BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2022

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE

Ingénierie, innovation et développement durable Systèmes d'Information et Numérique

Durée de l'épreuve : 4 heures

Aucun document autorisé.

L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de la calculatrice sans mémoire, « type collège » est autorisé.

Dès que ce sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 32 pages numérotées de 1/32 à 32/32.

Constitution du sujet :

Partie commune (durée indicative 2h30)	12 points
Partie spécifique (durée indicative 1h30)	8 points

Le candidat traite la partie commune et la partie spécifique en suivant les consignes contenues dans le sujet.

Ces 2 parties sont indépendantes et peuvent être traitées dans un ordre indifférent.

Tous les documents réponses sont à rendre avec la copie.

Dans la partie commune, le candidat doit choisir entre traiter la partie 2 (choix 1) ou la partie 4 (choix 2).

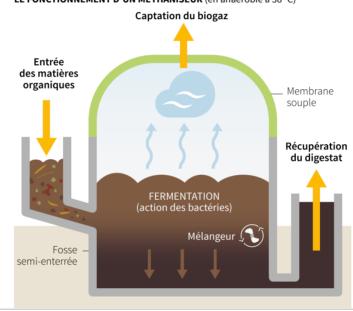
Les parties 1, 3 et 5 sont à traiter obligatoirement.

22-2D2IDSINNC1 Page: 1/32

PARTIE COMMUNE (12 points)

MÉTHANISEUR AGRICOLE

0	Présentation de l'étude et questionnement	pages	3 à 8
0	Documents techniques	pages	9 à 17
0	Documents réponses (à rendre avec la copie)	pages	18 à 20


22-2D2IDSINNC1 Page : 2/32

Mise en situation

Dans le cadre de la transition énergétique, l'évolution vers la production de gaz d'origine non fossile est indispensable. Les méthaniseurs agricoles sont une solution pour y parvenir . d'ailleurs le nombre d'installations et de projets en cours est en plein essor...

Le méthaniseur transforme de la matière organique (biomasse) en biogaz (contenant du méthane) et en digestat (matière digérée restante), grâce à des microorganismes.

C'est un processus biologique naturel. La réaction a lieu en l'absence d'oxygène (décomposition anaérobique) et sous l'effet de la chaleur avec une température comprise entre 38 et 42°C dans une ou deux cuves fermées et mélangées appelées « digesteurs » (sorte de tube digestif).

LE FONCTIONNEMENT D'UN MÉTHANISEUR (en anaérobie à 38 °C)

Les matières organiques appelées aussi « intrants » (par exemple les déjections animales telles que le lisier, les résidus de cultures céréalières...) vont être décomposées par les micro-organismes pendant une durée de 30 à 70 jours généralement.

Cette dégradation génère du biogaz ; ce dernier constitue une énergie renouvelable. Il est essentiellement composé de méthane (CH₄) et de dioxyde de carbone (CO₂).

Le biogaz peut être valorisé directement dans une chaudière, par exemple, ou encore être épuré pour ne conserver que le méthane : on parle alors de « biométhane ».

Ce gaz est équivalent au gaz de ville, il peut être injecté directement sur le réseau de gaz existant pour chauffer des logements ou bien encore recharger des véhicules fonctionnant au « GNV » (Gaz Naturel pour Véhicules).

Les résidus obtenus, à savoir les digestats, ont des propriétés fertilisantes. Ils peuvent donc être valorisés après séparation de la matière solide (digestat solide) et de la partie liquide (digestat liquide) sous diverses formes : compost, épandage, etc.

Pour information, le processus de méthanisation est un phénomène qui se déroule aussi naturellement dans l'appareil digestif des bovins ou dans les marais.

22-2D2IDSINNC1 Page : 3/32

Partie 1 – Les méthaniseurs sont-ils une alternative pour permettre un développement durable ?

Tout le monde ou presque a déjà entendu parler de panneaux photovoltaïques ou d'énergie solaire. Ce n'est pas forcément le cas pour le biogaz produit par les méthaniseurs.

Question 1.1

DT1

Comparer la part d'énergie renouvelable issue du solaire photovoltaïque à celle provenant du biogaz pour l'année 2018.

Conclure si le biogaz est une alternative à prendre au sérieux ou non dans les années à venir.

Le biogaz peut être valorisé directement, par exemple en cogénération, ou épuré afin de l'utiliser sous forme de biométhane.

Question 1.2

Lister les 4 « variantes » de valorisation finale du biogaz.

DT2

Bien que la part d'énergie renouvelable issue du biogaz soit faible (quelques pourcents), les quantités énergétiques produites sont toutefois considérables. En effet, avec une production d'environ 4 TWh effective sur l'année 2020, l'énergie produite par le biogaz a tout de même permis de fournir l'intégralité des besoins énergétiques de 350 000 foyers.

