Le dossier ressource se compose de 15 pages, numérotées de DRESS 1/15 à DRESS 15/15. Dès qu'il vous est remis, assurez-vous qu'il est complet.

S'il est incomplet, demandez un autre exemplaire au chef de salle

CONCOURS GÉNÉRAL DES MÉTIERS TECHNICIEN EN RÉALISATION DE PRODUITS MÉCANIQUES TRPM

SESSION 2025

ÉBAVUREUSE EMB1 / TRAVERSE MOBILE

DOSSIER RESSOURCE

SOMMAIRE

Liaisons mécaniques	DRESS 2/15
Extraits de tolérances ISO pour arbre et alésage	DRESS 3/15
Décodage des nuances d'aluminium	DRESS 4/15
Extrait du code du travail sur le port de charge	DRESS 4/15
Consignes de sécurité de l'ébavureuse	DRESS 5/15
Formulaire de calcul	DRESS 5/15
Caractéristiques techniques de l'ébavureuse	DRESS 5/15
Extrait catalogue pompes	DRESS 6/15
Symbolisation des éléments technologiques	DRESS 6/15
Foret à plaquettes indexables CoroDrill 880	DRESS 7 à 8/15
Condition de coupe CoroDRill 880	DRESS 8 à 9/15
Outil d'alésage micrométrique CoroBore 825	DRESS 10/15
Vocabulaire utilisé dans l'application Coroplus Tool guide	DRESS 11/15
Code matières Sandwik	DRESS 11/15
Nuances d'aluminium pour la fonderie	DRESS 12/15
Nuances d'aluminium corroyé	DRESS 12/15
Descriptif technique centre d'usinage HAAS UMC500	DRESS 13/15
Données techniques fraise carbure monobloc CoroMill dura	DRESS 14/15
Extrait de documentation technique	DRESS 15/15

LIAISONS MÉCANIQUES

	SYMBOLES DES LIAISONS ÉLÉMENTAIRES								
Nom de la liaison		egrés libert		Représentation plane	Représentation en perspective	Exemple			
Pivot glissant (axe o,x)	T _x 0 0	R _x 0 0	2		1/	\vec{z}			
Rotule ou sphérique de centre o	0 0 0	R _x R _y R _z	3	12	1 2	\vec{z}			
Appui plan (normale o, z)	T _x T _y 0	0 0 R _z	3	<u></u>	2/	\vec{z}			
Linéaire rectiligne (axe o, x et normale 0, z)	T _x T _y 0	R _x 0 R _z	4	* 2 * 1	* 2	\vec{z}			
Linéaire annulaire (axe o,x)	T _x 0 0	R _x R _y R _z	4	* 1 2		\vec{z}			
Ponctuelle (direction o, z)	T _x T _y 0	R _x R _y R _z	5	2 * 1 1	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\vec{z}			

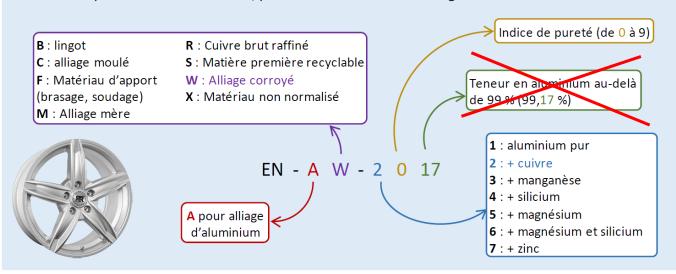
	SYMBOLES DES LIAISONS COMPOSÉES								
Nom de la liaison	Degrés de liberté Représentation planes		Représentation planes	Représentation en perspective	Exemple				
Encastrement ou liaison fixe	0 0 0	0 0 0	0	1 1 2 2 variante 1 variante 2	2	X O Y			
Pivot (axe o, x)	0 0 0	R _x 0 0	1	variante 1 /variante 2	1/2	Z OÌ Y			
Glissière (axe o, x)	T _x 0 0	0 0 0	1	1 *	* 1/2	× Oly			
Hélicoïdale (axe o, x)	T _x - 0	+ R _x 0 0	1	† filet à droite	2 ***	Z OI Y			
Rotule à doigt (doigt 0, z)	0 0 0	O R _y R _z	2	1 2	1 2	X.O. Y			

EXTRAITS DE TOLÉRANCES ISO POUR ARBRES (en microns : 1 µm = 0.001 mm)

				d	imensior	ns nomir	nales (en	mm) NF	EN ISO	286-2				
au-del		-	3	6	10	18	30	50	80	120	180	250	315	400
à inc	es	- 20	- 30	10 - 40	18 - 50	30 - 65	50 - 80	- 100	120 - 120	180 - 145	250 - 170	315 - 190	400 - 210	500 - 230
	ei	- 45	- 60	- 76	- 93	- 117	- 142	- 174	- 207	- 245	- 285	- 320	- 350	- 385
d10	es ei	- 20 - 60	- 30 - 78	- 40 - 98	- 50 - 120	- 65 - 149	- 80 - 180	- 100 - 220	- 120 - 260	- 145 - 305	- 170 - 355	- 190 - 400	- 210 - 440	- 230 - 480
d11	es	- 20	- 30	- 40	- 50	- 65	- 80	- 100	- 120	- 145	- 170	- 190	- 210	- 230
e7	ei es	- 80 - 14	- 105 - 20	- 130 - 25	- 160 - 32	- 195 - 40	- 240 - 50	- 290 - 60	- 340 - 72	- 395 - 85	- 460 - 100	- 510 - 110	- 570 - 125	- 630 - 135
e8	ei es	- 24 - 14	- 32 - 20	- 40 - 25	- 50 - 32	- 61 - 40	- 75 - 50	- 90 - 60	- 107 - 72	- 125 - 85	- 146 - 100	- 162 - 110	- 182 - 125	- 198 - 135
	ei	- 28	- 38	- 47	- 59	- 73	- 89	- 106	- 126	- 148	- 172	- 191	- 214	- 232
e9	es ei	- 14 - 39	- 20 - 50	- 25 - 61	- 32 - 75	- 40 - 92	- 50 - 112	- 60 - 134	- 72 - 159	- 85 - 185	- 100 - 215	- 110 - 240	- 125 - 265	- 135 - 290
f6	es ei	- 6 - 12	- 10 - 18	- 13 - 22	- 16 - 27	- 20 - 33	- 25 - 41	- 30 - 49	- 36 - 58	- 43 - 68	- 50 - 79	- 56 - 88	- 62 - 98	- 68 - 108
f7	es	- 6	- 10	- 13	- 16	- 20	- 25	- 30	- 36	- 43	- 50	- 56	- 62	- 68
f8	ei es	- 16 - 6	- 22 - 10	- 28 - 13	- 34 - 16	- 41 - 20	- 50 - 25	- 60 - 30	- 71 - 36	- 83 - 43	- 96 - 50	- 108 - 56	- 119 - 62	- 131 - 68
	ei	- 20	- 28	- 35	- 43	- 53	- 64	- 76	- 90	- 106	- 122	- 137	- 151	- 165
g5	es ei	- 2 - 6	- 4 - 9	- 5 - 11	- 6 - 14	- 7 - 16	- 9 - 20	- 10 - 23	- 12 - 27	- 14 - 32	- 15 - 35	- 17 - 40	- 18 - 43	- 20 - 47
g6	es ei	- 2 - 8	- 4 - 12	- 5 - 14	- 6 - 17	- 7 - 20	- 9 - 25	- 10 - 29	- 12 - 34	- 14 - 39	- 15 - 44	- 17 - 49	- 18 - 54	- 20 - 60
h5	es	0	0	0	0	0	0	0	0	0	0	0	0	0
h6	ei es	- 4 0	- 5 0	- 6 0	- 8 0	- 9 0	- 11 0	- 13 0	- 15 0	- 18 0	- 20 0	- 23 0	- 25 0	- 27 0
h7	ei	- 6 0	- 8 0	- 9 0	- 11 0	- 13 0	- 16	- 19 0	- 22	- 25 0	- 29 0	- 32 0	- 36	- 40
	es ei	- 10	- 12	- 15	- 18	- 21	0 - 25	- 30	0 - 35	- 40	- 46	- 52	0 - 57	0 - 63
h8	es ei	0 - 14	0 - 18	0 - 22	0 - 27	0 - 33	0 - 39	0 - 46	0 - 54	0 - 63	0 - 72	0 - 81	0 - 89	0 - 97
h9	es ei	0 - 25	0 - 30	0 - 36	0 - 43	0 - 52	0 - 62	0 - 74	0 - 87	0 - 100	0 - 115	0 - 130	0 - 140	0 - 155
h10	es ei	0 - 40	0 - 48	0 - 58	0 - 70	0 - 84	0 - 100	0 - 120	0 - 140	0 - 160	0 - 185	0 - 210	0 - 230	0 - 250
h11	es ei	0 - 60	0 - 75	0 - 90	0 - 110	0 - 130	0 - 160	0 - 190	0 - 220	0 - 250	0 - 290	0 - 320	0 - 360	0 - 400
h13	es ei	0 - 140	0 - 180	0 - 220	0 - 270	0 - 330	0 - 390	0 - 460	0 - 540	0 - 630	0 - 720	0 - 810	0 - 890	0 - 970
j6	es	+4	+ 6	+ 7	+ 8	+ 9	+ 11	+ 12	+ 13	+ 14	+ 16	+ 16	+ 18	+ 20
j7	ei es	- 2 + 6	- 2 + 8	- 2 + 10	- 3 + 12	- 4 + 13	- 5 + 15	- 7 + 18	- 9 + 20	- 11 + 22	- 13 + 25	- 16 + 26	- 18 + 29	- 20 + 31
	ei	- 4	- 4	- 5	- 6	- 8	- 10	- 12	- 15	- 18	- 21	- 26	- 28	- 32
js5		± 2	± 2,5	± 3	± 4	± 4,5	± 5,5	± 6,5	± 7,5	± 9	± 10	± 11,5	± 12,5	± 13,5
js6		±3	± 4	± 4,5	± 5,5	± 6,5	± 8	± 9,5	± 11	± 12,5	± 14,5	± 16	± 18	± 20
js7		±5	±6	± 7,5	± 9	± 10,5	± 12,5	± 15	± 17,5	± 20	± 23	± 26	± 28,5	± 31,5
js9		± 12,5	± 15	± 18	± 21,5	± 26	± 31	± 37	± 43,5	± 50	± 57,5	± 65	± 70	± 77,5
js11		± 30	± 37,5	± 45	± 55	± 65	± 80	± 95	± 110	± 125	± 145	± 160	± 180	± 200
js13 K5	es	± 70 + 4	± 90 + 6	± 110 + 7	± 135 + 9	± 165 + 11	± 195 + 13	± 230 + 15	± 270 + 18	± 315 + 21	± 360 + 24	± 405 + 27	± 445 + 29	± 485 + 32
	ei	0	+ 1	+ 1	+ 1	+ 2	+ 2	+ 2	+ 3	+ 3	+ 4	+ 4	+ 4	+ 5
K6	es ei	+6	+ 9 + 1	+ 10 + 1	+ 12 + 1	+ 15 + 2	+ 18 + 2	+ 21 + 2	+ 25 + 3	+ 28 + 3	+ 33 + 4	+ 36 + 4	+ 40 + 4	+ 45 + 5
m6	es ei	+ 8 + 2	+ 12 + 4	+ 15 + 6	+ 18 + 7	+ 21 + 8	+ 25 + 9	+ 30 + 11	+ 35 + 13	+ 40 + 15	+ 46 + 17	+ 52 + 20	+ 57 + 21	+ 63 + 23
m7	es ei	+ 12 + 2	+ 16 + 4	+ 21 + 6	+ 25 + 7	+ 29 + 8	+ 34 + 9	+ 41 + 11	+ 48 + 13	+ 55 + 15	+ 63 + 17	+ 72 + 20	+ 78 + 21	+ 86 + 23
n5	es	+ 8	+ 13	+ 16	+ 20	+ 24	+ 28	+ 33	+ 38	+ 45	+ 51	+ 57	+ 62	+ 67
n6	ei es	+ 4 + 10	+ 8 + 16	+ 10 + 19	+ 12 + 23	+ 15 + 28	+ 17 + 33	+ 20 + 39	+ 23 + 45	+ 27 + 52	+ 31 + 60	+ 34 + 66	+37 + 73	+ 40 + 80
p6	ei es	+ 4 + 12	+ 8 + 20	+ 10 + 24	+ 12 + 29	+ 15 + 35	+ 17 + 42	+ 20 + 51	+ 23 + 59	+ 27 + 68	+ 31 + 79	+ 34 + 88	+ 37 + 98	+ 40 + 108
	ei	+ 6	+ 12	+ 15	+ 18	+ 22	+ 26	+ 32	+ 37	+ 43	+ 50	+ 56	+ 62	+ 68

