BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE

Physique-Chimie et Mathématiques

Durée de l'épreuve : **3 heures**Coefficient 16

L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de la calculatrice sans mémoire, « type collège » est autorisé.

Dès que ce sujet vous est remis, assurez-vous qu'il est complet.

PHYSIQUE-CHIMIE	14 / 20 points
	·
MATHÉMATIQUES	6 / 20 points

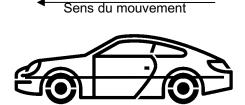
Chaque candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.

Il sera tenu compte de la clarté des raisonnements et de la qualité de la rédaction dans l'appréciation des copies.

Ce sujet comporte 15 pages numérotées de 1 / 15 à 15 / 15.

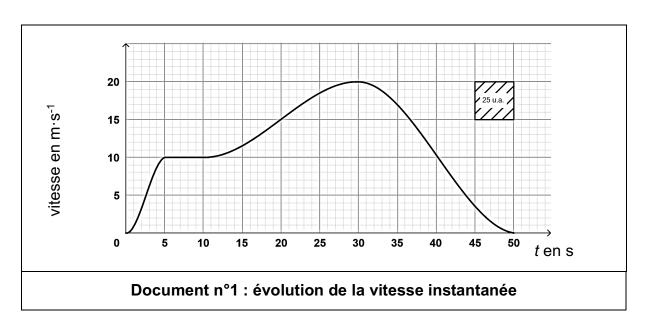
La page 15 comporte le document réponse, à rendre avec la copie.

25-2DPCMAPO1 Page : 1 / 15


EXERCICE 1 (4 points)

Physique-Chimie et Mathématiques

Accélération d'un véhicule


Un véhicule électrique de masse, notée M, de valeur 1 600 kg, se déplace sur une route horizontale et rectiligne.

Le constructeur souhaite vérifier si l'intensité de la force \overrightarrow{F} de traction vaut environ 800 N pour une accélération de 0,5 m·s⁻².

Le graphique du **document n°1** représente l'évolution de la vitesse instantanée v(t) (exprimée en m·s⁻¹) en fonction du temps t (exprimé en seconde) durant 50 secondes.

1 u.a. = 1 unité d'aire.

L'accélération instantanée est la dérivée de la vitesse par rapport au temps :

$$a(t) = \frac{\mathrm{d}v}{\mathrm{d}t}(t)$$

avec:

- v(t) la vitesse instantanée en m·s⁻¹ à l'instant t;
- a(t) l'accélération instantanée en m·s⁻² à l'instant t.

25-2DPCMAPO1 Page : 2 / 15

1. Décrire la nature du mouvement de la voiture sur chacun des intervalles de temps [0; 5], [5; 10], [10; 30] et [30; 50].

On s'intéresse à l'accélération instantanée du véhicule sur l'intervalle [1 ; 4], et on admet que sur cet intervalle, on a : v(t) = 2t.

2. Déterminer la valeur de l'accélération *a(t)* sur l'intervalle [1 ; 4].

La distance totale, notée *D* et exprimée en mètre, parcourue par le véhicule en 50 secondes est donnée par :

$$D = \int_0^{50} v(t) dt$$

- **3.** Donner, en exploitant le graphique, une estimation de la distance totale parcourue par le véhicule.
- **4.** Déduire la valeur de la vitesse moyenne du véhicule, exprimée en km·h⁻¹, dans l'intervalle de temps [0 ; 50].
- **5.** Établir l'inventaire des forces qui agissent sur le véhicule lorsqu'il est en mouvement.