Les objectifs de transition énergétique imposaient à horizon 2030 de produire 10 % de gaz d'origine renouvelable (biométhane). Cependant, avec la conjoncture de la Covid survenue en 2020, ces objectifs ont été revus à la baisse par les pouvoirs publics.

Question 1.3

DT3

Relever quels sont les nouveaux attendus minimum en % et en TWh/an à l'horizon 2030.

On dénombrait, en mars 2020, 139 installations en service et plus de 1134 projets en cours (demandes en cours d'étude).

Question 1.4

DT4

Relever la capacité de production totale possible en TWh/an de tous ces projets déclarés.

Conclure sur la capacité à atteindre le nouvel objectif fixé si 100 % des projets sont réalisés d'ici 2030.

22-2D2IDSINNC1 Page : 4/32

Chaque kWh de gaz vert produit, injecté et consommé permet une économie de 188 g de CO₂ / kWh par rapport à une production de gaz conventionnelle.

Question 1.5

Calculer le nombre de tonnes d'émission de CO₂ ainsi évité chaque année en France en considérant une production de gaz équivalente à 21x10⁹ kWh à l'horizon 2030.

Partie 2 (choix 1) – Comment choisir le processus de méthanisation adapté aux ressources disponibles et le mode de production d'énergie finale optimum ?

L'objectif de cette partie est de valider les choix qui ont été faits au niveau du processus de méthanisation : type de méthaniseur, choix de paramètres liés au process (température, etc.) ainsi que le choix fait pour la valorisation finale du biogaz.

On donne ci-contre un aperçu du schéma d'implantation aérien du site de méthanisation.

Le détail des constituants et les principaux flux d'énergie et de matières sont donnés sur le schéma de principe du DT5.

Question 2.1
DT5, DT8
DR1

Compléter, sur le document **DR1**, les principaux constituants du méthaniseur à l'aide des termes suivants :

« chaudière biogaz », « digesteur », « post-digesteur », « poste d'épuration biogaz », « poste d'injection biométhane », « stockage digestat liquide ».

Tracer en rouge, sur le document **DR1**, le flux du biogaz depuis sa fabrication dans le digesteur jusqu'au poste d'épuration (d'où ressortira du biométhane après épuration).

Afin d'assurer la production de biogaz, il est nécessaire de chauffer le digesteur et le postdigesteur à une température adaptée, ce qui favorisera le processus de méthanisation par la décomposition de bactéries de type « mésophile » ou « thermophile ».

Le choix du type de décomposition influencera aussi le temps de séjour du digestat brut. La chauffe est assurée directement à partir du biogaz produit grâce à la chaudière biogaz.

22-2D2IDSINNC1 Page : 5/32

Question 2.2

Justifier le choix retenu de s'orienter vers une décomposition mésophile en se limitant au point de vue énergétique.

Question 2.3

DT8 DR2

DT7

DT6

Déterminer par tracé, sur le document **DR2**, la température optimale permettant le meilleur taux de croissance des méthanogènes en décomposition mésophile et le temps de séjour dans le digesteur correspondant.

Conclure quant aux choix qui ont été retenus pour les valeurs de ces 2 paramètres pour notre installation.

Question 2.4

Expliquer le choix retenu de s'orienter vers l'injection de biométhane sur le réseau en valorisation finale, plutôt que la cogénération.

Partie 3 – Comment assurer la production optimale de biométhane au niveau du processus tout en limitant l'impact sur l'environnement ?

L'objectif de cette partie est de valider que le choix des intrants est judicieux, que le dimensionnement des éléments de stockage est correct et que le rendement de l'installation est optimum.

Question 3.1 DT9. DT10

Identifier le type d'agriculture prépondérante en Picardie (région Hauts-de-France).

Expliquer en quoi la Picardie est une terre propice à la méthanisation compte tenu du type d'intrant qu'elle propose.

Le méthaniseur fonctionnant 24h/24 et 7j/7, celui-ci dispose d'un incorporateur automatisé (cuve de stockage tampon) capable de couvrir les besoins journaliers en intrants solides. Ainsi, cela n'oblige pas à avoir une personne sur site en permanence et limite le temps de travail à 1h ou 2h le week-end pour la personne d'astreinte.

La masse volumique des intrants solides est de 700 kg·m⁻³.

Question 3.2 DT8. DT11

Calculer le tonnage journalier en intrants solides à stocker dans l'incorporateur.

En déduire la capacité journalière de stockage nécessaire en m³ en intrants solides.

Conclure si l'incorporateur retenu satisfaisait au besoin journalier.

