’a
lg

or
ith

m
iq

ue
.

Po
ur

 tr
av

ai
lle

r s
ur

 d
es

 d
at

es
, o

n
a

cr
éé

 la
 c

la
ss

e
D
a
t
e

 d
on

t l
e

co
de

 e
st

 é
cr

it
ci

-d
es

so
us

 :

 1

c
l
a
s
s

D
a
t
e
:

2

d
e
f

_
_
i
n
i
t
_
_
(
s
e
l
f
,

j
o
u
r
,

m
o
i
s
,

a
n
n
e
e
)
:

3

s
e
l
f
.
j
o
u
r

=

.
.
.

4

s
e
l
f
.
m
o
i
s

=

.
.
.

5

s
e
l
f
.
a
n
n
e
e

=

.
.
.

6

s
e
l
f
.
n
b
_
j
o
u
r
s
_
p
a
r
_
m
o
i
s

=

[
3
1
,

2
8
,

3
1
,

3
0
,

3
1
,

3
0
,

3
1
,

3
1
,

3
0
,

3
1
,

3
0
,

3
1
]

7

8

9

d
e
f

g
e
t
_
j
o
u
r
(
s
e
l
f
)
:

1
0

r
e
t
u
r
n

s
e
l
f
.
j
o
u
r

1
1

25
-N

SI
J2

JA
1

p.
 a

gr
. 3

 s
ur

 2
6

2.
2

/ 1
4

 1
2

d
e
f

g
e
t
_
m
o
i
s
(
s
e
l
f
)
:

1
3

r
e
t
u
r
n

s
e
l
f
.
m
o
i
s

1
4

1
5

d
e
f

g
e
t
_
a
n
n
e
e
(
s
e
l
f
)
:

1
6

r
e
t
u
r
n

.
.
.

1
7

1
8

d
e
f

s
e
t
_
j
o
u
r
(
s
e
l
f
,

j
o
u
r
)
:

1
9

s
e
l
f
.
j
o
u
r

=

j
o
u
r

2
0

2
1

d
e
f

s
e
t
_
m
o
i
s
(
s
e
l
f
,

m
o
i
s
)
:

2
2

s
e
l
f
.
m
o
i
s

=

.
.
.

2
3

2
4

d
e
f

s
e
t
_
a
n
n
e
e
(
s
e
l
f
,

a
n
n
e
e
)
:

2
5

s
e
l
f
.
a
n
n
e
e

=

a
n
n
e
e

2
6

2
7

d
e
f

e
s
t
_
b
i
s
s
e
x
t
i
l
e
(
s
e
l
f
)
:

2
8

.
.
.

25-NSIJ2JA1 p. agr. 4 sur 26 2.3 – 3.1 / 14

Partie A : Accès et modification des données

Le constructeur de la classe Date prend en paramètres trois entiers

représentant le jour, le mois et l’année, puis les affecte respectivement

aux attributs jour, mois et annee.

1. Recopier et compléter les lignes 3 à 5 du code précédent.

2. Indiquer à quelle date correspond l’instance de la classe Date

suivante :

d = Date(1, 5, 2000)

3. Écrire le code permettant de créer une instance d de la classe Date

qui représente la date du 19 juin 2024.

4. La méthode get_annee renvoie la valeur de l’attribut annee.

Recopier et compléter les lignes 15 et 16 du code précédent.

5. La méthode set_mois modifie l’attribut mois en lui affectant la valeur

passée en argument.

Recopier et compléter les lignes 21 et 22 du code précédent.

L’attribut nb_jours_par_mois contient une liste qui correspond au

nombre de jours pour chaque mois. Le mois de février contient

généralement 28 jours mais lors des années bissextiles il en contient 29.

25-NSIJ2JA1 p. agr. 5 sur 26 3.2 / 14

6. La classe Date dispose d’une méthode est_bissextile, qui utilise

uniquement l’attribut annee, et qui renvoie True si l’année de l’instance

courante est bissextile et False sinon. On veut compléter la méthode

__init__ pour ajuster le nombre de jours par mois pour

les années bissextiles.

Recopier et compléter les lignes 7 et 8 suivantes :

6 self.nb_jours_par_mois = [31, 28, 31, 30, 31, 30,

 31, 31, 30, 31, 30, 31]

7 if ... :

8 self.nb_jours_par_mois[...] = 29

Partie B : sur l’année de l’instance courante

Pour déterminer le nombre de jours au cours d’une année, il faut savoir si

elle est bissextile.