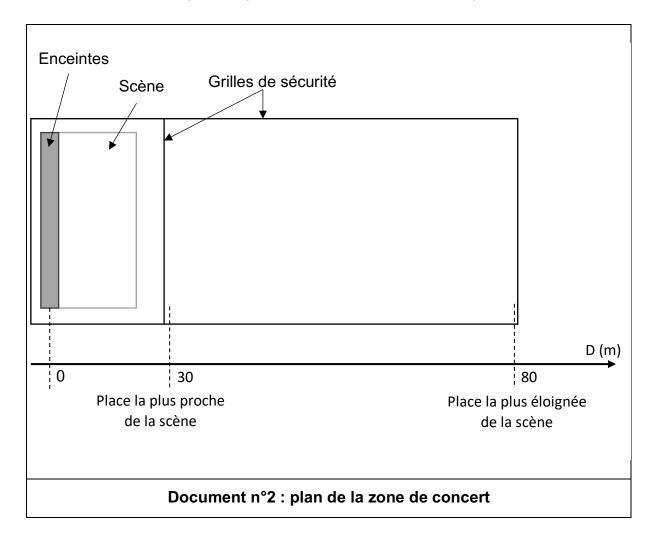
On admet que le principe fondamental de la dynamique se réduit ici à la relation $\overrightarrow{F} = M \cdot \overrightarrow{a}$, où \overrightarrow{F} est la force de traction du véhicule et \overrightarrow{a} le vecteur accélération.

6. Indiquer la force négligée dans cette étude.

Dans l'intervalle de temps [15 ; 25], l'accélération du véhicule a pour norme 0,5 m·s⁻².

7. Vérifier si l'intensité de la force \overrightarrow{F} de traction pour une accélération de 0,5 m·s⁻² vaut bien environ 800 N dans l'intervalle de temps [15 ; 25].

25-2DPCMAPO1 Page: 3 / 15


EXERCICE 2 (6 points)

Physique-Chimie

Préserver son audition

Un spectateur se rend à un concert en plein air (**document n°2**) et souhaite profiter du spectacle tout en préservant son audition.

Il se demande s'il doit porter des protections auditives ou se placer le plus loin possible de la scène afin de ne pas s'exposer à des niveaux sonores supérieurs à 90 dB.

25-2DPCMAPO1 Page : 4 / 15

Dans un premier temps, on souhaite vérifier si le niveau sonore, lorsque l'on s'éloigne au maximum de la scène, respecte la limite de 90 dB.

Pour cela, une expérience est réalisée : on émet un son puis, sans modifier ses caractéristiques, on trace l'évolution de son intensité sonore en fonction de l'inverse du carré de la distance à la source sonore.

Le **document n°3** précise la liste du matériel disponible.

- Générateur basses fréquences (GBF)
- Haut-parleur
- Sonomètre
- Ordinateur muni d'un tableur-grapheur
- Mètre ruban de 10 m
- Oscilloscope
- Microphone

Document n°3 : liste du matériel disponible

Remarque : l'ensemble du matériel proposé sur le **document n°3** n'est pas nécessairement utilisé.

1. Proposer, à l'aide du matériel listé dans le **document n°3**, un protocole permettant d'obtenir le graphique présent sur le **DOCUMENT-RÉPONSE**.

L'intensité sonore mesurée à 40 cm de la source est de $18,6 \times 10^{-6} \, \text{W} \cdot \text{m}^{-2}$.

 Ajouter cette mesure sur le graphique du DOCUMENT-RÉPONSE à rendre avec la copie.

Le niveau sonore, noté L, exprimé en dB, est relié à une intensité sonore I d'un son, exprimée en W·m⁻², par :

$$L = 10 \log \left(\frac{I}{I_0}\right)$$
 avec $I_0 = 1,00 \times 10^{-12} \text{ W} \cdot \text{m}^{-2}$.

L'intensité sonore I₀ correspond au seuil d'audibilité.