L'installation est dimensionnée pour assurer un débit continu de biogaz de 500 Nm³·h⁻¹ (un normaux mètre cube par heure, noté Nm³·h⁻¹, correspond au débit en mètre cube par heure pour une température et une pression normalisée).

22-2D2IDSINNC1 Page : 6/32

Question 3.3

DT12

Justifier le fait que la solution retenue pour l'épuration du biogaz permet de filtrer en continu cette quantité de biogaz.

En déduire le débit injectable de biométhane en Nm³·h¹¹ en sortie du poste d'épuration compte tenu du pourcentage de méthane contenu dans un m³ de biogaz.

Question 3.4 DT12

Calculer la valeur du débit réellement injecté après épuration en Nm³·h⁻¹ sur le réseau compte tenu des diverses pertes annoncées.

On considérera, pour la suite, que le débit de biométhane assuré est de 250 Nm³·h⁻¹ (soit 50 % de la production de biogaz). Chaque Nm³ de biométhane produit est capable de fournir une énergie égale à 10 kWh.

Question 3.5

Calculer le volume annuel de biométhane produit en Nm³ compte tenu du temps de fonctionnement effectif de l'installation précisé sur le DT8.

En déduire l'énergie annuelle produite par le méthaniseur en GWh.

Une partie de l'énergie est autoconsommée pour chauffer le digesteur et post-digesteur. Pour une installation, elle est en moyenne de l'ordre de 15 % à 20 % en décomposition mésophile mais bien moindre dans notre cas.

Question 3.6

Relever le pourcentage d'autoconsommation pour le chauffage dans notre cas.

Expliquer de quelle manière nous pouvons atteindre une telle valeur à l'aide du DT12.

Une consommation non négligeable d'électricité est nécessaire pour faire fonctionner notre installation. On peut considérer qu'elle est exclusivement liée à la partie « process » au niveau digesteur et post-digesteur (malaxeur de cuve, incorporateur...) ainsi qu'au niveau du poste d'épuration et d'injection.

Question 3.7

DT8

Déterminer respectivement l'énergie annuelle consommée en kWh par la partie process $W_{process}$ ainsi que l'énergie consommée par la partie épuration et injection $W_{épuration\ et\ injection}$ compte tenu du temps effectif de fonctionnement de l'installation.

Notre méthaniseur doit atteindre un rendement énergétique global supérieur à 90 % pour assurer une rentabilité satisfaisante. Le rendement global de notre installation est tel que :

$$\eta_{global} \; = \frac{W_{finale \; produite \; (inject\'ee)}}{W_{finale \; produite \; (inject\'ee)} + \; W_{\'electrique \; consomm\'ee}}$$

Question 3.8

Déterminer, à l'aide du DT13, le rendement global de notre installation.

Conclure si notre méthaniseur est viable économiquement.

22-2D2IDSINNC1 Page : 7/32

Partie 4 (choix 2) – Comment valoriser au mieux le digestat et minimiser son impact sur l'environnement ?

L'objectif de cette partie est de vérifier que les capacités de stockage tampon des digestats sont correctement dimensionnées et que les digestats sont valorisés de manière optimale afin de limiter l'impact environnemental.

Question 4.1

Expliquer en quoi le digestat est une très bonne alternative pour l'environnement comparé aux engrais chimiques utilisés actuellement.

Ce digestat nécessite toutefois des précautions particulières. En effet, l'ammoniac (NH₃) qu'il contient peut se volatiliser dans l'air lors de l'épandage (dans le cas du digestat liquide). Le digestat peut aussi générer des gaz à effet de serre, tel que le protoxyde d'azote (N₂O) notamment.

Question 4.2

Relever les deux préconisations les plus efficaces permettant de réduire la formation d'ammoniac et de protoxyde d'azote lors de la phase d'épandage du digestat.

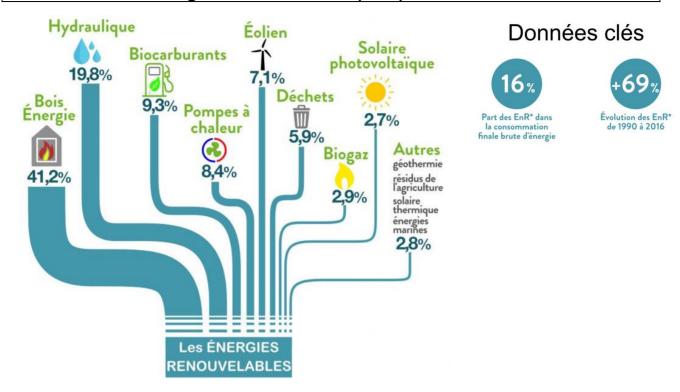
Il faut stocker sur une période plus ou moins longue les digestats solides et liquides sur site ou sur des sites déportés : hangars agricoles pour le digestat solide ou lagunes de stockage pour le digestat liquide.

