25-NSIJ2JA1 / Arial 16

BACCALAUREAT GENERAL
EPREUVE D’ENSEIGNEMENT DE SPECIALITE
SESSION 2025
NUMERIQUE ET SCIENCES INFORMATIQUES
JOUR 2

Durée de I'épreuve : 3 heures 30
L’usage de la calculatrice n’est pas autorisé.
Dés que ce sujet vous est remis, assurez-vous qu'’il est complet.
Ce sujet comporte 14 pages numérotées de 1/14 a 14/14 dans la version
originale et 26 pages numérotées de 1/26 a 26/26 dans la version en

caracteres agrandis.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSIJ2JA1 p. agr. 1 sur 26 1/14



vL/l¢ 9z Ins g "ibe d LVIZFrISN-GC

T

Inol - JT9s uanjsx 0T

: (FT9s)anol 396 gep 6

8

L

[T€ ‘0€ ‘T€ ‘0€ ‘TE ‘TE ‘0€ ‘TI€ ‘0€ ‘TI€ ‘8z ’‘1g] = stow xed sanol qu-JTss 9
"+ = gouue-JITos g

= STOow" JT=SS 1%

= Inol-3J1°s 3

: (9oUuUR ‘sTow ‘anol ‘JTes) JTUT  FOpP Z
:93eQ sselo T

: SNOSSBP-I0 11109 1SS BP0 | JUOP 23 9SSE[O B| 9910 B UO ‘S8)ep Sap JNS Jg||leAed] Jnod

‘anbiwyjiobje,| 39 jalgo agjualio uonjewwelboud e| ans ajod 9219219%d 399

(syurtod 9) | 3210¥3X3




vh/cc

9z Jns ¢ "ube -d

LVIZFrISN-GC

: (JTOS)STTIXSSSTq 23So

S2UUE = 29UUR’ JTSS

: (99UUR ‘JTOS)o2UUER 198

©** = STOW' JToS

:(STOW ‘JToS)STOW 219S

anol = anol-JTss

: (xnol ‘zTos)anol 23ss

uInjex

: (JToS)oouue 2196

STOW' JT9S UIN3ISX

: (JT9s)sTow 3=9b

3op

3opP

3opP

3°P

3°P

F9P

8¢
Lc
9c¢
Gc
v
€<
¢c
N4
0c
61
8T
LT
9T
ST
i7"
€T
¢t



Partie A : Accés et modification des données

Le constructeur de la classe Date prend en parametres trois entiers
représentant le jour, le mois et 'année, puis les affecte respectivement

aux attributs jour, mois et annee.

1. Recopier et compléter les lignes 3 a 5 du code précédent.

2. Indiquer a quelle date correspond I'instance de la classe Date

suivante :

d = Date(1l, 5, 2000)

3. Ecrire le code permettant de créer une instance d de la classe Date

qui représente la date du 19 juin 2024.

4. La methode get annee renvoie la valeur de 'attribut annee.

Recopier et compléter les lignes 15 et 16 du code précédent.

5. La méthode set mois modifie I'attribut mois en lui affectant la valeur

passeée en argument.

Recopier et compléter les lignes 21 et 22 du code précédent.

’attribut nb jours par mois contient une liste qui correspond au
nombre de jours pour chaque mois. Le mois de février contient

geénéralement 28 jours mais lors des années bissextiles il en contient 29.

25-NSIJ2JA1 p. agr. 4 sur 26 23-31/14



6. La classe Date dispose d'une méthode est bissextile, qui utilise
uniquement l'attribut annee, et qui renvoie True si 'année de l'instance

courante est bissextile et False sinon. On veut compléter la méthode
__init  pour ajuster le nombre de jours par mois pour

les années bissextiles.

Recopier et compléter les lignes 7 et 8 suivantes :

6 self.nb jours par mois = [31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31]

7 if

8 self.nb jours par mois[...] = 29

Partie B : sur I’'année de l’instance courante

Pour déterminer le nombre de jours au cours d’'une année, il faut savoir si

elle est bissextile.

Une année est bissextile si elle est divisible par 4 mais pas par 100 ou si

elle est divisible par 400.