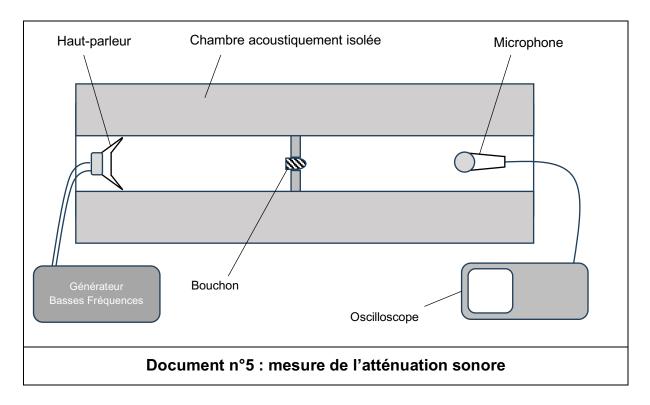
L'intensité sonore peut se déduire du niveau sonore à l'aide de la relation :

$$I = I_0 \times 10^{\frac{L}{10}}$$

Document n°4 : lien entre niveau sonore et intensité sonore

25-2DPCMAPO1 Page : 5 / 15

3. Décrire l'évolution de l'intensité sonore en fonction de l'inverse du carré de la distance, notée D, à la source en utilisant le **DOCUMENT-RÉPONSE**.


Les mesures présentées dans le **DOCUMENT-RÉPONSE** peuvent être modélisées à l'aide de la relation :

$$I = 14,3 \times \frac{1}{D^2}$$

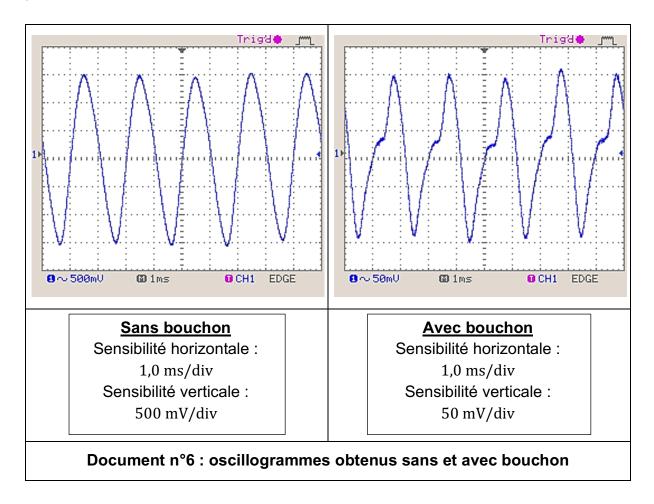
- **4.** Montrer, à l'aide des éléments décrits dans les **documents n°2** et **n°4**, que le niveau sonore au plus loin des enceintes est de 93 dB.
- 5. Conclure quant à la nécessité de porter des protections auditives.

Dans un deuxième temps, on veut vérifier que les protections auditives peuvent permettre au spectateur de se placer à n'importe quelle distance de la scène. Pour cela, on détermine l'atténuation due à un bouchon de la protection auditive.

On réalise l'expérience décrite sur le **document n°5** afin d'obtenir deux oscillogrammes : un premier sans bouchon et un second avec bouchon.

25-2DPCMAPO1 Page: 6 / 15

L'atténuation du niveau d'intensité sonore s'exprime par la relation :


$$A = 20 \log \left(\frac{U_{sans}}{U_{avec}} \right)$$

avec:

- A exprimée en dB;
- U_{sans} exprimée en V, l'amplitude du signal mesurée sans bouchon;
- Uavec exprimée en V, l'amplitude du signal mesurée avec bouchon.

L'atténuation caractérise la baisse du niveau sonore subie par le son qui a été transmis à travers la protection auditive.