EXTRAITS DE TOLÉRANCES ISO POUR ALÉSAGES (en microns : 1 μm = 0.001 mm)

									`					
				d	imensior	ns nomin	ales (en	mm) NF	EN ISO	286-2				
au-de à inc		3	3 6	6 10	10 18	18 30	30 50	50 80	80 120	120 180	180 250	250 315	315 400	400 500
D10	ES	+ 60	+ 78	+ 98	+ 120	+ 149	+ 180	+ 220	+ 260	+ 305	+ 355	+ 400	+ 440	+ 480
	El	+ 20	+ 30	+ 40	+ 50	+ 65	+ 80	+ 100	+ 120	+ 145	+ 170	+ 190	+ 210	+ 230
E9	ES	+ 39	+ 50	+ 61	+ 75	+ 92	+ 112	+ 134	+ 159	+ 185	+ 215	+ 240	+ 265	+ 290
	El	+ 14	+ 20	+ 25	+ 32	+ 40	+ 50	+ 60	+ 72	+ 85	+ 100	+ 110	+ 125	+ 135
F8	ES	+ 20	+ 28	+ 35	+ 43	+ 53	+ 64	+ 76	+ 90	+ 106	+ 122	+ 137	+ 151	+ 165
	El	+ 6	+ 10	+ 13	+ 16	+ 20	+ 25	+ 30	+ 36	+ 43	+ 50	+ 56	+ 62	+ 68
G7	ES	+ 12	+ 16	+ 20	+ 24	+ 28	+ 34	+ 40	+ 47	+ 54	+ 61	+ 69	+ 75	+ 83
	El	+ 2	+ 4	+ 5	+ 6	+ 7	+ 9	+ 10	+ 12	+ 14	+ 15	+ 17	+ 18	+ 20
H6	ES	+ 6	+ 8	+ 9	+ 11	+ 13	+ 16	+ 19	+ 22	+ 25	+ 29	+ 32	+ 36	+ 40
	El	0	0	0	0	0	0	0	0	0	0	0	0	0
H7	ES	+ 10	+ 12	+ 15	+ 18	+ 21	+ 25	+ 30	+ 35	+ 40	+ 46	+ 52	+ 57	+ 63
	El	0	0	0	0	0	0	0	0	0	0	0	0	0
H8	ES El	+ 14 0	+ 18 0	+ 22 0	+ 27 0	+ 33	+ 39 0	+ 46 0	+ 54 0	+ 63 0	+ 72 0	+ 81 0	+ 89	+ 97 0
H9	ES	+ 25	+ 30	+ 36	+ 43	+ 52	+ 62	+ 74	+ 87	+ 100	+ 115	+ 130	+ 140	+ 155
	El	0	0	0	0	0	0	0	0	0	0	0	0	0
H10	ES	+ 40	+ 48	+ 58	+ 70	+ 84	+ 100	+ 120	+ 140	+ 160	+ 185	+ 210	+ 230	+ 250
	El	0	0	0	0	0	0	0	0	0	0	0	0	0
H11	ES	+ 60	+ 75	+ 90	+ 110	+ 130	+ 160	+ 190	+ 220	+ 250	+ 290	+ 320	+ 360	+400
	El	0	0	0	0	0	0	0	0	0	0	0	0	0
H12	ES	+ 100	+ 120	+ 150	+ 180	+ 210	+ 250	+ 300	+ 350	+ 400	+ 460	+ 520	+ 570	+ 630
	El	0	0	0	0	0	0	0	0	0	0	0	0	0
H13	ES	+ 140	+ 180	+ 220	+ 270	+ 330	+ 390	+ 460	+ 540	+ 630	+ 720	+ 810	+ 890	+ 970
	El	0	0	0	0	0	0	0	0	0	0	0	0	0
J7	ES	+ 4	+ 6	+ 8	+ 10	+ 12	+ 14	+ 18	+ 22	+ 26	+ 30	+ 36	+ 39	+ 43
	El	- 6	- 6	- 7	- 8	- 9	- 11	- 12	- 13	- 14	- 16	- 16	- 18	- 20
JS13	±Ε	± 70	± 90	± 110	± 135	± 165	± 195	± 230	± 270	± 315	± 360	± 405	± 445	± 485
K6	ES	0	+ 2	+ 2	+ 2	+ 2	+ 3	+ 4	+ 4	+ 4	+ 5	+ 5	+ 7	+ 8
	El	- 6	- 6	- 7	- 9	- 11	- 13	- 15	- 18	- 21	- 24	- 27	- 29	- 32
K7	ES	0	+ 3	+5	+6	+6	+7	+9	+10	+12	+13	+16	+17	+18
	El	- 10	- 9	- 10	- 12	- 15	- 18	- 21	- 25	- 28	- 33	- 36	- 40	- 45
M7	ES	- 2	0	0	0	0	0	0	0	0	0	0	0	0
	El	- 12	- 12	- 15	- 18	- 21	- 25	- 30	- 35	- 40	- 46	- 52	- 57	- 63
N7	ES	- 4	- 4	- 4	- 5	- 7	- 8	- 9	- 10	- 12	- 14	- 14	- 16	- 17
	El	- 14	- 16	- 19	- 23	- 28	- 33	- 39	- 45	- 52	- 60	- 66	- 73	- 80
P7	ES	- 6	- 8	- 9	- 11	- 14	- 17	- 21	- 24	- 28	- 33	- 36	- 41	- 45
	El	- 16	- 20	- 24	- 29	- 35	- 42	- 51	- 59	- 68	- 79	- 88	- 98	- 108


DÉCODAGE DES NUANCES D'ALUMINIUM

Aluminium et alliages

- L'aluminium est obtenu à partir d'un minerai appelé bauxite. C'est le métal le plus utilisé juste après les fontes et les aciers.
- La désignation des alliages (norme NF EN 485, NF EN 515 et NF EN 573) dépend de son état fini (corroyés, fil étiré, lingot, etc.).

Exemple

L'alliage d'aluminium de désignation normalisée EN-AW-2017 a pour symbole chimique **Al Cu 4 Mg Si**, soit une composition de 4 % de cuivre, présence de silicium et de magnésium.

	Aluminium	Bore	Chrome	Cobalt	Cuivre	Étain	Magnésium
Élément							
Symbole chimique	Al	В	Cr	Со	Cu	Sn	Mg
Symbole normalisé	Α	В	С	К	U	E	G

	Manganèse	Molybdène	Nickel	Silicium	Soufre	Titane	Zinc
Élément							
Symbole chimique	Mn	Mo	Ni	Si	S	Ti	Zn
Symbole normalisé	M	D	N	S	F	Т	Z

EXTRAIT DU CODE DU TRAVAIL SUR LE PORT DE CHARGE

Liberté Égalité Fraternité

Code du travail

Article R4541-9

Version en vigueur depuis le 01 mai 2008

Partie réglementaire (Articles R1111-1 à R8323-1)

Quatrième partie : Santé et sécurité au travail (Articles R4121-1 à R4822-1)

Livre V: Prévention des risques liés à certaines activités ou opérations (Articles R4511-1 à R4544-11)

Titre IV : Autres activités et opérations (Articles R4541-1 à R4544-11)

Chapitre Ier : Manutention des charges (Articles R4541-1 à R4541-10)

Section 4: Mesures et moyens de prévention. (Articles R4541-7 à R4541-10)

Article R4541-9

Version en vigueur depuis le 01 mai 2008

Création Décret n°2008-244 du 7 mars 2008 - art. (V)

Lorsque le recours à la manutention manuelle est inévitable et que les aides mécaniques prévues au 2° de l'article R. 4541-5 ne peuvent pas être mises en œuvre, un travailleur ne peut être admis à porter d'une façon habituelle des charges supérieures à 55 kilogrammes qu'à condition d'y avoir été reconnu apte par le médecin du travail, sans que ces charges puissent être supérieures à 105 kilogrammes.

Toutefois, les femmes ne sont pas autorisées à porter des charges supérieures à 25 kilogrammes ou à transporter des charges à l'aide d'une brouette supérieures à 40 kilogrammes, brouette comprise.

CONSIGNES DE SÉCURITÉ DE L'ÉBAVUREUSE

EBAVUREUSE EMB1 - 11334014 - 05/2018 - R00 - page 3

I – EXPLICATION DES SYMBOLES

ATTENTION! La machine présente des risques particuliers Une utilisation sans précaution entraîne des blessures.

Lire attentivement la notice avant toute utilisation de la machine

AVERTISSEMENT! Attention aux pièces mobiles pour éviter tous risques d'écrasement.