7. Ecrire le code de la méthode est_bissextile.

On rappelle gu’un entier a est divisible par I'entiernsia $ n == 0.

25-NSIJ2JA1 p. agr. 5 sur 26 3.2/14



On dote la classe Date de la méthode nb jours passes qui renvoie le

nombre de jours passés dans I'année de l'instance courante.

def nb jours passes(self)
nb jours = self.jour
mois = self.mois - 2
while mois >= 0
nb jours = nb jours + self.nb jours par mois[mois]
mois = moils - 1

return nb jours

8. Indiquer quel sera I'affichage en console apres I'exécution des deux

instructions suivantes :

>>> dl = Date (20, 3, 2001)

>>> dl.nb jours passes()

On dote la classe Date de la méthode nb jours restants quirenvoie
le nombre de jours restants dans I'année de lI'instance courante, soit
366 ou 365 moins le nombre de jours déja passés, selon que I'année est

bissextile ou non.

9. Recopier et compléter le script de la méthode nb jours restants

en page agrandie suivante.

25-NSIJ2JA1 p. agr. 6 sur 26 3.3-41/14



def nb jours restants(self):

j = 365
if

j = 366
return j -

Partie C : entre deux dates

On dote la classe Date de la méthode nb jours depuis qui prend en
parametre une autre instance other de la classe Date et qui renvoie le
nombre de jours écoulés entre la date de l'instance other et la date de

I'instance courante.

25-NSIJ2JA1 p. agr. 7 sur 26 4.2 /14



vL/EY 9z Ins g "ibe ‘d LVIZFrISN-GC

sanol qu uanjax
g9¢ =+ sanol qu
:98T®
99¢ =+ sanol qu
: ()9TTAXSSSTg 1So jUeAINsS P IT
(eouue ‘T ‘T)93eP = JURATINS P

: (()osuue 39b-JT9s ‘T+()osuue 39b6°I9Y]l0)sburl UT saUUe IO0F

()saueasax sanol qu-aisyio + ()sossed sanol qu-yiss = sanol qu
0 uanjiasx
()sessed sanol qu-jTes == ()sossed sanol qu-isylo IT

T- uanjax
()sossed sanol qu-ITos < ()sossed sanol qu-aisylo IT
: ()oouue 39b°JT9s == ()osuur 39b6°I8Y10 IT
T- uanjax
: ()oouue 39b°JT79s < ()osuue 326°I9Yl0 IT

: (z9ya0o ‘JT1os)sindep sanol qu 3Fop



On crée les instances de la classe Date suivantes :

>>> dl = Date (15, 6, 2024)
>>> d2 = Date (15, 6, 2024)
>>> d3 = Date (15, 7, 2024)
>>> d4 = Date (15, 6, 2025)
>>> d5 = Date (15, 6, 2022)

10. Indiquer quels seront alors les affichages en console aprés
I'exécution de chacune des instructions suivantes (on précise que I'année
2024 est bissextile) :

>>> dl.nb jours depuis

(

>>> dl.nb jours depuis (d
>>> dl.nb jours depuis(
(

>>> dl.nb jours depuis

Le timestamp est le nombre de secondes qui se sont écoulées depuis

le 1er janvier 1970 a 00h00. Il s’agit de la date de la mise en marche du
systeme d’exploitation UNIX.

Par exemple, 1e 01/01/2024 & 00:00:00 correspond au
timestamp de 1704063600.

11. Recopier et compléter le code de la méthode timestamp qui renvoie

le nombre de secondes qui se sont écoulées depuis le 1er janvier 1970.

1 def timestamp(self) :
2 d =
3 return self.nb jours depuis(d) * 24 * 3600

25-NSIJ2JA1 p. agr. 9 sur 26 4.4-5/14



EXERCICE 2 (6 points)

Cet exercice porte sur la programmation Python, la gestion des

processus.

On souhaite élaborer un programme systéme permettant de gérer 'ordre

d’exécution des processus sur le processeur.