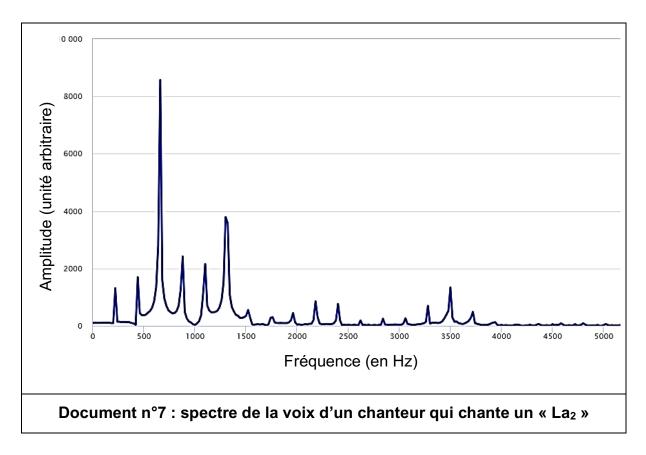
Le **document n°6** propose les signaux en sortie du dispositif de mesure avec ou sans protection auditive.

6. Déterminer, à partir du **document n°6**, l'atténuation due à la protection auditive.

À la place la plus proche de la scène le niveau sonore est de 102 dB.

7. Déterminer le niveau sonore perçu par le spectateur placé juste devant la scène lorsqu'il porte des protections auditives.

25-2DPCMAPO1 Page: 7 / 15


Les protections auditives lui permettent donc de se placer où il le souhaite devant la scène. Il se demande si les protections auditives ne vont pas modifier le son qu'il perçoit.

Dans un troisième temps, on souhaite observer les éventuels effets des protections auditives sur la perception du son.

8. Déterminer, à l'aide du **document n°6**, la fréquence du son, sans et avec protection auditive.

Un enregistrement de la voix d'un chanteur a été réalisé. Il chante un La₂ (220 Hz).

Le spectre en amplitude de ce son est représenté sur le document n°7.

9. Indiquer, en justifiant la réponse, si la voix du chanteur est un son pur ou un son complexe.

25-2DPCMAPO1 Page: 8 / 15

Le dispositif expérimental décrit par le **document n°5** a permis d'effectuer d'autres mesures d'atténuation pour la même protection auditive, mais à des fréquences différentes. Les résultats expérimentaux sont rassemblés dans le **document n°8**.

Fréquence (en Hz)	220	500	1 000	1 500	2 000	2 500	3 000	3 500
Atténuation (en dB)	19,4	19,4	19,4	19,4	19,2	19,2	18,2	16,9

Document n°8 : mesures d'atténuation pour différentes fréquences

10. Indiquer, en justifiant la réponse, si la voix du chanteur perçue par le spectateur est modifiée par le port de la protection auditive.

25-2DPCMAPO1 Page : 9 / 15

EXERCICE 3 (4 points)

Mathématiques

Les deux parties de cet exercice sont indépendantes.

Partie I

On considère les nombres complexes $z_1 = \sqrt{3} - i$ et $z_2 = 2e^{i\frac{\pi}{4}}$ où i désigne le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

- **1.** Écrire le nombre z_1 sous forme exponentielle. Détailler les calculs.
- **2.** Démontrer que le nombre $Z = z_1^3 \times z_2^2$ est un nombre réel en détaillant les calculs.

Partie II

On considère l'équation différentielle (E): y' = -4y + 80 où y est une fonction définie et dérivable sur **R** et y' la fonction dérivée de y.

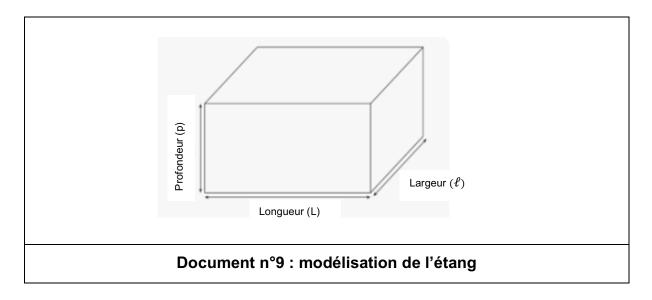
- **3.** Déterminer l'ensemble des solutions de l'équation différentielle (*E*).
- **4.** En déduire la solution f de l'équation différentielle (E) qui vérifie f(0) = 100.
- **5.** Donner, sans la justifier, la limite de f en $+\infty$.