II – INSTRUCTIONS GENERALES DE SECURITE

- Ne jamais utiliser l'ébavureuse sans avoir lu et compris son mode d'emploi
- L'utilisateur de l'ébavureuse doit respecter les règlements et procédures en vigueur du réseau ferroviaire
- L'utilisateur doit toujours travailler avec du matériel propre
- Tuyauteries et raccords doivent être inspectés avant chaque utilisation. Tout composant défectueux doit être écarté
- Le poids unitaire de l'ébavureuse étant élevé, sa manutention et sa mise en place doivent être effectuées par 2 personnes
- L'opérateur doit s'assurer que son environnement est dégagé (personnes, animal...)
- L'ébavureuse est destinée à trancher l'excédent de métal lié au procédé de soudure aluminothermique, ne pas la détourner de sa fonction
- Ne jamais utiliser la machine en cas de fatigue ou bien en cas de prise de substances, telles que médicaments ou alcool, susceptibles d'altérer la vision, la dextérité ou la capacité d'appréciation
- L'utilisation et les interventions de maintenance doivent être réalisées par du personnel qualifié
- L'utilisateur ne doit pas apporter de modifications à la conception ou à la configuration de l'ébavureuse
- Le moteur peut être désaccouplé de la machine. Il ne doit pas être utilisé à d'autres applications
- S'assurer de la compatibilité de l'alimentation électrique pour le chargement des batteries
- S'assurer que les batteries doivent être transportées séparément du moteur
- Protéger les batteries de l'humidité!
- ► En cas de pluie il est possible d'utiliser la machine sous la tente de protection pour soudure PANDROL. Veillez cependant à ne pas exposer la machine à l'eau avant et après sa mise à l'abri sous la tente.
- Ne pas utiliser de batteries défectueuses ou déformés!
- Ne pas exposer les blocs batteries au feu!
- Un bloc batterie défectueux Li-lon peut occasionner une fuite de liquide légèrement acide et inflammable!
- Le port des EPI peut être nécessaire!

FORMULAIRE DE CALCUL

• Vitesse linéaire d'un vérin :

$$V = \frac{C}{t}$$

V: vitesse (cm.s⁻¹); C: course (cm); t: temp (s)

• Section annulaire vérin

$$S = \frac{(D^2 - d^2) \cdot \pi}{4}$$

S: section annulaire (cm²); D: diamètre du piston (cm);

d: diamètre de l'arbre de guidage (cm)

• Débit d'une pompe

$$Q = V \cdot S \cdot n$$

Q: débit (cm³.s⁻¹); V: vitesse linéaire d'un vérin (cm.s⁻¹)

S: section annulaire vérin (cm²); n: Nombre de vérin

• Capacité d'une pompe

$$C = \frac{Q}{N}$$

CODE: 25-CGM-TRPM-E

C: capacité d'une pompe (cm³/tr); Q: débit d'une pompe (cm³.min⁻¹);

Session 2025

PAGE DRESS 5/15

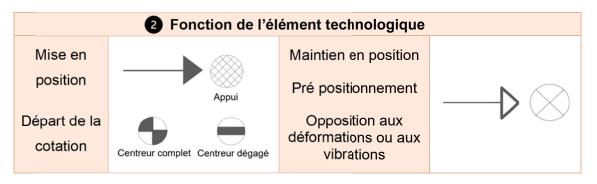
Durée: 6 h

N : fréquence de rotation du moteur de l'ébavureuse (tr/min)

CARACTÉRISTIQUES TECHNIQUES DE L'ÉBAVUREUSE

Désignation	Version Monobloc Electrique – classe 2
- masse totale avec motorisation	49 Kg
- masse totale sans motorisation	43 Kg
Dimensions L x l x h	1200 x 470 x 450 mm
Motorisation Puissance Vitesse de rotation	moteur METABO sur batterie (2x 18V – 8Ah) 2400 W 6600 tr/min.
Classe d'isolation	(double isolation)
Indice de protection	IP20
Niveau de pression acoustique Lpa	92 dB (A)
Niveau de puissance acoustique L WA	99 dB (A)
Niveau de vibrations :	< 2,5 m/s2
Force	212 KN (21,5 T)
Débit	l/min
Pression hydraulique	250 bars (3560 Psi)
Huile hydraulique	Suivant norme DIN 51524 part 3 Catégorie HVLP ISO VG32

DOSSIER


RESSOURCE

EXTRAIT CATALOGUE POMPES

Tél: 33 (0)1 49 62 28 00 SERIES 0 - 1 - 2 - 2.5 - 2.6 **JTEKT** Capacité PRESSION PRESSION Vitesse DEBIT MAXI Théorique Masse absorbée en kW a 1000 t/min approx. de POINTE Maxi de TRAVAIL **SERIES** MODELE à vitesse à 100 bar 1500 t / min en bar MAXI t/min Kg en bar cm3/t 1/min 0025 0,25 280 8000 0,37 2 0,05 0,47 240 0050 0,50 280 240 8000 0,75 0,10 0,94 0,42 0075 0,75 250 210 8000 1,12 6 0,15 1,40 0100 1,87 250 210 8000 1,50 8 0,20 0125 1,25 7,5 200 170 6000 1,87 0,25 2,34 0,45 0150 1,50 150 125 6000 2,25 9 0,29 2,81 0200 2 125 105 5000 3 10 0,39 3,74 0,50 1001 1,02 300 8000 1,53 8,16 1,91 1002 2,05 300 255 8000 3,07 16,4 3,83 0,9 0,40 4,60 21,4 0,60 5,74 1003 3,07 300 255 7000 1004 4,09 250 6000 6,13 24,5 0,80 7,65 1005 5,12 200 30,7 9,58 170 150 30,7 11,49 6,14 125 6000 9,21 1,20 1006 2004 4,65 280 3500 6,97 8,70 1,6 240 16,2 0,91 280 12,07 1,6 2006 6,45 240 3500 9,67 22,5 1,26 2008 8,25 280 28,8 15,43 1,7 240 3500 12,37 1,62 2010 280 240 3500 15,18 35,3 1,98 18,93 1,7 10,12 2012 12 280 42 22,45 1,7 240 3500 18 2,35 2014 13,8 250 210 3500 48,3 2,71 25,81 2015 15,52 250 210 3500 23,25 52,5 3,04 29,03 2,1 32,36 2017 17,3 220 190 3500 25,95 60,55 3,39 2,1 19,12 35,77 2,2 2018 200 170 3500 28,65 2022 22,87 175 42,78 2,3 150 3500 34,2 79,8 4,48 2026 27,6 175 150 3000 82,8 51,63 41,4 2030 31,2 2,8 175 150 58,36 3000 46,8 93,6 6,12 2512 12 300 22,45 2,2 255 3500 42 2,35 2515 15,52 280 23,25 52,5 29,03 2,6 240 3500 3,04 2517 17,3 280 240 3500 25,95 60,55 3,39 32,36 2,6 2518 19,12 250 35,77 2,7 215 3500 28,65 66,8 3,75 2522 22,87 4,48 42,78 2,8 225 190 3500 34,2 79,8 19,6 330 29,40 280 3000 58,80 3,84 36,66 2625 24,2 330 280 3000 36,30 72,60 4,75 45,27 27,5 2627 330 280 3000 41,25 82,50 5,37 51,25 30,5 330 280 3000 45,75 91,50 5,98 57,05 290 2635 34,5 250 3000 51,75 103,50 6,76 64,54

SYMBOLISATION DES ÉLÉMENTS TECHNOLOGIQUES

Nature du contact avec les surfaces						
Contact ponctuel	Contact surfacique	Contact strié	Pointe fixe	Pointe tournante		
$\longrightarrow\!$	$\longrightarrow \hspace{1cm} \blacksquare$	─ ►	\rightarrow	$\longrightarrow\!$		
Contact dégagé	Cuvette	Vé	Palonnier	Orienteur		
─ ▶}	→ ►($-\!$	- ▶ ૄ			

3 Nature de la s	urface
Surface usinée (un seul trait)	\longrightarrow
Surface brute (deux traits)	

4 Type de technologie de l'élément							
Appui fixe	+	Pièce d'appui, touche					
Centrage fixe	0	Centreur, broche					
Système à serrage	₩ >	Mise en position et serrage symétrique					
Système à serrage concentrique	6	Mandrin, pinces expansibles					
Système de réglage irréversible		Appui réglable de mise en position					
Système de réglage réversible	W	Vis d'appui réglable…					
Centrage réversible	\\\	Pied conique, broche conique					

119,40

7,80

210

2640

39,8

250

MAXI

SERVICE

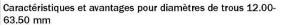
de

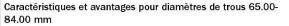
CONDITIONS

PERÇAGE Forets à plaquettes indexables

CoroDrill® 880

Forets à plaquettes indexables


Champs d'applications ISO



- Gain de productivité pouvant atteindre 100%
- Tolérances des trous serrées et meilleurs états de surface
- Quatre véritables arêtes de coupe avec la technologie Wiper
- Foret à plaquettes indexables doté de plaquettes centrales et périphériques équipées de la technologie exclusive Step Technology™ pour un équilibre parfait des forces de coupe
- Très bonne évacuation des copeaux

- Perçage fiable en toute sécurité grâce à la robustesse du corps du foret et à la rigidité de l'interface de cartouche
- Contrôle et évacuation des copeaux remarquables
- Grande flexibilité un corps de foret couvre 5 diamètres différents grâce au système de cartouche fixe interchangeable
- Solution économique et ergonomique avec des cartouches interchangeables et des plaquettes indexables

www.sandvik.coromant.com/corodrill880

Corps de forets

Attachements:

- Coromant Capto® - Queue cylindrique
- Accouplement VL

53.00-63.50 0/+0.30

- Plaquettes avec des géométries optimisées pour toutes les matières

2 - 3 x DC

Tolérances du trou, mm	0/+0.25	0/+0.28
Plage de diamètres, mm	12.00-43.99	44.00-52.99

Ν

CoroDrill® 880

Vue d'ensemble des géométries

Géométrie Informations sur les géométries

GR

- Premier choix pour les aciers bas carbone
- Géométrie polyvalente avec brise-copeaux polyvalent Meilleurs résultats avec des avances faibles à moyennes
- Faibles forces de coupe

- Premier choix dans les aciers alliés et les fontes
- Meilleurs résultats avec des avances moyennes à élevées

- Premier choix pour les aciers inoxydables et les matières non ferreuses
- Arête vive offrant de faibles forces de coupe

- Forces de coupe faibles
- Avances faibles à moyennes

Gamme des nuances

4334

- Premier choix dans des conditions normales dans ISO P et ISO K
- Choix complémentaire dans les applications stables dans ISO M

- Choix résistant à l'usure pour ISO P et ISO K

4344

Nuance fiable pour tous les types de matières

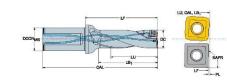
2044

- Premier choix dans ISO M
- Choix complémentaire dans les matières ISO S

- Revêtement diamant
- Premier choix dans ISO N

H13A

- Nuance non revêtue


CONCOURS GÉNÉRAL DES MÉTIERS DOSSIER CODE: 25-CGM-TRPM-E Durée: 6 h Session 2025 PAGE DRESS 7/15 TECHNICIEN EN RÉALISATION DE PRODUITS MÉCANIQUES **RESSOURCE**

Forets à plaquettes indexables PERÇAGE

Foret à plaquettes indexables CoroDrill® 880

Queue cylindrique avec méplat selon ISO 9766 Adduction interne de liquide de coupe