Une année est bissextile si elle est divisible par 4 mais pas par 100 ou si

elle est divisible par 400.

7. Écrire le code de la méthode est_bissextile.

On rappelle qu’un entier a est divisible par l’entier n si a % n == 0.

25-NSIJ2JA1 p. agr. 6 sur 26 3.3 – 4.1 / 14

On dote la classe Date de la méthode nb_jours_passes qui renvoie le

nombre de jours passés dans l’année de l’instance courante.

def nb_jours_passes(self) :

 nb_jours = self.jour

 mois = self.mois – 2

 while mois >= 0 :

 nb_jours = nb_jours + self.nb_jours_par_mois[mois]

 mois = mois – 1

 return nb_jours

8. Indiquer quel sera l’affichage en console après l’exécution des deux

instructions suivantes :

>>> d1 = Date(20, 3, 2001)

>>> d1.nb_jours_passes()

On dote la classe Date de la méthode nb_jours_restants qui renvoie

le nombre de jours restants dans l’année de l’instance courante, soit

366 ou 365 moins le nombre de jours déjà passés, selon que l’année est

bissextile ou non.

9. Recopier et compléter le script de la méthode nb_jours_restants

en page agrandie suivante.

25-NSIJ2JA1 p. agr. 7 sur 26 4.2 / 14

def nb_jours_restants(self):

 j = 365

 if ...:

 j = 366

 return j - ...

Partie C : entre deux dates

On dote la classe Date de la méthode nb_jours_depuis qui prend en

paramètre une autre instance other de la classe Date et qui renvoie le

nombre de jours écoulés entre la date de l’instance other et la date de

l’instance courante.

25
-N

SI
J2

JA
1

p.
 a

gr
. 8

 s
ur

 2
6

4.
3

/ 1
4

 d
e
f

n
b
_
j
o
u
r
s
_
d
e
p
u
i
s
(
s
e
l
f
,

o
t
h
e
r
)
:

i
f

o
t
h
e
r
.
g
e
t
_
a
n
n
e
e
(
)

>

s
e
l
f
.
g
e
t
_
a
n
n
e
e
(
)
:

r
e
t
u
r
n

-
1

i
f

o
t
h
e
r
.
g
e
t
_
a
n
n
e
e
(
)

=
=

s
e
l
f
.
g
e
t
_
a
n
n
e
e
(
)
:

i
f

o
t
h
e
r
.
n
b
_
j
o
u
r
s
_
p
a
s
s
e
s
(
)

>

s
e
l
f
.
n
b
_
j
o
u
r
s
_
p
a
s
s
e
s
(
)

:

r
e
t
u
r
n

-
1

i
f

o
t
h
e
r
.
n
b
_
j
o
u
r
s
_
p
a
s
s
e
s
(
)

=
=

s
e
l
f
.
n
b
_
j
o
u
r
s
_
p
a
s
s
e
s
(
)

:

r
e
t
u
r
n

0

n
b
_
j
o
u
r
s

=

s
e
l
f
.
n
b
_
j
o
u
r
s
_
p
a
s
s
e
s
(
)

+

o
t
h
e
r
.
n
b
_
j
o
u
r
s
_
r
e
s
t
a
n
t
s
(
)

f
o
r

a
n
n
e
e

i
n

r
a
n
g
e
(
o
t
h
e
r
.
g
e
t
_
a
n
n
e
e
(
)
+
1
,

s
e
l
f
.
g
e
t
_
a
n
n
e
e
(
)
)
:

d
_
s
u
i
v
a
n
t

=

d
a
t
e
(
1
,

1
,

a
n
n
e
e
)

i
f

d
_
s
u
i
v
a
n
t
.
e
s
t
_
b
i
s
s
e
x
t
i
l
e
(
)
:

n
b
_
j
o
u
r
s

+
=

3
6
6

e
l
s
e
:

n
b
_
j
o
u
r
s

+
=

3
6
5

r
e
t
u
r
n

n
b
_
j
o
u
r
s

25-NSIJ2JA1 p. agr. 9 sur 26 4.4 – 5 / 14

On crée les instances de la classe Date suivantes :
>>> d1 = Date(15, 6, 2024)