25-2DPCMAPO1 Page: 10 / 15

EXERCICE 4 (6 points)

Physique-Chimie

Un traitement respectueux de la biodiversité


Un agriculteur se trouve confronté à la prolifération de plantes vertes dans l'eau de son étang.

Souhaitant préserver la biodiversité, c'est-à-dire le respect des micro-organismes (bactéries par exemple), des végétaux et des animaux dans l'étang, il décide de procéder à une mesure du pH de l'eau.

Il mesure un pH de 5,8. Cette mesure n'est pas conforme aux préconisations environnementales : il cherche des solutions pour diminuer l'acidité de l'eau de son étang.

L'agriculteur se demande s'il est préférable d'ajouter de l'eau ou de procéder à un ajout de carbonate de calcium CaCO₃ (s).

Le **document n°9** décrit le modèle retenu pour l'étang. Celui-ci sera assimilé à un parallélépipède rectangle de volume $V = L \times \ell \times p$ (longueur 50,0 m ; largeur 10,0 m ; profondeur 4,0 m).

- 1. Nommer l'appareil qui permet la mesure du pH d'une solution.
- 2. Indiquer pour quelles valeurs du pH une solution est dite acide, neutre ou basique.

25-2DPCMAPO1 Page: 11 / 15

L'acidité d'une solution est liée à la concentration en ions oxonium H_3O^+ (aq). En milieu naturel, la concentration en ions oxonium doit être telle que :

$$1.1 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1} \le [\text{H}_3\text{O}^+ (\text{aq})] \le 3.2 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$$

3. Calculer les pH correspondant à ces deux concentrations limites.

Le **document n°10** indique, suivant le pH de l'eau de l'étang, le niveau de risques pour la préservation de la biodiversité.

рН	Poissons	Plantes	Bactéries								
< 5,5	Risque fort	Risque fort	Risque fort								
5,5 – 6	Risque fort	Pas de risque	Risque fort								
6 – 6,5	Risque faible	Pas de risque	Risque faible								
6,5 – 7	Risque faible	Risque faible	Risque faible								
7 – 7,5	Pas de risque	Risque fort	Pas de risque								
7,5 – 8	Pas de risque	Risque fort	Pas de risque								
> 8	Risque fort	Risque fort Risque fort									
Document n°10 : pH et risque pour la biodiversité											
D'après <u>I</u>	D'après https://wiki.myfood.eu/docs/gerer-acidite consulté 12/12/2024										

- **4.** Indiquer, à l'aide du **document n°10**, la (ou les) plage(s) de valeurs de pH préconisée(s) pour la préservation de la biodiversité de l'étang.
- 5. Citer les espèces aquatiques en danger si l'eau de l'étang est maintenue à un pH de 5,8.
- **6.** Montrer que la concentration initiale en ions oxonium H_3O^+ (aq) présents dans l'étang, notée C_i , vaut 1.6×10^{-6} mol·L⁻¹.
- 7. Calculer, en m³ puis en litre, le volume initial de l'étang.

On donne la relation:

$$C = \frac{n}{V}$$

où:

- la concentration *C* est exprimée en mol·L⁻¹;
- la quantité de matière n est exprimée en mol ;
- le volume V est exprimé en L.

25-2DPCMAPO1 Page: 12 / 15

8. En déduire que la quantité de matière initiale, notée n_i , d'ions oxonium présents dans l'eau de l'étang vaut 3,2 mol.

L'agriculteur souhaite augmenter la valeur du pH de l'eau de 5,8 à 6,8. Il veut vérifier préalablement la faisabilité des deux techniques imaginées, c'est-à-dire l'ajout d'eau dans l'étang ou l'ajout de carbonate de calcium solide CaCO₃ (s).