									Dimens	ions, m	ım							_
																		_
															_	_		_
DC			LU	CZC _{MS}	ADJLX	TCHAL	TCHAU	Référence de commande	DCON _{MS}	LF	OAL	LB ₁	PL	KAPR	BAR	(KG)	RPMX	_
25.50	05C	05P	77.00	25	0.90	0.00	0.25	880-D2550L25-03	25.00	99.48	156.00	80.00	0.51	88°	10	0.501	16000	
26.00	05C	05P	52.00	32	0.90	0.00	0.25	880-D2600L32-02	32.00	76.47	137.00		0.52	88°	10	0.650	16000	
20.00	000	001	78.00	32	0.90	0.00	0.25	880-D2600L32-03	32.00	101.47			0.52	88°	10	0.700	16000	K
26.40	05C	05P	79.00	32	0.80	0.00	0.25	880-D2640L32-03	32.00	103.47		83.00	0.52	88°	10	0.707	16000	
26.50	05C	05P	80.00	32	0.80	0.00	0.25	880-D2650L32-03	32.00	103.47	164.00		0.52	88°	10	0.717	16000	
27.00	05C	05P	54.00	32	0.70	0.00	0.25	880-D2700L32-02	32.00	78.46	139.00	58.00	0.53	88°	10	0.669	16000	
			81.00	32	0.70	0.00	0.25	880-D2700L32-03	32.00		165.00	84.00		88°	10	0.724	16000	
27.50	05C	05P	83.00	32	0.60	0.00	0.25	880-D2750L32-03	32.00	100000000000000000000000000000000000000	168.00	86.00	0.53	88°	10	0.761	16000	
28.00	05C	05P	56.00	32	0.60	0.00	0.25	880-D2800L32-02	32.00	81.46			0.53	88°	10	0.693	16000	
		-1110	84.00	32	0.60	0.00	0.25	880-D2800L32-03	32.00	108.46	169.00	87.00	0.53	88°	10	0.755	16000	
28.50	05C	05P	86.00	32	0.50	0.00	0.25	880-D2850L32-03	32.00	110.45	171.00	89.00	0.54	88°	10	0.770	16000	
29.00	05C	05P	58.00	32	0.50	0.00	0.25	880-D2900L32-02	32.00	83.45	144.00	62.00	0.54	88°	10	0.710	16000	
			87.00	32	0.50	0.00	0.25	880-D2900L32-03	32.00	111.45	172.00	90.00	0.54	88°	10	0.784	16000	
29.40	05C	05P	88.00	32	0.40	0.00	0.25	880-D2940L32-03	32.00	114.44	175.00	92.00	0.55	88°	10	0.845	16000	
29.50	05C	05P	89.00	32	0.40	0.00	0.25	880-D2950L32-03	32.00	114.44	175.00	92.00	0.55	88°	10	0.809	16000	
30.00	06C	06P	60.00	32	1.12	0.00	0.25	880-D3000L32-02	32.00	86.41	147.00	64.00	0.58	88°	10	0.699	16000	
			90.00	32	1.12	0.00	0.25	880-D3000L32-03	32.00	116.41	177.00	94.00	0.58	88°	10	0.790	16000	
30.50	06C	06P	92.00	32	1.05	0.00	0.25	880-D3050L32-03	32.00	117.40	178.00	95.00	0.59	88°	10	0.800	16000	
31.00	06C	06P	62.00	40	0.99	0.00	0.25	880-D3100L40-02	40.00	89.40	160.00	66.00	0.59	88°	10	1.136	16000	
			93.00	40	0.99	0.00	0.25	880-D3100L40-03	40.00		191.00	97.00	0.59	88°	10	1.210	16000	_
31.50	06C	06P	95.00	40	0.93	0.00	0.25	880-D3150L40-03	40.00	121.39	192.00	98.00	0.60	88°	10	1.230	16000	
32.00	06C	06P	64.00	40	0.87	0.00	0.25	880-D3200L40-02	40.00	91.39	162.00	68.00	0.60	88°	10	1.156	16000	
			96.00	40	0.87	0.00	0.25	880-D3200L40-03	40.00	123.39		100.00		88°	10	1.252	16000	
32.50	06C	06P	98.00	40	0.81	0.00	0.25	880-D3250L40-03	40.00	125.39		101.00		88°	10	1.278	16000	
33.00	06C	06P	66.00	40	0.75	0.00	0.25	880-D3300L40-02	40.00	94.38	165.00	70.00	0.61	88°	10	1.200	16000	
			99.00	40	0.75	0.00	0.25	880-D3300L40-03	40.00	127.38		103.00		88°	10	1.303	16000	
33.50	06C	06P	101.00	40	0.68	0.00	0.25	880-D3350L40-03	40.00	129.38		105.00		88°	10	1.317	16000	
34.00	06C	06P	68.00	40	0.62	0.00	0.25	880-D3400L40-02	40.00	97.37	168.00	73.00		88°	10	1.227	16000	
			102.00	40	0.62	0.00	0.25	880-D3400L40-03	40.00	130.37		106.00		88°	10	1.340	16000	
34.50	06C	06P	104.00	40	0.56	0.00	0.25	880-D3450L40-03	40.00	133.37	204.00	108.00		88°	10	1.380	16000	
35.00	06C	06P	70.00	40	0.50	0.00	0.25	880-D3500L40-02	40.00	100.37	171.00			88°	10	1.270	16000	
			105.00	40	0.50	0.00	0.25	880-D3500L40-03	40.00		205.00	109.00		88°	10	1.400	16000	
35.50	06C	06P	107.00	40	0.44	0.00	0.25	880-D3550L40-03	40.00	136.36		111.00		88°	10	1.415	16000	
36.00	07C	07P	72.00	40	1.38	0.00	0.25	880-D3600L40-02	40.00	103.32		77.00	0.67	88°	10	1.280	16000	
07.00	070	07.0	108.00	40	1.38	0.00	0.25	880-D3600L40-03	40.00		209.00	112.00		88°	10	1.397	16000	M
37.00	07C	07P	74.00	40	1.25	0.00	0.25	880-D3700L40-02 880-D3700L40-03	40.00	104.31	175.00	78.00	0.68	88°	10	1.300	16000 16000	141
38.00	07C	07P	76.00	40	1.25	0.00	0.25	880-D3800L40-03	40.00	141.31	212.00 178.00	115.00 80.00	0.68	88°	10	1.446	16000	
36.00	U/C	011	114.00				0.25					118.00			10	1.480	16000	
39.00	07C	07P	78.00	40	1.13	0.00	0.25	880-D3800L40-03 880-D3900L40-02	40.00	145.31	216.00 180.00	82.00	0.69	88°	10	1.480	16000	
39.00	010	UΓΓ	117.00	40	1.00	0.00	0.25	880-D3900L40-02	40.00		219.00	121.00		88°	10	1.535	16000	
40.00	07C	07P	80.00	40	0.88	0.00	0.25	880-D4000L40-03	40.00		183.00	84.00		88°	10	1.413	16000	
40.00	010	011	120.00	40	0.88	0.00	0.25	880-D4000L40-03	40.00		223.00	124.00		88°	10	1.603	16000	
41.00	07C	07P	82.00	40	0.75	0.00	0.25	880-D4100L40-02	40.00		187.00		0.71	88°	10	1.480	16000	
41.00	0.0	0.1	123.00	40	0.75	0.00	0.25	880-D4100L40-03	40.00		227.00	127.00		88°	10	1.690	16000	
42.00	07C	07P	84.00	40	0.63	0,00	0.25	880-D4200L40-02	40.00		189.00			88°	10	1,505	16000	
72.00	0,0	V/ I	126.00	40	0.63	0.00	0.25	880-D4200L40-03	40.00		230.00	130.00		88°	10	1.740	16000	
43.00	07C	07P	86.00	40	0.50	0.00	0.25	880-D4300L40-02	40.00		192.00		0.73	88°	10	1.510	16000	
.0.00	0.0	V. I	129.00	40	0.50	0.00	0.25	880-D4300L40-03	40.00		234.00	133.00		88°	10	1.730	16000	
44.00	08C	08P	88.00	40	1.50	0.00	0.28	880-D4400L40-02	40.00		194.00			88°	10	1.510	15000	
11.00	300	001	132.00	40	1.50	0.00	0.28	880-D4400L40-03	40.00		237.00	136.00		88°	10	1.720	15000	
45.00	08C	08P	90.00	40	1.40	0.00	0.28	880-D4500L40-02	40.00		197.00		0.77	88°	10	1.560	15000	N
.0.00	300	55.	135.00	40	1.40	0.00	0.28	880-D4500L40-03	40.00		242.00	140.00		88°	10	1.800	15000	IN