1. Donner le nom de ce type de programme.

2. Donner les différents états possibles d’un processus.

Chaque processus dispose d’'une valeur de priorité. Un processus est
prioritaire sur un autre processus si sa valeur de priorité est plus petite.
Ainsi pour rendre un processus moins prioritaire, il faut augmenter sa

valeur de priorité, par exemple en la faisant passer de 2 a 3.

Fonctionnement du programme gérant I'ordre d’exécution des

processus :
On dispose d'une liste dont les éléments sont des files de processus.

La premiére file contient les processus ayant la valeur de priorité la plus

élevée 0, la seconde ceux ayant la valeur de priorité 1, etc.

25-NSIJ2JA1 p. agr. 10 sur 26 6.1/14



A l'arrivée d'un nouveau processus :
« Attribuer au nouveau processus la valeur de priorité la plus élevée 0 ;
* Placer le nouveau processus dans la file d'attente correspondant a sa

valeur de priorité (c’est-a-dire la premiére file de la liste).

A chaque cycle d'horloge :

« S'il n'y a pas de processus en cours d'exécution et s'il reste des
processus en attente :

% Sélectionner un processus avec la priorité la plus élevée dans l'une
des files d'attente non vides ;

* Elire ce processus comme nouveau processus en cours d'exécution ;

 Sinon si un processus est en cours d'exécution :

* Si le processus a terminé son exécution, le retirer du processeur ;

>% Sinon,

+ incrémenter le temps d'utilisation du processus ;

+ Si des processus de priorité supérieure ou égale attendent :

- Retirer le processus en cours d'exécution du processeur ;

- Réduire sa priorité de 1 et le mettre dans la file d'attente correspondant
a sa priorité ;

- Elire un processus dont la priorité est la plus élevée parmi les processus
des files d'attente non vides;

+ Sinon, réduire sa priorité de 1 et continuer a exécuter le processus en

cours d'exécution.

25-NSIJ2JA1 p.agr. 11 sur 26 6.2/14



3. Parmi les propositions suivantes, donner la structure la plus adaptée
pour stocker les processus d’'une méme priorité :

— Proposition 1 : Liste

— Proposition 2 : File

— Proposition 3 : Pile

Pour représenter le processus, on utilise une classe Processus qui
posséde les variables d’instances PID (l'identifiant du processus),
priorite (la priorité du processus), temps utilisation surle CPU

et le temps nécessaire a son exécution temps_CPU.

4. Compléter le constructeur de la classe Processus :
class Processus:
. (self, ..., priorite, temps CPU) :

priorite = priorite

1
4
5
7 ... PID =
8 self.temps utilisation = 0
9

self.temps CPU = temps CPU

5. On considere les trois processus suivants :

Pl = Processus (PID=1,priorite=0,temps CPU=10)
P2 = Processus (PID=2,priorite=0, temps CPU=7)
P3 = Processus (PID=3,priorite=0, temps CPU=5)

25-NSIJ2JA1 p. agr. 12 sur 26 71714



Onadonc liste files=[[P3, P2, P1], [], I[1].

Compléter la simulation suivante, dans laquelle la variable CPU contient le

processus en cours d’exécution :

Cycle 1: CPU=P1 1liste files=[[P3, P2], [], []]

Cycle 2: CPU=P2 1liste files=[[P3], [P1], []]

Cycle 3: CPU=P3 1liste files=[[], [...],[]]

Cycle 4: CPU=P3 1liste files=([[], [...], [...]]

Cycle 5: CPU=... liste files=[[], [...]1, [...]]

Dans les questions 6 et 7, on dispose :

» d’'un processus qui nécessite un temps d’utilisation de 1000 pour
terminer ;

» d’'un nombre important de processus dont le temps d’utilisation pour
terminer est de 4 ou I'on suppose de plus que chaque processus terminé

est remplacé par un nouveau processus similaire.

6. Expliquer pourquoi le processus qui nécessite un long temps
d’utilisation du CPU risque de ne jamais terminer avec le programme de
gestion de I'ordre des processus ci-dessus (indiquer notamment la

priorité du processus long au bout de quelques temps).