Variation du pH par ajout d'eau dans l'étang.

9. Indiquer le sens d'évolution du pH de l'eau de l'étang lors de l'ajout d'eau, supposée pure.

Au cours d'une dilution, la quantité de matière du soluté ne varie pas :

$$n_i = n(\text{avant dilution}) = n(\text{après dilution}).$$

- **10.** Déterminer le volume d'eau final V_f qui permettrait d'atteindre le pH souhaité pour l'eau de l'étang.
- **11.** Commenter le résultat obtenu à la question précédente.

Variation du pH par ajout de carbonate de calcium solide CaCO₃ (s) dans l'eau.

Dans ce domaine de pH (entre 5,8 et 6,8), la réaction entre les ions oxonium H_3O^+ (aq) et les ions carbonate CO_3^{2-} (aq) ne conduit pas à une espèce chimique majoritaire.

Donc dans ces conditions, les couples acide / base considérés, sont :

$$H_3O^+(aq)/H_2O(\ell)$$
 et $HCO_3^-(aq)/CO_3^{2-}(aq)$.

12. Écrire l'équation-bilan de la réaction acido-basique entre les ions oxonium H_3O^+ (aq) et les ions carbonate CO_3^{2-} (aq).

Pour s'approcher du pH souhaité, l'agriculteur doit ajouter une quantité de matière d'ions carbonate CO_3^{2-} (aq) de 3,4 mol, notée n.

On donne la relation:

$$n = \frac{m}{M}$$

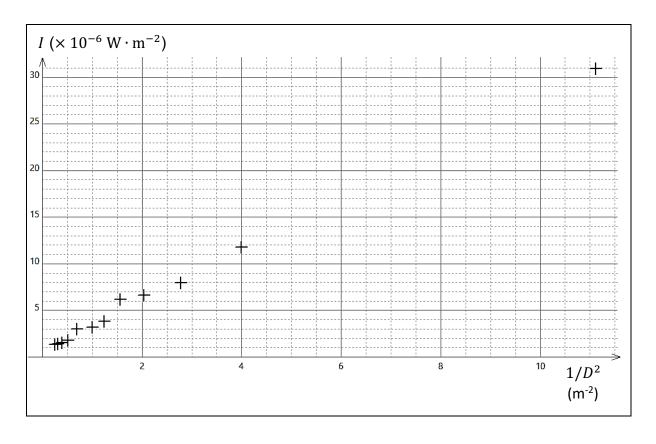
οù

- la quantité de matière n est exprimée en mol ;
- la masse m est exprimée en g ;
- la masse molaire *M* est exprimée en g·mol⁻¹.

25-2DPCMAPO1 Page: 13 / 15

On donne également les valeurs des masses molaires :

- calcium, $M_{Ca} = 40,1 \text{ g} \cdot \text{mol}^{-1}$;
- carbone, $M_C = 12.0 \text{ g} \cdot \text{mol}^{-1}$;
- oxygène, $M_O = 16.0 \text{ g} \cdot \text{mol}^{-1}$.
- 13. Calculer la masse de carbonate de calcium ajoutée à l'eau de l'étang.


Choix de la méthode pour faire varier le pH.

14. Choisir, en justifiant la réponse, la méthode la plus réaliste pour rectifier l'acidité de l'eau de l'étang.

25-2DPCMAPO1 Page : 14 / 15

DOCUMENT-RÉPONSE, à rendre avec la copie

Réponse à la question 2. de l'exercice n°2.

25-2DPCMAPO1 Page : 15 / 15

Modèle CCYC : ©DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM: (en majuscules)																					
N° candidat :		uméros	figure	nt sur	la con	vocatio	n si b	esoin	deman	dorà	in sun	roillant		N° (d'ins	crip	tio	n :			
Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les ni	umeros	/ Ingure	nt sur	ia con	/ocatic	on, si b	esom	deman	derat	in surv	emant	.)								1.2