>>> d2 = Date(15, 6, 2024)

>>> d3 = Date(15, 7, 2024)

>>> d4 = Date(15, 6, 2025)

>>> d5 = Date(15, 6, 2022)

10. Indiquer quels seront alors les affichages en console après
l’exécution de chacune des instructions suivantes (on précise que l’année
2024 est bissextile) :
>>> d1.nb_jours_depuis(d2)

>>> d1.nb_jours_depuis(d3)

>>> d1.nb_jours_depuis(d4)

>>> d1.nb_jours_depuis(d5)

Le timestamp est le nombre de secondes qui se sont écoulées depuis

le 1er janvier 1970 à 00h00. Il s’agit de la date de la mise en marche du
système d’exploitation UNIX.

Par exemple, le 01/01/2024 à 00:00:00 correspond au

timestamp de 1704063600.

11. Recopier et compléter le code de la méthode timestamp qui renvoie

le nombre de secondes qui se sont écoulées depuis le 1er janvier 1970.

1 def timestamp(self):

2 d = ...

3 return self.nb_jours_depuis(d) * 24 * 3600

25-NSIJ2JA1 p. agr. 10 sur 26 6.1 / 14

EXERCICE 2 (6 points)

Cet exercice porte sur la programmation Python, la gestion des
processus.

On souhaite élaborer un programme système permettant de gérer l’ordre

d’exécution des processus sur le processeur.

1. Donner le nom de ce type de programme.

2. Donner les différents états possibles d’un processus.

Chaque processus dispose d’une valeur de priorité. Un processus est

prioritaire sur un autre processus si sa valeur de priorité est plus petite.

Ainsi pour rendre un processus moins prioritaire, il faut augmenter sa

valeur de priorité, par exemple en la faisant passer de 2 à 3.

Fonctionnement du programme gérant l’ordre d’exécution des

processus :

On dispose d'une liste dont les éléments sont des files de processus.

La première file contient les processus ayant la valeur de priorité la plus

élevée 0, la seconde ceux ayant la valeur de priorité 1, etc.

25-NSIJ2JA1 p. agr. 11 sur 26 6.2 / 14

À l'arrivée d'un nouveau processus :

• Attribuer au nouveau processus la valeur de priorité la plus élevée 0 ;

• Placer le nouveau processus dans la file d'attente correspondant à sa

valeur de priorité (c’est-à-dire la première file de la liste).

À chaque cycle d'horloge :

• S'il n'y a pas de processus en cours d'exécution et s'il reste des

processus en attente :

 Sélectionner un processus avec la priorité la plus élevée dans l'une

des files d'attente non vides ;

 Élire ce processus comme nouveau processus en cours d'exécution ;

• Sinon si un processus est en cours d'exécution :

 Si le processus a terminé son exécution, le retirer du processeur ;

 Sinon,

+ incrémenter le temps d'utilisation du processus ;

+ Si des processus de priorité supérieure ou égale attendent :

- Retirer le processus en cours d'exécution du processeur ;

- Réduire sa priorité de 1 et le mettre dans la file d'attente correspondant

à sa priorité ;

- Élire un processus dont la priorité est la plus élevée parmi les processus

des files d'attente non vides;

+ Sinon, réduire sa priorité de 1 et continuer à exécuter le processus en

cours d'exécution.

25-NSIJ2JA1 p. agr. 12 sur 26 7.1 / 14

3. Parmi les propositions suivantes, donner la structure la plus adaptée

pour stocker les processus d’une même priorité :

– Proposition 1 : Liste

– Proposition 2 : File

– Proposition 3 : Pile

Pour représenter le processus, on utilise une classe Processus qui

possède les variables d’instances PID (l’identifiant du processus),

priorite (la priorité du processus), temps_utilisation sur le CPU

et le temps nécessaire à son exécution temps_CPU.

4. Compléter le constructeur de la classe Processus :

1 class Processus:

4 ...(self, ..., priorite, temps_CPU):

5 ... priorite = priorite

7 ... PID = ...