25-NSIJ2JA1 p. agr. 13 sur 26 7.2—-81/14



Pour régler ce phénoméne, on décide d’ajouter la variable d’instance
temps d attente au processus, et on définit une constante appelée
Max Temps qui correspond au temps maximum qu’un processus attend
avant de remonter sa priorité. L’'idée est qu’'a chaque cycle, le
temps d attente augmente. Ainsi, si sa valeur dépasse Max_ Temps,

alors sa priorité augmente.

7. Expliquer pourquoi le processus qui nécessite un temps long
d’utilisation du CPU ne risque plus de ne jamais terminer avec ce

nouveau programme de gestion de l'ordre des processus.

8. Ecrire une fonction meilleur priorite quirenvoie None S’iln’'y a
plus de processus et la priorité de I'un des processus les plus prioritaires

de la liste des files d’attente dans le cas contraire.

1 def meilleur priorite(liste files):

2

Exemple :

# pl, p2 et p3 sont des instances de la classe
'"Processus'

>>> liste files = [[], [p2], [p3, pll]

>>> mellleur priorite(liste files)

1

25-NSIJ2JA1 p. agr. 14 sur 26 8.2/14



9. Ecrire une fonction prioritaire qui renvoie None si aucune des files
d’attente de la liste ne contient un processus et qui renvoie 'un des
processus parmi les plus prioritaires sinon (dans ce cas la fonction
prioritaire supprimera le processus choisi de la file d’attente dans

laquelle il se trouvait).

1 def prioritaire(liste files):

2

On pourra utiliser 1iste.pop (i) pour renvoyer I'élément de la liste a la

position i, tout en le supprimant de la liste.

10. Ecrire une fonction gerer qui récupére le processus en cours
d’exécution p ainsi que la liste des files d'attente 1iste files et qui
implémente le programme donné en début d’énoncé pour gérer les

processus.

1 def gerer(p, liste files):
2

25-NSIJ2JA1 p. agr. 15 sur 26 8.3/14



EXERCICE 3 (8 points)

Cet exercice porte sur la programmation Python (dictionnaire,
récursivité, spécification), la programmation orientée objet, les
bases de données relationnelles, les requétes SQL et les arbres

binaires.

Cet exercice est composé de 3 parties indépendantes.

Partie A

Dans cette partie, on s’intéresse a la gestion de la base de données d’un
hopital. On pourra utiliser les mots-clés SQL suivants : AND, FROM,

INSERT, INTO, JOIN, ON, SELECT, SET, UPDATE, VALUES,
WHERE. On utilisera également la fonction d’agrégation COUNT qui renvoie

le nombre d’enregistrements correspondant a une requéte.

La table Patient posseéde les attributs suivants :

*nom_patient de type TEXT (clé primaire) ;
* prenom de type TEXT ;
* numero_ secu de type INT ;

» age de type INT.

25-NSIJ2JA1 p. agr. 16 sur 26 9.1/14



Patient

nom_pat ient prenom numero secu age
Heartman Alice 207053523800187 |17
Douglas Bob 100017500155572 | 24
Woods Caroll 258125930610747 |65

La table Symptome posséde les attributs suivants :

* nom_patient de type TEXT (clé primaire et clé étrangére) ;
* toux de type TEXT ;

« fievre de type TEXT ;

* nausee de type TEXT ;

* anosmie de type TEXT.

Symptome

nom patient |toux |fievre |nausee |anosmie

Heartman Oui Non Non Oui
Douglas Non Oui Oui Non
Woods Oui Oui Non Non

La table Maladie posséde, entre autres, I'attribut nom maladie de type
TEXT, qui est la clé primaire. Les autres attributs de cette table ne sont

pas représentés car ils ne sont pas utiles pour I'exercice.

25-NSIJ2JA1 p.agr. 17 sur 26 92-10.1/14



Maladie

nom maladie

Covid-19

Gastroentérite

La table Diagnostic possede les attributs suivants :

* nom patient de type TEXT (clé primaire et clé étrangére) ;

*nom maladie de type TEXT (clé étrangére).

Diagnostic

nom patient nom maladie

1. Ecrire une requéte SQL permettant d’obtenir les noms et prénoms des

patients ayant strictement plus de 60 ans.