J 39

PERÇAGE

Conditions de coupe

CoroDrill® 880

2 - 3 x DC

				Dureté Brinell	Nuance	Vitesse de coupe	Diamètre du foret		Géome	trie/ avance (f _n	mm/tr)	
									Profond	leur de perçag	e 2-3xD	
IS	so	MC No.	Matière	нв		(m/min)	DC mm	-LM	-MS®	-GM	-GR	-GT
							12.00-13.99	0.04-0.12	0.04-0.12		0.04-0.08	
	М	P5.0.Z.AN					14.00-16.49	0.04-0.14	0.04-0.14	0.04-0.08	0.04-0.08	0.04-0.14
		(05.11)	Acier inoxydable ferritique/	150-270			16.50-19.99	0.06-0.16	0.06-0.16	0.04-0.08	0.04-0.08	0.06-0.16
			martensitique 13-25 % Cr		4324	120-280	20.00-23.99	0.06-0.18	0.06-0.18	0.06-0.14	0.06-0.14	0.06-0.18
			materiolique 70 20 70 or		4334	115-225	24.00-29.99	0.06-0.18	0.06-0.18	0.06-0.14	0.06-0.14	0.06-0.18
					4344	115-175	30.00-35.99	0.06-0.20	0.06-0.20	0.06-0.16	0.06-0.16	0.06-0.20
					2044	115-165	36.00-43.99	0.06-0.20	0.06-0.20	0.06-0.16	0.06-0.16	0.10-0.24
							44.00-52.99	0.10-0.24	0.10-0.24	0.10-0.18	0.10-0.18	0.10-0.24
							53.00-63.50	0.10-0.24	0.10-0.24	0.10-0.18	0.10-0.18	0.10-0.24
	ı						12.00-13.99	0.04-0.12	0.04-0.12		0.04-0.08	
		M1.0.Z.AQ	Austénitique Ni > 8%, 13-25%				14.00-16.49	0.04-0.14	0.04-0.14	0.04-0.08	0.04-0.08	0.04-0.14
		(05.21)	Cr	150-275			16.50-19.99	0.06-0.14	0.06-0.14	0.04-0.08	0.04-0.08	0.06-0.14
					4324	120-265	20.00-23.99	0.06-0.16	0.06-0.16	0.06-0.12	0.06-0.12	0.06-0.16
					4334	115-225	24.00-29.99	0.06-0.16	0.06-0.16	0.06-0.12	0.06-0.12	0.06-0.18
					4344	115-190	30.00-35.99	0.06-0.18	0.06-0.18	0.06-0.16	0.06-0.16	0.06-0.20
					2044	115-180	36.00-43.99	0.06-0.20	0.06-0.20	0.06-0.16	0.06-0.16	0.06-0.20
					2011	110 100	44.00-52.99	0.10-0.20	0.10-0.20	0.10-0.16	0.10-0.16	0.10-0.2
							53.00-63.50	0.10-0.20	0.10-0.20	0.10-0.16	0.10-0.16	0.10-0.2
	H						12.00-13.99	0.04-0.12	0.04-0.12	0.10-0.10	0.04-0.08	0.10-0.2
		M3.1.Z.AQ	Austénitique/Ferritique (Duplex)				14.00-16.49	0.04-0.12	0.04-0.14	0.04-0.08	0.04-0.08	0.04-0.1
		(05.51)	Austerntique/Ferntique (Duplex)	200-320			16.50-19.99	0.04-0.14	0.06-0.14	0.04-0.08	0.04-0.08	0.04-0.1
		M3.2.Z.AQ		200-320	4324	90-155	20.00-23.99	0.06-0.14	0.06-0.14	0.06-0.12	0.06-0.12	0.06-0.1
					4324	85-145	24.00-23.99	0.06-0.16	0.06-0.16	0.06-0.12	0.06-0.12	0.06-0.1
		(05.52)										
					4344	85-130	30.00-35.99	0.06-0.18	0.06-0.18	0.06-0.16	0.06-0.16	0.06-0.1
					2044	85-125	36.00-43.99	0.06-0.20	0.06-0.20	0.06-0.16	0.06-0.16	0.06-0.2
							44.00-52.99	0.10-0.20	0.10-0.20	0.10-0.16	0.10-0.16	0.10-0.2
	- 1						53.00-63.50	0.10-0.20	0.10-0.20	0.10-0.16	0.10-0.16	0.10-0.2
							12.00-13.99	0.04-0.12	0.04-0.12		0.04-0.08	
		M1.0.C.UT	Austénitique coulé				14.00-16.49	0.04-0.12	0.04-0.12	0.04-0.08	0.04-0.08	0.04-0.1
		(15.21)		150-250			16.50-19.99	0.06-0.14	0.06-0.14	0.04-0.08	0.04-0.08	0.06-0.1
					4324	150-210	20.00-23.99	0.06-0.16	0.06-0.16	0.06-0.12	0.06-0.12	0.06-0.1
					4334	115-185	24.00-29.99	0.06-0.16	0.06-0.16	0.06-0.12	0.06-0.12	0.06-0.1
					4344	80-165	30.00-35.99	0.06-0.18	0.06-0.18	0.06-0.16	0.06-0.16	0.06-0.1
					2044	80-155	36.00-43.99	0.06-0.20	0.06-0.20	0.06-0.16	0.06-0.16	0.06-0.2
							44.00-52.99	0.10-0.20	0.10-0.20	0.10-0.16	0.10-0.16	0.10-0.2
	ı						53.00-63.50	0.10-0.20	0.10-0.20	0.10-0.16	0.10-0.16	0.10-0.2
	Г						12.00-13.99	0.04-0.08	0.04-0.08		0.04-0.08	
	E	S2.0.Z.AN					14.00-16.49	0.04-0.08	0.04-0.08	0.04-0.10	0.04-0.08	0.04-0.0
		(20.21)	Alliana vétra staisa A basa Ni	140-425	4344	20-95	16.50-19.99	0.05-0.08	0.05-0.08	0.05-0.10	0.05-0.08	0.05-0.0
		S2.0.Z.AG	Alliages réfractaires. A base Ni		H13A	15-90	20.00-23.99	0.05-0.08	0.05-0.08	0.05-0.10	0.05-0.08	0.05-0.0
		(20.22)			2044	20-90	24.00-29.99	0.06-0.10	0.06-0.10	0.06-0.12	0.06-0.08	0.05-0.0
		\$2.0.C.NS			2000000		30.00-35.99	0.06-0.12	0.06-0.12	0.06-0.12	0.06-0.12	0.06-0.1
		(20.24)					36.00-43.99	0.06-0.12	0.06-0.12	0.06-0.12	0.06-0.12	0.06-0.1
		,					44.00-52.99	0.06-0.12	0.06-0.12	0.06-0.12	0.06-0.12	0.06-0.1
							53.00-63.50	0.08-0.14	0.08-0.14	0.06-0.14	0.08-0.12	0.08-0.1
							12.00-13.99	0.04-0.14	0.04-0.14	3.00 5.17	0.04-0.10	0.00 0.1
			Titane: alliages alpha, quasi				14.00-16.49	0.06-0.14	0.06-0.14	0.06-0.12	0.06-0.10	0.06-0.1
			alpha et alpha + bêta à l'état				16.50-19.99	0.08-0.14	0.08-0.14	0.08-0.12	0.08-0.10	0.08-0.1
		S4.2.Z.AN	recuit	Rm (Mpa)	4344	40-145	20.00-23.99	0.08-0.16	0.08-0.16	0.08-0.14	0.08-0.12	0.08-0.1
		(23.21)		600-1500	4344 H13A	40-145	24.00-23.99	0.12-0.18	0.08-0.16	0.10-0.16	0.10-0.14	0.08-0.1
		(23.21) S4.3.Z.AG	Titone: Alliance slabe : 5 %- 3	000-1500	2044			0.12-0.18				
			Titane: Alliages alpha + bêta à l'état vieilli, alliages bêta à l'état		2044	40-135	30.00-35.99		0.12-0.18	0.10-0.18	0.10-0.16	0.12-0.1
		(23.22)	recuit ou vieilli				36.00-43.99	0.12-0.18	0.12-0.18	0.10-0.18	0.10-0.16	0.12-0.1
							44.00-52.99	0.12-0.18	0.12-0.18	0.10-0.18	0.10-0.16	0.12-0.1
							53.00-63.50	0.14-0.20	0.14-0.20	0.14-0.20	0.12-0.16	0.14-0.2

Remarque : le texte en gras correspond à la géométrie recommandée 1) La géométrie -MS n'est disponible que dans la nuance GC2044

Le GC1044 est une nuance universelle pour la plaquette centrale, quelle que soit la matière GC1144 est une nuance de plaquette centrale optimisée pour les matières ISO M

J 64

CONCOURS GÉNÉRAL DES MÉTIERS DOSSIER CODE: 25-CGM-TRPM-E Durée: 6 h Session 2025 PAGE DRESS 8/15 TECHNICIEN EN RÉALISATION DE PRODUITS MÉCANIQUES RESSOURCE

CoroDrill® 880

2-3 x DC

			Dureté Brinell	Nuance	Vitesse de coupe	Diamètre du foret		Géométri	e / Avance	
			2013-000000-036		000078998400	5.000.0000		Profondeur de	perçage 2-3x[)
							-LM	-GM	-GR	-GT
ISO	MC No.	Matière	нв		(m/min)	DC mm	fo, mm/tr.	f ₀ , mm/tr.	f _n , mm/tr.	fo. mm/tr.
100	mo no.	IIIIIIII	110		Unburn	12.00-13.99	in milet.	in milita.	in, illiiva.	ın, maiv a.
	K1.1.C.NS	Fonte malléable Ferritique (à				14.00-16.49	0.06-0.10	0.06-0.12	0.06-0.20	
	(07.1)	copeaux courte)	110-145			16.50-19.99	0.06-0.12	0.08-0.14	0.08-0.22	0.08 - 0.22
	(07.17)		110 110	4324	140-245	20.00-23.99	0.08-0.14	0.10-0.18	0.14-0.28	0.10 - 0.26
				4334	110-200	24.00-29.99	0.08-0.14	0.10-0.20	0.16-0.32	0.10 0.20
				4344	80-155	30.00-35.99	0.10-0.16	0.10-0.20	0.10-0.32	
				2700		36.00-43.99	0.10-0.16	0.10-0.20	0.10-0.34	
						44.00-52.99	0.12-0.18	0.12-0.22	0.12-0.34	
						53.00-63.50				
						12.00-13.99				
	K1.1.C.NS	Perlitique (copeaux longs)				14.00-16.49	0.06-0.10	0.06-0.12	0.06-0.16	
	(07.2)		150-270			16.50-19.99	0.06-0.12	0.08-0.14	0.08-0.18	0.08 - 0.18
				4324	105-180	20.00-23.99	0.08-0.14	0.10-0.16	0.10-0.24	0.10 - 0.24
				4334	85-150	24.00-29.99	0.08-0.14	0.10-0.18	0.10-0.28	
				4344	65-110	30.00-35.99	0.10-0.16	0.10-0.20	0.10-0.30	
						36.00-43.99	0.10-0.16	0.10-0.20	0.10-0.32	
						44.00-52.99	0.10-0.16	0.10-0.20	0.10-0.32	
						53.00-63.50				
						12.00-13.99				
	K2.1.C.UT	Fonte grise: Faible résistance à la traction				14.00-16.49	0.06-0.10	0.06-0.12	0.06-0.20	
	(08.1)	la traction	150-220	000 0		16.50-19.99	0.06-0.12	0.08-0.14	0.08-0.22	0.08 - 0.22
				4324	210-325	20.00-23.99	0.08-0.14	0.10-0.18	0.10-0.28	0.10 - 0.28
				4334	170-270	24.00-29.99	0.08-0.14	0.10-0.20	0.10-0.32	
				4344	130-205	30.00-35.99	0.10-0.16	0.10-0.20	0.10-0.32	
						36.00-43.99 44.00-52.99	0.10-0.16 0.12-0.18	0.10-0.20	0.10-0.34 0.12-0.34	
						53.00-63.50	0.12-0.18	0.12-0.22	0.12-0.34	
к						12.00-13.99				
- 15	K2.2.C.UT	Forte résistance à la traction				14.00-16.49	0.06-0.10	0.06-0.12	0.06-0.16	
	(08.2)	i orio resistante a la trasticio	200-330			16.50-19.99	0.06-0.12	0.08-0.14	0.06-0.18	0.08 - 0.18
	(00.0)			4324	125-245	20.00-23.99	0.08-0.14	0.10-0.16	0.10-0.24	0.10 - 0.24
				4334	100-195	24.00-29.99	0.08-0.14	0.10-0.18	0.10-0.28	
				4344	75-150	30.00-35.99	0.10-0.16	0.10-0.20	0.10-0.30	
						36.00-43.99	0.10-0.16	0.10-0.20	0.10-0.32	
						44.00-52.99	0.10-0.16	0.10-0.20	0.10-0.32	
						53.00-63.50				
						12.00-13.99				
	K3.1.C.UT	Fonte nodulaire (Ferritique)				14.00-16.49	0.06-0.10	0.06-0.12	0.08-0.16	
	(09.1)		150-230			16.50-19.99	0.06-0.12	0.08-0.14	0.10-0.18	0.08 - 0.18
				4324	125-225	20.00-23.99	0.08-0.14	0.10-0.16	0.12-0.24	0.10 - 0.24
				4334	100-185	24.00-29.99	0.08-0.14	0.10-0.18	0.14-0.28	
				4344	80-145	30.00-35.99	0.10-0.16	0.10-0.20	0.10-0.30	
						36.00-43.99 44.00-52.99	0.10-0.16	0.10-0.20	0.10-0.32 0.10-0.32	
						53.00-63.50	0.10-0.16	0.10-0.20	0.10-0.32	
						12.00-13.99				
	K3.3.C.UT	Perlitique				14.00-16.49	0.06-0.10	0.06-0.12	0.08-0.16	
	(09.2)	- Statique	200-330			16.50-19.99	0.06-0.10	0.08-0.12	0.10-0.18	0.08 - 0.18
	(50.2)		200-000	4324	110-210	20.00-23.99	0.08-0.12	0.10-0.16	0.12-0.14	0.10 - 0.24
				4334	90-175	24.00-29.99	0.08-0.14	0.10-0.18	0.14-0.28	5.10-0.24
				4344	70-130	30.00-35.99	0.10-0.16	0.10-0.10	0.10-0.20	
						36.00-43.99	0.10-0.16	0.10-0.20	0.10-0.32	
						44.00-52.99	0.10-0.16	0.10-0.20	0.10-0.32	
			l			53.00-63.50				

Remarque : le texte en gras correspond à la géométrie recommandée La nuance de la plaquette centrale est toujours 1044.