8 self.temps_utilisation = 0

9 self.temps_CPU = temps_CPU

5. On considère les trois processus suivants :

P1 = Processus(PID=1,priorite=0,temps_CPU=10)

P2 = Processus(PID=2,priorite=0,temps_CPU=7)

P3 = Processus(PID=3,priorite=0,temps_CPU=5)

25-NSIJ2JA1 p. agr. 13 sur 26 7.2 – 8.1 / 14

On a donc liste_files=[[P3, P2, P1], [], []].

Compléter la simulation suivante, dans laquelle la variable CPU contient le

processus en cours d’exécution :

 Cycle 1: CPU=P1 liste_files=[[P3, P2], [], []]

 Cycle 2: CPU=P2 liste_files=[[P3],[P1],[]]

 Cycle 3: CPU=P3 liste_files=[[], [...],[]]

 Cycle 4: CPU=P3 liste_files=[[], [...], [...]]

 Cycle 5: CPU=... liste_files=[[], [...], [...]]

Dans les questions 6 et 7, on dispose :

• d’un processus qui nécessite un temps d’utilisation de 1000 pour

terminer ;

• d’un nombre important de processus dont le temps d’utilisation pour

terminer est de 4 où l’on suppose de plus que chaque processus terminé

est remplacé par un nouveau processus similaire.

6. Expliquer pourquoi le processus qui nécessite un long temps

d’utilisation du CPU risque de ne jamais terminer avec le programme de

gestion de l’ordre des processus ci-dessus (indiquer notamment la

priorité du processus long au bout de quelques temps).

25-NSIJ2JA1 p. agr. 14 sur 26 8.2 / 14

Pour régler ce phénomène, on décide d’ajouter la variable d’instance

temps_d_attente au processus, et on définit une constante appelée

Max_Temps qui correspond au temps maximum qu’un processus attend

avant de remonter sa priorité. L’idée est qu’à chaque cycle, le

temps_d_attente augmente. Ainsi, si sa valeur dépasse Max_Temps,

alors sa priorité augmente.

7. Expliquer pourquoi le processus qui nécessite un temps long

d’utilisation du CPU ne risque plus de ne jamais terminer avec ce

nouveau programme de gestion de l’ordre des processus.

8. Écrire une fonction meilleur_priorite qui renvoie None s’il n’y a

plus de processus et la priorité de l’un des processus les plus prioritaires

de la liste des files d’attente dans le cas contraire.

1 def meilleur_priorite(liste_files):

2 ...

Exemple :
p1, p2 et p3 sont des instances de la classe

'Processus'

>>> liste_files = [[], [p2], [p3, p1]]

>>> meilleur_priorite(liste_files)

1

25-NSIJ2JA1 p. agr. 15 sur 26 8.3 / 14

9. Écrire une fonction prioritaire qui renvoie None si aucune des files

d’attente de la liste ne contient un processus et qui renvoie l’un des

processus parmi les plus prioritaires sinon (dans ce cas la fonction

prioritaire supprimera le processus choisi de la file d’attente dans

laquelle il se trouvait).

1 def prioritaire(liste_files):

2 ...

On pourra utiliser liste.pop(i) pour renvoyer l’élément de la liste à la

position i, tout en le supprimant de la liste.

10. Écrire une fonction gerer qui récupère le processus en cours

d’exécution p ainsi que la liste des files d’attente liste_files et qui

implémente le programme donné en début d’énoncé pour gérer les

processus.

1 def gerer(p, liste_files):

2 ...

25-NSIJ2JA1 p. agr. 16 sur 26 9.1 / 14

EXERCICE 3 (8 points)

Cet exercice porte sur la programmation Python (dictionnaire,
récursivité, spécification), la programmation orientée objet, les
bases de données relationnelles, les requêtes SQL et les arbres
binaires.

Cet exercice est composé de 3 parties indépendantes.

Partie A

Dans cette partie, on s’intéresse à la gestion de la base de données d’un

hôpital. On pourra utiliser les mots-clés SQL suivants : AND, FROM,

INSERT, INTO, JOIN, ON, SELECT, SET, UPDATE, VALUES,

WHERE. On utilisera également la fonction d’agrégation COUNT qui renvoie

le nombre d’enregistrements correspondant à une requête.

La table Patient possède les attributs suivants :

• nom_patient de type TEXT (clé primaire) ;

• prenom de type TEXT ;

• numero_secu de type INT ;

• age de type INT.