2. Alice Heartman ne tousse plus. Ecrire une requéte SQL permettant de

mettre a jour la base de données avec cette information.

3. On souhaite effectuer des statistiques sur les symptémes des patients
atteints de Covid-19. Ecrire une requéte SQL permettant de connaitre le

nombre de patients avec un diagnostic de Covid-19 qui toussent.

25-NSIJ2JA1 p. agr. 18 sur 26 10.2/14



Un employé de I'hopital saisit la requéte suivante :

INSERT INTO Patients VALUES ('Douglas', 'Patrick',
168077230253829, 55)

4. Expliquer pourquoi cette requéte produit une erreur.

5. Proposer une modification du schéma relationnel qui permettrait de

résoudre ce probleéme.

25-NSIJ2JA1 p. agr. 19 sur 26 10.3/14



vL/1LL 9¢ Ins oz "ibe d LVIZFrISN-GC

R R R R R R L R

alusoue oluusoue alusoue alusoue olusoue alusoue olusoue olusoue
IO UON _sy Roz IO UON IO UON
o9Sheu o9sheu o9sneu o9sheu
INO UON life) UON
2IAI) 2N}
lile) UON
XNO0)

alleulq uolsIoap ap aigJle p ajdwax3 *| ainbi4

'] @4nBiy e] Ins a4sn||I IN[82 anb |a] ‘elieulq UOISID9P ap aigle unp apie| e Jiej

8s uoljesnewolne anay) ‘sawldwAs sap Jied e onsoubeip Np uonesieWOolNe, | B JUBUSUIBW 8SS8J2JUIS UQ

g aijed



vi/cll 9¢ Ins |z 1be d LVIZrISN-GC

‘9)UBAINS alpuelbe abed pnsoN asse|o e| ap aple,| & salleulq saigle sa| Jajuawg|dwip aplosp uQ

"I @inbiy e| ap aiqgle | saidep

‘allusoue,p IU @9sneu ap sed e.u siew ‘aiAdl) e| ap e Inb 18 assno) Inb juaned un unod onsoubelp 9| Jauuo( "9

"UOISIO9P Bp aigJe 182 JINS Uo IS Jiebau anbisoubelp 1s8 segsneu Sap 18 8JA3I1 B 8p e siew ‘slwsoue p sed

B U }o sed assno] au Inb juaned un ‘ejdwaxa Jed ‘6| -pIA0) .| Jnod onpsoubelp un suuop | ainbly e| ap aigie ]

‘ayoneb a1qJe-snos 8| suep sinodJed 8 8NUIUOD UO ‘UoUIS ‘)I0Jp 81gJe-Snos 8| suep

sJnooJded 8] anunuUOo uo ‘N0 1S "Juaied np sawEldwAs sap un 1s8 pnaou np apenbilg | IS apJebal uo ‘Uouls «

‘ 9|18} 81199 ap ananbia | 18 onsoubelp 8| ‘a]|iNd) dUN B BAILIE UO IS «

: 8JUBAINS 8J9luewW B| ap aigJe,| JJnodted uo }8 auioel e| e aoe|d 8s uo ‘oipsoubelp un Jijgels Jnod -onsoubelp

un Jed a9)anbns 1s8 9jjIna) anbeyo 18 ‘awQidwAs un Jed g)anbis 1se aigle, | ap saulajul pnaou anbeyn