J 65

PERÇAGE

Conditions de coupe

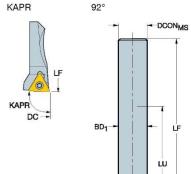
CoroDrill® 880

2 - 3 x DC

				Dureté Brinell	Nuance	Vitesse de coupe	Diamètre du foret		Géométric	e / Avance	
				-0.000000000000000000000000000000000000			7-		Profondeur de	perçage 2-3x[)
								-LM	-GM	-GR	-GT
1	ISO	MC No.	Matière	HB		(m/min)	DC mm	f _n , mm/tr.	f _n , mm/tr.	f _o , mm/tr.	f _o , mm/tr.
-		114 8 7114					12.00-13.99	0.10-0.16	0.10-0.20	0.10-0.32	
	н	H1.3.Z.HA	Trempé et revenu	40.00 A (DO)			14.00-16.49	0.04-0.08	0.04-0.12	0.04-0.08	0.04 - 0.08
		(04.1)		47-65 (HRC)	4324	30-85	16.50-19.99	0.05-0.12	0.06-0.14	0.05-0.12	0.05 - 0.12
					4324	30-85	20.00-23.99	0.05-0.14	0.06-0.18 0.06-0.18	0.05-0.14	0.05 - 0.14
					4334	30-85	30.00-35.99	0.05-0.14	0.06-0.18	0.05-0.14	0.05 - 0.14
					4344	30-65	36.00-33.99	0.06-0.16	0.06-0.20	0.06-0.16	
							44.00-52.99	0.10-0.16	0.10-0.20	0.10-0.16	
							53.00-63.50	0.10-0.10	0.10-020	0.10-0.10	
							12.00-13.99	0.04-0.08		0.04-0.08	
	N	N1.2.Z.AG	Alliages d'alu. Forgés ou forgés				14.00-16.49	0.04-0.14	0.04-0.12	0.04-0.12	0.04-0.12
		(30.12)	et vieillis	30-150	4344	300-405	16.50-19.99	0.04-0.16	0.04-0.14	0.04-0.14	0.04 - 0.14
					H13A	300-400	20.00-23.99	0.06-0.18	0.06-0.16	0.06-0.16	0.06 - 0.16
							24.00-29.99	0.10-0.20	0.10-0.18	0.10-0.18	0.10-0.18
							30.00-35.99	0.10-0.25	0.10-0.20	0.10-0.20	
K							36.00-43.99	0.10-0.25	0.10-0.20	0.10-0.20	
n							44.00-52.99	0.12-0.28	0.12-0.22	0.12-0.22	
							53.00-63.50	0.12-0.28	0.12-0.22	0.12-0.22	
		NA O O UT	0 1/ / 200				12.00-13.99	0.04-0.12	001011	0.04-0.12	221212
		N1.3.C.UT	Coulé, non vieilli	40-100	4344	300-405	14.00-16.49 16.50-19.99	0.04-0.12 0.04-0.14	0.04-0.14	0.04-0.12	0.04-0.12
		(30.21)		40-100	H13A	300-400	20.00-23.99	0.04-0.14	0.04-0.16	0.04-0.14	0.04 - 0.14
					піза	300-400	24.00-29.99	0.10-0.18	0.10-0.18	0.10-0.18	0.10-0.18
							30.00-35.99	0.10-0.18	0.10-0.20	0.10-0.10	0.10-0.16
							36.00-43.99	0.10-0.20	0.10-0.24	0.10-0.20	
							44.00-52.99	0.12-0.22	0.12-0.26	0.12-0.22	
							53.00-63.50	0.12-0.22	0.12-0.26	0.12-0.22	
							12.00-13.99	0.04-0.12	0.72 0.20	0.04-0.12	
		N1.3.C.AG	Coulé, ou coulé et vieilli				14.00-16.49	0.04-0.12	0.04-0.14	0.04-0.12	0.04-0.12
		(30.22)		70-140	4344	250-350	16.50-19.99	0.04-0.14	0.04-0.16	0.04-0.14	0.04 - 0.14
		n n			H13A	250-350	20.00-23.99	0.06-0.16	0.06-0.18	0.06-0.16	0.06 - 0.16
							24.00-29.99	0.10-0.18	0.10-0.20	0.10-0.18	0.10-0.18
L							30.00-35.99	0.10-0.20	0.10-0.22	0.10-0.20	
_							36.00-43.99	0.10-0.20	0.10-0.24	0.10-0.20	
							44.00-52.99	0.12-0.22	0.12-0.26	0.12-0.22	
							53.00-63.50	0.12-0.22	0.12-0.26	0.12-0.22	
		N3.3.U.UT	O the stall and a stall				12.00-13.99 14.00-16.49	0.04-0.14	0.04-0.12	0.04-0.12	0.04-0.12
			Cuivre et alliages de cuivre	70-160	4344	250-400	16.50-19.99	0.04-0.14	0.04-0.12	0.04-0.12	0.04-0.12
		(33.1)		70-160	H13A	250-400	20.00-23.99	0.04-0.16 0.06-0.18	0.04-0.14	0.04-0.14	0.04 - 0.14
					ПІЗА	250-400	24.00-29.99	0.10-0.20	0.10-0.18	0.10-0.18	0.10-0.18
							30.00-35.99	0.10-0.25	0.10-0.10	0.10-0.10	0.10-0.16
							36.00-43.99	0.10-0.25	0.10-0.20	0.10-0.20	
							44.00-52.99	0.12-0.28	0.12-0.22	0.12-0.22	
							53.00-63.50	0.12-0.28	0.12-0.22	0.12-0.22	
							12.00-13.99	0.04-0.14		0.04-0.12	
		N3.2.C.UT	Alliages de laiton et au plomb				14.00-16.49	0.04-0.14	0.04-0.12	0.04-0.12	0.04-0.12
		(33.2)	(Pb < 1%)	50-200	4344	180-240	16.50-19.99	0.04-0.16	0.04-0.14	0.04-0.14	0.04 - 0.14
B./I					H13A	180-240	20.00-23.99	0.06-0.18	0.06-0.16	0.06-0.16	0.06 - 0.16
M							24.00-29.99	0.10-0.20	0.10-0.18	0.10-0.18	0.10-0.18
							30.00-35.99	0.10-0.25	0.10-0.20	0.10-0.20	
							36.00-43.99	0.10-0.25	0.10-0.20	0.10-0.20	
							44.00-52.99	0.12-0.28	0.12-0.22	0.12-0.22	
							53.00-63.50	0.12-0.28	0.12-0.22	0.12-0.22	

Remarque : le texte en gras correspond à la géométrie recommandée La nuance de la plaquette centrale est toujours 1044.

J 66


Session 2025

PAGE DRESS 9/15

Outil d'alésage micrométrique CoroBore® 825

Queue cylindrique avec arrosage par l'intérieur

TCMT, TCMX.

_	TOWN,	
	TCGT, TCGX	
	TCEX	
	TCMW	

*						Dimensi	ons, mm							
		^									900000	2000		
											(BAR)	(KG)		
DCN	DCX	4	CZCMS	CNSC	Référence de commande	DCON _{MS}	ADJLX _{RDL}	LU	LF	BD ₁			CICT	MID
19.00	23.00	06	18	1	825-23TC06-A18	18.00	2.00	77.00	128.00	18.00	70	0.731	1	TCMT 06 T1 02
23.00	29.00	06	20	1	825-29TC06-A20	20.00	3.00	81.00	132.00	20.00	70	0.606	1	TCMT 06 T1 02
28.00	36.00	06	25	1	825-36TC06-A25	25.00	4.00	101.00	158.00	25.00	70	0.951	1	TCMT 06 T1 02

Diamètres valides pour l'alésage frontal.

Pour de plus amples informations sur l'alésage en tirant, voir page K92

Pour de plus amples informations sur l'emploi d'allonges de coulisseaux, voir page K89

Pour les éléments d'outils d'alésage, les accessoires et les pièces détachées, voir www.sandvik.coromant.com

Plaquettes, voir le catalogue Outils de Tournage

CoroBore® 825

Opérations:

꿆

Conventionnel

La restriction géométrique (LU) n'est valable que lorsque le diamètre d'alésage (DC) est plus petit que le diamètre de l'accouplement (DCON_{MS}). Profondeur de trou maximum recommandée (pour l'alésage en poussant) lorsque le diamètre d'alésage (DC) est plus grand que le diamètre de l'accouplement (DCON_{MS})

CoroBore® 825 EH:

La position de l'arête de coupe unique sera correcte avec les porte-outils cylindriques ou EH coniques (disponibles en acier, carbure monobloc, métal dense) car il est possible de faire tourner l'assemblé dans le mandrin (mandrin CoroChuck 930, fretté ou à pinces) pour mettre l'arête de coupe dans la bonne position.

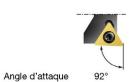
Alésage en tirant avec CoroBore® 825 (Conventionnel)

- 1. Retirer la vis sans tête de l'orifice de liquide de coupe A et la mettre en place dans l'orifice B.
- 2. Serrer A (si utilisé) + B + C au couple correct.
- 3. Mettre la broche en rotation dans le sens anti-horaire
- (MO4).

Diamètre mm	Allonge de coulisseau	Epaisseur mm	Extension diamètre mm
19-36	825A-030A	3	+6
35-56	825B-036A	3.6	+7.2
55-1275	825C-048A	4.8	+9.6

Alésage en tirant pour CoroBore® 825D (Antivibratoire)

Plage de diamètres, alésage en poussant, mm	Plage de diamètres, alésage en tirant, mm	Kit de cartouche d'alésage en tirant (un cartouche, une allonge de coulisseau)	Cartouche d'alésage en tirant	Allonge de coulisseau
19-36	31-48	825A-TC06U-BW	L825A-AF11STUC06T1	825A-030A
35-56	48-69	825B-TC06U-BW	L825B-AF15STUC06T1	825B-036A
55-167	69-181	825C-TC09U-BW	L825C-AF20STUC0902	825C-048A

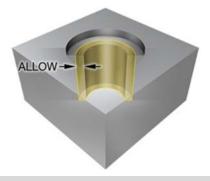

Les kits d'alésage en tirant comportent une allonge de coulisseau et un cartouche d'alésage en tirant. Attention : les diamètres pour l'alésage en tirant sont différents de ceux de l'alésage en poussant. Consulter le tableau pour connaître les plages de diamètres correctes.