25-NSIJ2JA1 p. agr. 17 sur 26 9.2 – 10.1 / 14

Patient

nom_patient prenom numero_secu age

Heartman Alice 207053523800187 17

Douglas Bob 100017500155572 24

Woods Caroll 258125930610747 65

La table Symptome possède les attributs suivants :

• nom_patient de type TEXT (clé primaire et clé étrangère) ;

• toux de type TEXT ;

• fievre de type TEXT ;

• nausee de type TEXT ;

• anosmie de type TEXT.

Symptome

nom_patient toux fievre nausee anosmie

Heartman Oui Non Non Oui

Douglas Non Oui Oui Non

Woods Oui Oui Non Non

La table Maladie possède, entre autres, l’attribut nom_maladie de type

TEXT, qui est la clé primaire. Les autres attributs de cette table ne sont

pas représentés car ils ne sont pas utiles pour l’exercice.

25-NSIJ2JA1 p. agr. 18 sur 26 10.2 / 14

Maladie

nom_maladie

Covid-19

Gastroentérite

La table Diagnostic possède les attributs suivants :

• nom_patient de type TEXT (clé primaire et clé étrangère) ;

• nom_maladie de type TEXT (clé étrangère).

Diagnostic

nom_patient nom_maladie

…………... …….…….. …….…….. ……….….. ……….….. …………...

1. Écrire une requête SQL permettant d’obtenir les noms et prénoms des

patients ayant strictement plus de 60 ans.

2. Alice Heartman ne tousse plus. Écrire une requête SQL permettant de

mettre à jour la base de données avec cette information.

3. On souhaite effectuer des statistiques sur les symptômes des patients

atteints de Covid-19. Écrire une requête SQL permettant de connaître le

nombre de patients avec un diagnostic de Covid-19 qui toussent.

25-NSIJ2JA1 p. agr. 19 sur 26 10.3 / 14

Un employé de l’hôpital saisit la requête suivante :

INSERT INTO Patients VALUES ('Douglas', 'Patrick',

168077230253829, 55)

4. Expliquer pourquoi cette requête produit une erreur.

5. Proposer une modification du schéma relationnel qui permettrait de

résoudre ce problème.

25
-N

SI
J2

JA
1

p.
 a

gr
. 2

0
su

r 2
6

11
.1

 /
14

 Pa

rt
ie

 B

 O
n

s’
in

té
re

ss
e

m
ai

nt
en

an
t à

 l’
au

to
m

at
is

at
io

n
du

 d
ia

gn
os

tic
 à

 p
ar

tir
 d

es
 s

ym
pt

ôm
es

. C
et

te
 a

ut
om

at
is

at
io

n
se

fa
it

à
l’a

id
e

d’
un

 a
rb

re
 d

e
dé

ci
si

on
 b

in
ai

re
, t

el
 q

ue
 c

el
ui

 il
lu

st
ré

 s
ur

 la
 fi

gu
re

 1
.

 Fi
gu

re
 1

. E
xe

m
pl

e
d’

ar
br

e
de

 d
éc

is
io

n
bi

na
ire

to
ux

N

on

N
on

O
ui

O
ui

O
ui

N

on

N
on

O

ui

O
ui

N
on

N
on

O
ui

O
ui

N

on

O

O

O

N

N

N

O

N

N

O

N

O

N

O

N

O

fie
vr

e
fie

vr
e

na
us

ee

na
us

ee

na
us

ee

na
us

ee

an
os

m
ie

an

os
m

ie

an
os

m
ie

an

os
m

ie

an
os

m
ie

an

os
m

ie

an
os

m
ie

an

os
m

ie

-
+

-
-

+
+

-
-

+
+

-
+

+
+

+
+

25
-N

SI
J2

JA
1

p.
ag

r.
21

 s
ur

 2
6

11
.2

 /
14

C
ha

qu
e

nœ
ud

 in
te

rn
e

de
 l’

ar
br

e
es

t é
tiq

ue
té

 p
ar

 u
n

sy
m

pt
ôm

e,
 e

t c
ha

qu
e

fe
ui

lle
 e

st
 é

tiq
ue

té
e

pa
r u

n

di
ag

no
st

ic
. P

ou
r é

ta
bl

ir
un

 d
ia

gn
os

tic
, o

n
se

 p
la

ce
 à

 la
 ra

ci
ne

 e
t o

n
pa

rc
ou

rt
l’a

rb
re

 d
e

la
 m

an
iè

re
 s

ui
va

nt
e

:

•s
i o

n
ar

riv
e

à
un

e
fe

ui
lle

, l
e

di
ag

no
st

ic
 e

st
 l’

ét
iq

ue
tte

 d
e

ce
tte

 fe
ui

lle
 ;

•s
in

on
, o

n
re

ga
rd

e
si

 l’
ét

iq
ue

tte
 d

u
nœ

ud
 e

st
 u

n
de

s
sy

m
pt

ôm
es

 d
u

pa
tie

nt
. S

i o
ui

, o
n

co
nt

in
ue

 le
 p

ar
co

ur
s

da
ns

 le
 s

ou
s-

ar
br

e
dr

oi
t,

si
no

n,
 o

n
co

nt
in

ue
 le

 p
ar

co
ur

s
da

ns
 le

 s
ou

s-
ar

br
e

ga
uc

he
.

L’
ar

br
e

de
 la

 fi
gu

re
 1

 d
on

ne
 u

n
di

ag
no

st
ic

 p
ou

r l
a

C
ov

id
-1

9.
 P

ar
 e

xe
m

pl
e,

 u
n

pa
tie

nt
 q

ui
 n

e
to

us
se

 p
as

 e
t n

’a

pa
s

d’
an

os
m

ie
, m

ai
s

a
de

 la
 fi

èv
re

 e
t d

es
 n

au
sé

es
 e

st
 d

ia
gn

os
tiq

ué
 n

ég
at

if
si

 o
n

su
it

ce
t a

rb
re

 d
e

dé
ci

si
on

.

6.
 D

on
ne

r l
e

di
ag

no
st

ic
 p

ou
r u

n
pa

tie
nt

 q
ui

 to
us

se
 e

t q
ui

 a
 d

e
la

 fi
èv

re
, m

ai
s

n’
a

pa
s

de
 n

au
sé

e
ni

 d
’a

no
sm

ie
,

d’
ap

rè
s

l’a
rb

re
 d

e
la

 fi
gu

re
 1

.

O
n

dé
ci

de
 d

’im
pl

ém
en

te
r l

es
 a

rb
re

s
bi

na
ire

s
à

l’a
id

e
de

 la
 c

la
ss

e
N
o
e
u
d

 p
ag

e
ag

ra
nd

ie
 s

ui
va

nt
e.

25
-N

SI
J2

JA
1

p.
ag

r.
22

 s
ur

 2
6

11
.3

 –
 1

2.
1

/ 1
4

1

c
l
a
s
s

N
o
e
u
d
:

2

d
e
f

_
_
i
n
i
t
_
_
(
s
e
l
f
,

v
a
l
e
u
r
,

g
a
u
c
h
e

=

N
o
n
e
,

d
r
o
i
t

=

N
o
n
e
)
:

3
"
"
"
v
a
l
e
u
r

c
o
r
r
e
s
p
o
n
d

a
u

s
y
m
p
t
o
m
e

s
i

l
e

n
o
e
u
d

e
s
t

4
i
n
t
e
r
n
e

o
u

a
u

d
i
a
g
n
o
s
t
i
c

s
i

l
e

n
o
e
u
d

e
s
t

u
n
e

f
e
u
i
l
l
e
"
"
"

5
s
e
l
f
.
v
a
l
e
u
r

=

v
a
l
e
u
r

6
s
e
l
f
.
g
a
u
c
h
e

=

g
a
u
c
h
e

7
s
e
l
f
.
d
r
o
i
t

=

d
r
o
i
t

8

9
d
e
f

e
s
t
_
f
e
u
i
l
l
e
(
s
e
l
f
)
:

1
0

"
"
"
r
e
n
v
o
i
e

v
r
a
i

s
i

l
e

n
o
e
u
d

e
s
t

u
n
e

f
e
u
i
l
l
e

f
a
u
x

s
i
n
o
n
"
"
"

1
1

r
e
t
u
r
n

s
e
l
f
.
g
a
u
c
h
e

=
=

N
o
n
e

a
n
d

s
e
l
f
.
d
r
o
i
t

=
=

N
o
n
e

1
2

1
3

d
e
f

s
y
m
p
t
o
m
e
(
s
e
l
f
)
:

1
4

a
s
s
e
r
t

n
o
t

s
e
l
f
.
e
s
t
_
f
e
u
i
l
l
e
(
)

1
5

r
e
t
u
r
n

s
e
l
f
.
v
a
l
e
u
r

1
6

1
7

d
e
f

d
i
a
g
n
o
s
t
i
c
(
s
e
l
f
)
:

1
8

a
s
s
e
r
t

s
e
l
f
.
e
s
t
_
f
e
u
i
l
l
e
(
)

1
9

r
e
t
u
r
n

s
e
l
f
.
v
a
l
e
u
r

25-NSIJ2JA1 p. agr. 23 sur 26 12.2 / 14

7. Préciser la signification de l’assertion de la méthode symptome.

8. Nommer un attribut et une méthode de la classe Noeud.

On représente les symptômes d’un patient en Python par un dictionnaire

dont les clés sont les symptômes possibles, et les valeurs sont True si le

patient présente ce symptôme et False sinon.

Par exemple, les symptômes du patient de la question 7 sont représentés

par le dictionnaire suivant :

patient = {'toux' : True, 'fievre' : True,

'nausee' : False, 'anosmie' : False}

9. Compléter la fonction applique suivante, définie récursivement, qui

renvoie le diagnostic établi en utilisant un arbre de décision binaire

implémenté à l’aide de la classe Noeud précédente.

def applique(arbre, patient):

 if arbre.est_feuille():

...

 else:

if patient[arbre.symptome()]:

...

else:

...

25-NSIJ2JA1 p. agr. 24 sur 26 12.3 – 13.1 / 14

10. Donner la taille de l’arbre représenté en figure 1. On considère que la

taille d’un arbre constitué d’une unique feuille est 1.

On souhaite réduire la taille de cet arbre en utilisant l’observation

suivante : un nœud dont les deux sous-arbres sont des feuilles

correspondant au même diagnostic peut être remplacé par une feuille

correspondant à ce diagnostic, comme illustré en figure 2.

Figure 2. Règle de réduction pour les arbres de décision binaire

11. Appliquer cette règle à l’arbre de la figure 1 pour le réduire et dessiner

le nouvel arbre.

12. Compléter la méthode reduire qui permet d’appliquer cette règle

récursivement pour réduire la taille d’un arbre de décision binaire.

N O

+ +
+

25-NSIJ2JA1 p. agr. 25 sur 26 13.2 / 14

1 def reduire(self):

2 """fonction récursive qui réduit la taille d'un

 arbre de

3 décision sans changer les décisions prises"""

4 if self.est_feuille():

5 return

6 self.gauche.reduire()

7 self. ...

8 if self.gauche.est_feuille() and ... \

9 and ... == ... :

10 self.valeur = ...

11 self.gauche = ...

12 self.droite = ...

Partie C

Dans cette partie, on s’intéresse à l’intégrité et à la sécurité des données.

Sur les 15 chiffres du numéro de sécurité sociale, 2 servent à détecter les

erreurs : étant donné le nombre n formé des 13 premiers chiffres, le

nombre k formé des 2 derniers chiffres, appelé la clé, est choisi pour que

n+k soit un multiple de 97.

Par exemple, 207053523800187 est bien formé car :

2070535238001 + 87 = 97 x 21345724104.

25-NSIJ2JA1 p. agr. 26 sur 26 13.3 – 14 / 14

On rappelle que les opérateurs % et // permettent en Python d’obtenir

respectivement le reste et le quotient dans une division euclidienne. Par

exemple : 13 % 3 renvoie 1 et 13//3 renvoie 4 (car 13 = 3 × 4 + 1). On

peut donc vérifier qu’un nombre entier 𝑛 est un multiple de 𝑝 en testant si

le reste de la division de 𝑛 par 𝑝 vaut zéro.

13. Recopier et compléter la fonction verifie suivante qui renvoie un

booléen indiquant si un numéro de sécurité sociale représenté par un

entier (type int) est bien formé.

1 def verifie(num_secu):

2 n = num_secu // 100

3 k = num_secu % 100

4 return ...

14. Compléter la fonction cle qui permet de renvoyer la clé k d’un

numéro de sécurité sociale en prenant pour paramètre le nombre n formé

des 13 premiers chiffres du numéro de sécurité sociale.

1 def cle(n):

2 ...