vL/1Lcl—¢€1ll

9z Jns gz "ibe -d

LVIZFrISN-GC

INSTeA " JT9S uInjlax

()OTTINSJ 1So°JToS 3aesse

: (FJT9s)oT3isoubeTp 3Fop

INSTeA " JT9S uinjlsx

()OTTINSJ 1S9 JToS 30U jI9sse

: (JT9s)swoj3dwiAs 3Fop

SUON == 2J3TOJP J[SS pUR SUON == a2yoneb-I[o2S uanisx

GunUOUTS XnNeJ S]TINSJ 9UN 1SS Pnaou 9] IS TRIA OTOAUSDI, ,

! (JT°S)STTINSF 3s° 3FOp

JTOJIP = 3TOJP’ JTOS

ayoneb = asyoneb- JISsS

anaTea

INaTeA" JToSS

WunTTINSJ SUN 1SS PnNoou ST IS OTI3ISOUbRIP Ne NO SUISIUT

1S9 pnaou ST TS swoldwiAs ne puodsSsaIIOd INSTEA, uu

: (SUON

3TOIp

'"9UON

ayoneb

‘ansTea

‘3JTes) 3tut 3P

:pnNoON Ssselo

61
8T
LT
9T
ST
i7"
€T
¢l
IT
0T

(0

— N m < n 0w >~ ©



7. Préciser la signification de I'assertion de la méthode symptome.

8. Nommer un attribut et une méthode de la classe Noeud.

On représente les symptédmes d’un patient en Python par un dictionnaire
dont les clés sont les symptdmes possibles, et les valeurs sont True si le
patient présente ce symptébme et False sinon.

Par exemple, les symptomes du patient de la question 7 sont représentés

par le dictionnaire suivant :

patient = {'toux' : True, 'fievre' : True,

'nausee' : False, 'anosmie' : False}

9. Compléter la fonction appligue suivante, définie récursivement, qui
renvoie le diagnostic établi en utilisant un arbre de décision binaire

implémenté a I'aide de la classe Noeud précédente.

def applique(arbre, patient):

if arbre.est feuille():

else:

if patient [arbre.symptome()]:

else:

25-NSIJ2JA1 p. agr. 23 sur 26 12.2 /14



10. Donner la taille de 'arbre représenté en figure 1. On considere que la

taille d’'un arbre constitué d’'une unique feuille est 1.

On souhaite réduire la taille de cet arbre en utilisant 'observation
suivante : un noceud dont les deux sous-arbres sont des feuilles
correspondant au méme diagnostic peut étre remplacé par une feuille

correspondant a ce diagnostic, comme illustré en figure 2.

Figure 2. Régle de réduction pour les arbres de décision binaire

/s 10

11. Appliquer cette regle a I'arbre de la figure 1 pour le réduire et dessiner

le nouvel arbre.

12. Compléter la méthode reduire qui permet d’appliquer cette régle

récursivement pour réduire la taille d’'un arbre de décision binaire.

25-NSIJ2JA1 p. agr. 24 sur 26 12.3-13.1/14



1 def reduire(self) :

2 ""rfonction récursive qui réduit la taille d'un
arbre de

3 décision sans changer les décisions prises"""

4 1f self.est feuille():

5 return

6 self .gauche.reduire()

7 self.

8 if self.gauche.est feuille() and ... \

9 and ... ==

10 self.valeur =

11 self .gauche =

12 self.droite =

Partie C

Dans cette partie, on s’intéresse a l'intégrité et a la sécurité des données.
Sur les 15 chiffres du numéro de sécurité sociale, 2 servent a détecter les
erreurs : étant donné le nombre n formé des 13 premiers chiffres, le
nombre k formé des 2 derniers chiffres, appelé la clé, est choisi pour que
n+k soit un multiple de 97.

Par exemple, 207053523800187 est bien formé car :

2070535238001 + 87 = 97 x 21345724104.

25-NSIJ2JA1 p. agr. 25 sur 26 13.2/14



On rappelle que les opérateurs % et // permettent en Python d’obtenir
respectivement le reste et le quotient dans une division euclidienne. Par
exemple: 13 % 3 renvoie 1 et 13//3 renvoie 4 (car 13 =3 x4+ 1). On
peut donc vérifier qu’'un nombre entier n est un multiple de p en testant si

le reste de la division de n par p vaut zéro.
13. Recopier et compléter la fonction verifie suivante qui renvoie un
booléen indiquant si un numéro de sécurité sociale représenté par un

entier (type int) est bien formée.

1 def verifie(num secu) :

2 n = num secu // 100
3 kK = num secu % 100
4 return

14. Compléter la fonction cle qui permet de renvoyer la clé k d’'un
numeéro de seécurité sociale en prenant pour paramétre le nombre n formé

des 13 premiers chiffres du numéro de sécurité sociale.

1 def cle(n):
2

25-NSIJ2JA1 p. agr. 26 sur 26 13.3-14 /14