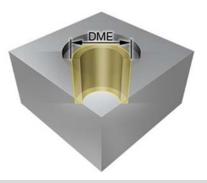
 $\label{eq:vc_substitution} \mbox{Vitesse de coupe maximum, V_c max: {\bf Conventionnel:} V_c 1200 m/min, {\bf Allégé:} V_c 600 m/min {\bf Antivibratoire:} V_c 900m/min {\bf Conventionnel:} V_c 1200 m/min, {\bf Conventionnel:} $V_c$$

Choix de la plaquette

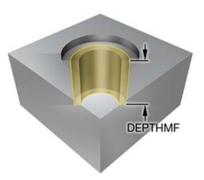
Plaquettes CoroTurn 107™

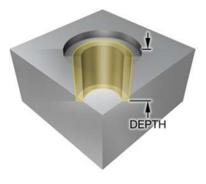
Angle d'attaque



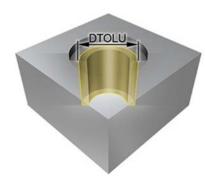


M

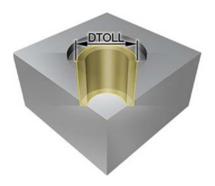

VOCABULAIRE UTILISÉ DANS L'APPLICATION COROPLUS® TOOL GUIDE


surépaisseur d'alésage au rayon

diamètre moyen de l'alésage



longueur maxi de l'alésage



longueur maxi de l'alésage

- + 1 mm de marge d'approche
- + 1 mm de marge de sortie DEPTH > DEPTHMF

tolérance supérieure de l'alésage

tolérance inférieure de l'alésage

CODES MATIÈRES SANDVIK

ISO P – Les aciers constituent le plus grand groupe de matières dans l'industrie transformatrice des métaux. Ces matières incluent les aciers non alliés, les aciers alliés, les aciers coulés et les aciers inoxydables ferritiques et martensitiques. Leur usinabilité est généralement bonne mais elle varie beaucoup en fonction de la dureté, de la teneur en carbone, etc.

ISO M – Les aciers inoxydables sont des matières alliées avec une teneur en chrome de 12 % minimum. Ils peuvent aussi contenir du nickel et du molybdène. Ils peuvent être dans différents états, par exemple ferritique, martensitique, austénitique et austénitique-ferritique (duplex). Les aciers inoxydables représentent donc une grande famille de matières. Celles-ci possèdent toutefois des caractéristiques communes du point de vue de l'usinage étant donné qu'elles génèrent beaucoup de chaleur au niveau de l'arête de coupe ainsi qu'une usure en entaille et des arêtes rapportées.

ISO K – Contrairement aux aciers, les fontes sont des matières à copeaux courts. Les fontes grises (GCI) et les fontes malléables (MCI) sont relativement faciles à usiner. Les fontes nodulaires (NCI), les fontes vermiculaires (CGI) et les fontes bainitiques (ADI) se travaillent moins bien. Toutes les fontes contiennent du SiC qui provoque une forte abrasion des arêtes de coupe.

ISO N – Les matières non ferreuses sont plus douces. Ce sont l'aluminium, le cuivre, le bronze, etc. L'aluminium est très abrasif lorsqu'il a une teneur en Si de 13 %. En général, les plaquettes avec des arêtes vives ont une longue durée de vie dans ces matières et il est possible d'appliquer une vitesse de coupe élevée.

ISO S – Les superalliages réfractaires regroupent un grand nombre de matières fortement alliées à base de fer, de nickel, de cobalt et de titane. Ce sont des matières collantes qui génèrent des arêtes rapportées et des températures élevées ; elles sont aussi sujettes à l'écrouissage en coupe. Elles sont proches du groupe ISO M, mais sont plus difficiles à usiner. La durée de vie des arêtes de coupe est courte.

ISO H – Ce groupe inclut les aciers d'une dureté comprise entre 45 et 65 HRc et les fontes en coquille dont la dureté se situe dans la plage 400 à 600 HB. Leur dureté rend ces matières difficiles à usiner. Elles génèrent une chaleur élevée à la coupe et sont très abrasives pour les arêtes de coupe.

O (Autres): Non-ISO. Thermoplastique, thermoset, GFRP (polymères/plastiques renforcés à la fibre de verre), CFRP (plastiques renforcés à la fibre de carbone), matériaux composites à la fibre de carbone, plastiques renforcés à la fibre d'aramide, caoutchoucs durs, graphique (technique). Les matériaux composites sont de plus en plus utilisés dans certains secteurs industriels, notamment l'aéronautique.

NUANCES D'ALLIAGE D'ALUMINIUM POUR LA FONDERIE

nuances	coulée	(caractér mécar 1 daN/mm	ristiques niques 2 = 10 MPa	MPa) (MPa) (MPa)		e à la corrosion	é	té	aptitude à l'anodisation	exemples d'emploi	
	mode de coulée	R _r (daN/mm²)	R _e (daN/mm ²)	A%	HBW	aptitude a		résistance	usinabilité	soudabilité	aptitude	
EN AC-AISi12Cu	Y20	15	8	1	50	Α	Α	С	В	А	Е	travail à chaud,
NiMg (48000)	Y36	28	24	< 1	100	^	^	C	В	^	_	pistons
EN AC-AlSi7Mg0,6	Y26	25	21	1	85	В	В	В	В	В	D	haute *
(42200)	Y36	32	24	3	100							résistance
EN AC -AlCu4MgTi	Y24	30	20	5	90	D	D	D	Α	D	С	haute
(21000)	Y34	32	20	8	90				^			résistance
EN AC-AISi5Cu1Mg	Y26	23	20	< 1	100	В	С	D	В	С	D	12
(45300)	Y36	28	21	< 1	110	D	U		D		0	00
EN AC-AISi12	Y20	15	7	5	50							
(44200)	Y30	17	8	6	55	Α	Α	B/C	C	Α	E	134
	Y40	24	13	1	60							
EN AC-AISi7Mg	Y26	22	18	1	75	В	В	В	В	В	D	(1)(3)
(42000)	Y36	26	22	1	90	D	Ь	Ь	Ь		0	0.0
EN AC-AIZn10Si8Mg	Y21	21	19	. 1	80	Α	В	В	Α	Α	Е	1356
(71100)	Y31	23	20	1	90				^	^	_	0000
EN AC-AIMg5	Y20	18	10	4	60	С	D	Α	Α	С	Α	1
EN AC-AISi9Cu3	Y40	24	14	1	80	В	C	D	В	F	Е	2 *
EN AC-AISi9	Y40	22	12	2	55	Α	C	B/C	C	D	E	41
EN AC-AISi12Cu1	Y40	24	14	1	70	Α	C	B/C	C	F	E	111*
EN AC-AIMg9	Y40	20	13	1	70	C	D	Α	Α	E	В	6
EN AC-AISi10Mg	Y40	24	14	1	70	Α	C	С	В	C	E	4 (1) *

Y20 : moulage sable ; Y30 : moulage coquille ; Y40 : moulage sous pression (page 169). * Très utilisé.

D : médiocre A: excellent B: bon E: éviter

F: incompatible

C: correct

1 : pièces mécaniques diverses

4 : appareils ménagers5 : bâtiment et travaux publics 2 : pièces mécaniques complexes 3 : alimentaire, chimie, robinetterie 6 : marine

NUANCES D'ALLIAGE D'ALUMINIUM CORROYÉ

nuances				caractéris mécanio aN/mm² =	ques		ésistance à la corrosion	aptitude à l'anodisation	té à l'arc	té aux gaz +	Ġ,	aptitude au travail à froid	exemples d'emploi	
		état metallurgique	R _r (daN/mm²) mini	R _e (daN/mm²) mini	A % maxi	E (daN/mm²)	résistanc	aptitude	soudabilité à l'arc	soudabilité aux brasage	usinabilité	aptitude a		
	EN AW-1050A[AI 99,5]	0	6,5	2	32							+++		
	(1050A et A5)	H14	10,5	8,5	6		++	+++	+++	+++	-	à	135	
		H18	14	12	2							+	+	
ind	EN AW-1070A[AI 99,7]	0	6	1,5	32							+++		
aluminium pur	EN AW-1080A[AI 99,8]	H14	10	7	7	6 700	++	+++	+++	+++	-	à	1 5 9	
mini	(1070A-1080A-A7-A8)	H18	12,5	10,5	2							+		
alu	EN AW-1200[AI 99,0]	0	7,5	2,5	30							+++		
	(1200 et A4)	H14	11,5	9,5	6		++	+++	+++	+++	-	à	1 2	
	Particular in the second	H18	15	13	2							+		
=	EN AW-3003[AIMn1Cu]	0	9,5	3,5	23							+++		
+ Mn	(3003 et AM1)	H14	14,5	12,5	5	6 700	++	++	+++	+++	+	++	135	
A		H18	19	17	2							+		
	EN AW-5005[AIMg1]	0	10	3,5	24							+++		
	(5005 et AG0,6)	H14	14,5	12	5		+++	+++	+++	+++	+	+	156	
E		H18	18,5	16,5	2								1 5 6 2	
+ magnésium	EN AW-5052[AIMg2,5]	0	17	6,5	19		74					+++		
mag	(5052)	H34	23	15	7	7 000	+++	+++	+++	+++	+	+	156	
AI +		H38	27	21	4									
	EN AW-5086[AIMg4]	0	24	10	16							+++		
	(5086 et AG4MC)	H22	27,5	18,5	10		+++	++	+++	+++	++	+	270	
		H24	30	22	8						7 77			
	EN AW-2014[AlCu4SiMg]	0	22	14	16									
	(2014 et AU4SG)	T4	40	25	14		_	+	++	+	++	++	278	
/re		T6	46	40	6									
cuivre	EN AW-2017A[AlCu4MgSi]	0	22,5	14,5	13	7 400			1.1		0.10.10.		000	
A +	(2017 et AU4G)	T4	39	25	12	, 100		++	++	+	++	++	247	
	EN AW-2024[AlCu4Mg1]	0	22	14	13		_	+	++	+	++	++	248	
	(2024 et AU4G1)	T42	42,5	26	12				тт		7.7	77	W 4 6	
	EN AW-6061[AlMg1SiCu]	0	15	8,5	19							++		
Mg	(6061)	T4	20,5	11	18		++	+++	+++	+++	+	à	2700	
+		T6	29	24	8	7 000						+		
iS +	EN AW-6082[AlSi1MgMn]	0	15	8,5	18	7 000						++		
A	(6082 et ASGM0,7)	T4	20,5	11	14		++	+++	+++	+++	+	à	2700	
		T6	30	25	9							+	1	
(2)	EN AW-7020[AIZn4,5Mg1]	T4	32	21	14		, ,		رر	ارر	1.1	++	268	
r zinc	(7020 et AZ5G)	T6	35	28	10	7 200	++	++ ++	++	++	++	++	+	& @ @
A+	EN AW-7075[AIZn5,5MgCu]	0	27,5	14,5	10	1 200	,		,	,	11	++	248	
	(7075 et AZ5GU)	T6	54	47	6		+	++	+	+	++	+		

(entre parenthèses : ancienne désignation) — R_r, R_e et A% varient avec la forme et l'épaisseur des profilés. * Tôles et bandes (54 nuances) ; voir aussi NF EN 755-2 barres et tubes (61 nuances).

+++: excellente

++: bonne

+ : moyenne

- : faible

1 : chaudronnerie, emboutissage

2 : pièces forgées

③: pièces filées : boîtes, aérosols ...

4 : boulonnerie

(5): chimie, alimentaire

DOSSIER

RESSOURCE

6 : bâtiment

7 : mécanique, transport

8 : aéronautique

(9): décoration 10 : marine (1) : emballage

(2) : ustensiles de cuisine

Durée: 6 h Session 2025 PAGE DRESS 12/15

DESCRIPTIF TECHNIQUE CENTRE D'USINAGE HAAS UMC 500

Courses

Axe X	610 mm
Axe Y	406 mm
Axe Z	406 mm
Nez de broche vers plateau/plaque (~ max.)	508 mm
Nez de broche vers plateau/plaque (~ min.)	102 mm

Broche

Caractéristiques nominales maximales	22.4 kW
Vitesse max.	12'000 rpm
Cône de broche	DIN 69871-A40
Lubrification de roulement	Air / Oil Injection
Refroidissement	Air Cooled

B-Axe d'inclinaison

Course	120° à 35°
Vitesse max.	50°/sec
Couple max.	2514 Nm
Couple de freinage	1220 Nm

C-Axe de rotation

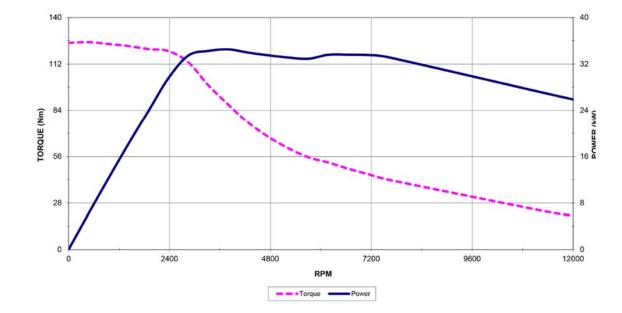
C-Axe de l'Otation	
Course	360°
Vitesse max.	50°/sec
Couple max.	2514 Nm
Diamètre en l'air de la pièce max.	457 mm
Couple de freinage	1220 Nm

Vitesse d'avances

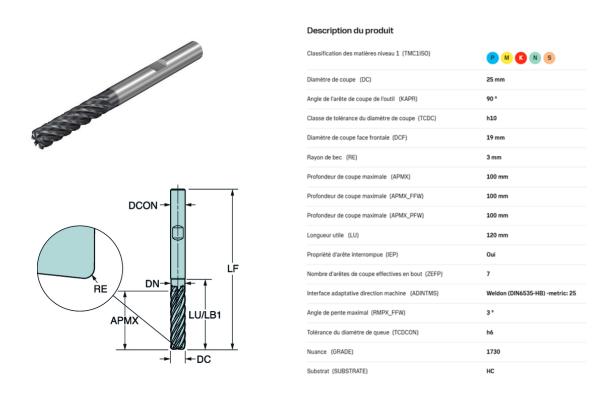
CONCOURS GÉNÉRAL DES MÉTIERS TECHNICIEN EN RÉALISATION DE PRODUITS MÉCANIQUES	CODE : 25-CGM-TRPM-E	DOSSIER RESSOURCE	Durée: 6 h	Session 2025	PAGE DRESS 13/15
TECHNICIEM EN REALISATION DE L'RODOTTO MECANIQUES		INLUGUINGE			

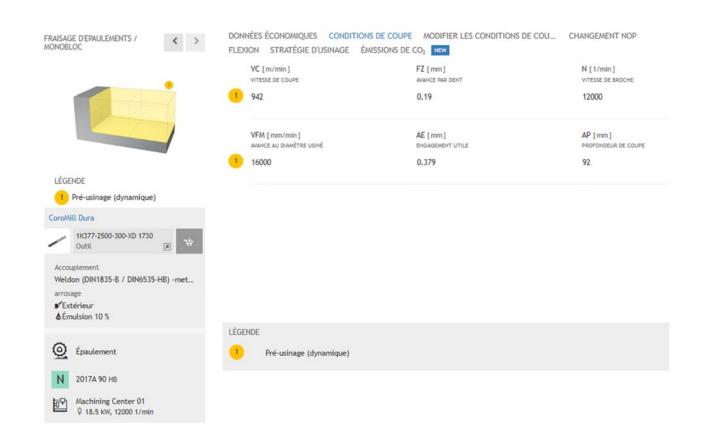
Fraisage maximal	16.5 m/min
Avances rapides sur X	22.9 m/min
Avances rapides sur l'axe Y	22.9 m/min
Avances rapides sur l'axe Z	22.9 m/min

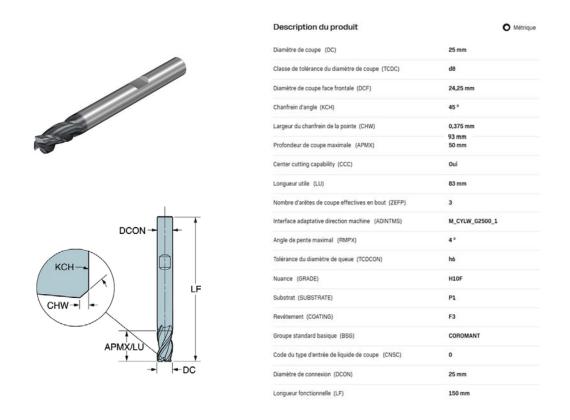
Moteurs des axes

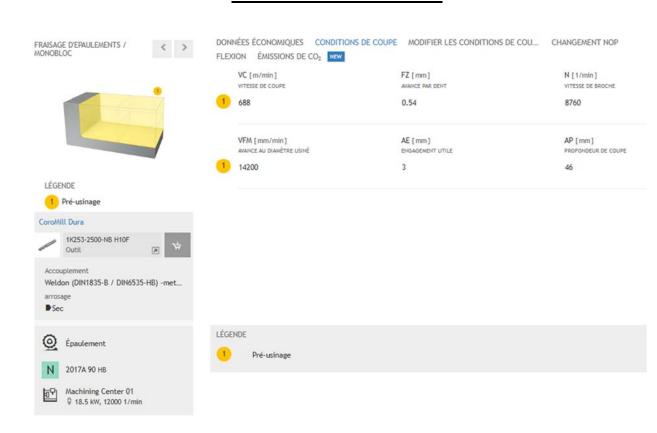

Effort max. X	14680 N
Effort max. Y	14680 N
Effort max. Z	18015 N

Chargeur d'outils


onargoar a oamo	
Туре	SMTC
Capacité	30+1
Diamètre d'outil max. (plein)	64 mm
Diamètre d'outil max. (adjacent vide)	127 mm
Longueur d'outil max. (depuis la base de mesure)	305 mm
Poids d'outil max.	5.4 kg
D'outil à outil (moyenne)	2.8 s
Copeau à copeau (moyenne)	3.6 s


VF Series, VM Series, UMC Series, EC-400 12,000-rpm, Inline-Drive Spindle 40 Taper - 22.4 kW Standard: VF-SS, VM, UMC-500SS/UMC-750SS/1000SS Optional: EC-400,


FRAISE CARBURE MONOBLOC COROMILL® DURA POUR L'USINAGE GÉNÉRAL RÉFÉRENCE : 1K377-2500-300-XD 1730


RECOMMANDATIONS DONNÉES DE COUPE (ADAPTÉES AUX CAPACITÉS MACHINE) COROPLUS® TOOL GUIDE

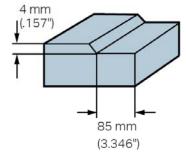
FRAISE CARBURE MONOBLOC COROMILL® DURA POUR L'USINAGE GÉNÉRAL RÉFÉRENCE : TM-DURA-911217 H10F (PERSONNALISATION « TAILOR MADE »)

RECOMMANDATIONS DONNÉES DE COUPE (ADAPTÉES AUX CAPACITÉS MACHINE) COROPLUS® TOOL GUIDE

EXTRAIT DE DOCUMENTATION TECHNIQUE:

« MANUEL DE FORMATION TECHNOLOGIE DE L'USINAGE » SANDVIK COROMANT

Calcul des conditions de coupe


Exemple en surfaçage

Etant donné:

- Vitesse de coupe, v_C = 225 m/min (738 pieds/min)
- Avance à la dent, f_Z = 0.21 mm (.0082 pouce)
- Nombre de dents de la fraise, $z_n = 5$
- Diamètre fraise, DC = 125 mm (4.921 pouces)
- Profondeur de coupe, a_p = 4 mm (.157 pouce)
- Engagement en coupe, a_e = 85 mm (3.346 pouces)

Besoin:

- Vitesse de broche, n (tr/min)
- Avance table, v_f (mm/min (pouces/min)
- Débit copeaux, Q cm³/min (pouces³/min)
- Puissance consommée kW (Hp)

Vitesse de broche

Etant donné : v_c = 225 m/min (738 pieds/min)

Métrique

$$n = \frac{v_c \times 1000}{\pi \times DC}$$
 (tr/min)

$$n = \frac{225 \times 1000}{3.14 \times 125} = 575 \text{ tr/min}$$

Pouces

$$n = \frac{v_c \times 12}{\pi \times DC}$$
 (tr/min)

$$n = \frac{738 \times 12}{3.14 \times 4.921} = 575 \text{ tr/min}$$

Avance table

Etant donné : n = 575 tr/min

Métrique

$$v_f = n \times f_z \times z_n$$
 (mm/min)

Pouces

$$v_f = n \times f_z \times z_n$$
 (pouces/min)

$$v_f = 575 \times 0.21 \times 5 = 600 \text{ mm/min}$$

$$V_f = 575 \times .0082 \times 5 = 23.6 \text{ pouces/min}$$

Débit copeaux

Etant donné v_f = 600 mm/min (23.6 pouces/min)

Métrique

$$Q = \frac{a_{\rm p} \times a_{\rm e} \times v_{\rm f}}{1000} \quad \text{(cm}^3\text{/min)}$$

$$Q = \frac{4 \times 85 \times 600}{1000} = 204 \text{ cm}^3/\text{min}$$

Pouces

$$Q = a_p \times a_e \times v_f$$
 (pouces3/min)

$$Q = .157 \times 3.346 \times 23.6 = 12.4 \text{ pouces}^3/\text{min}$$