Question 4.3

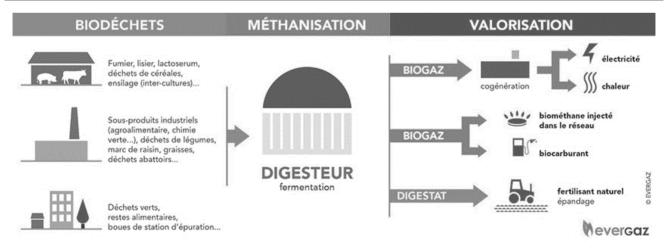
DT8, DT11 DR3 Compléter, sur le document DR3, dans le tableau correspondant :

- les quantités de digestat liquide et solide à stocker ;
- les capacités totales estimées de stockage de digestat liquide et solide en tenant compte des coefficients de sécurité ;
- les durées de stockage en mois correspondantes.

Conclure, sur le document **DR3**, si les capacités de stockage de digestat liquide et solide sont suffisantes pour assurer la durée minimale de stockage attendue.

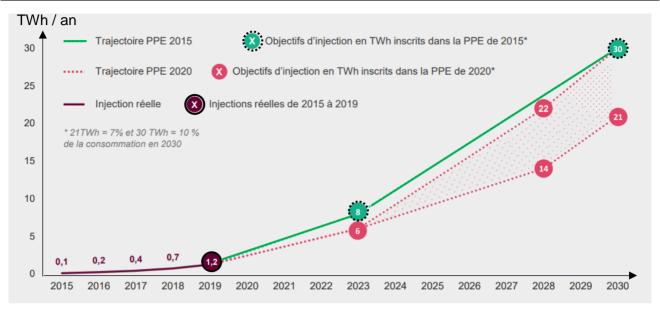

Partie 5 – Comment intégrer le méthaniseur dans l'environnement de proximité des usagers ?

Question 5.1

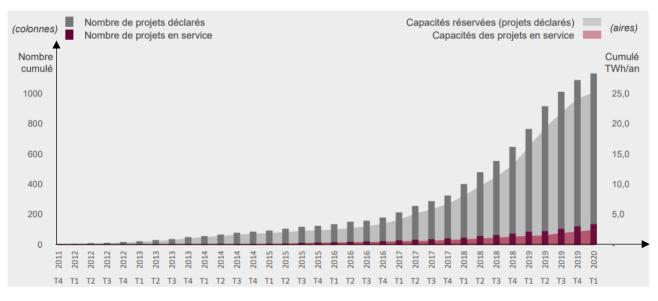

Relever, pour chaque nuisance, un à deux arguments permettant de réduire les risques potentiels de nuisances olfactives, visuelles et auditives que pourrait engendrer le méthaniseur pour la population de proximité.

22-2D2IDSINNC1 Page: 8/32

DT1 - Part des Énergies Renouvelable (EnR) en 2018 en France

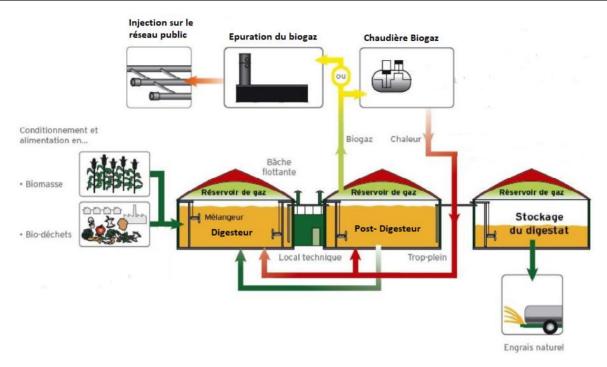


DT2 - Schéma de principe de la méthanisation


22-2D2IDSINNC1 Page : 9/32

DT3 – Objectifs révisés issus de la Programmation Pluriannuelle de l'Energie (PPE) publiés en Avril 2020

Dans la nouvelle PPE publiée au Journal Officiel le 23 avril 2020, les pouvoirs publics revoient à la baisse les ambitions de développement de la filière biométhane. À l'horizon 2028, c'est une fourchette de 14 à 22 TWh/an qui est fixée, avec la baisse des coûts de production comme variable d'ajustement. Ce choix cumulé à la crise COVID risque d'impacter le nombre de projets concrétisés dans les prochaines années.


DT4 – Évolution du nombre et de la capacité des projets inscrits au registre des capacités (projets déclarés et en service)

Source: Open Data Réseaux Energies

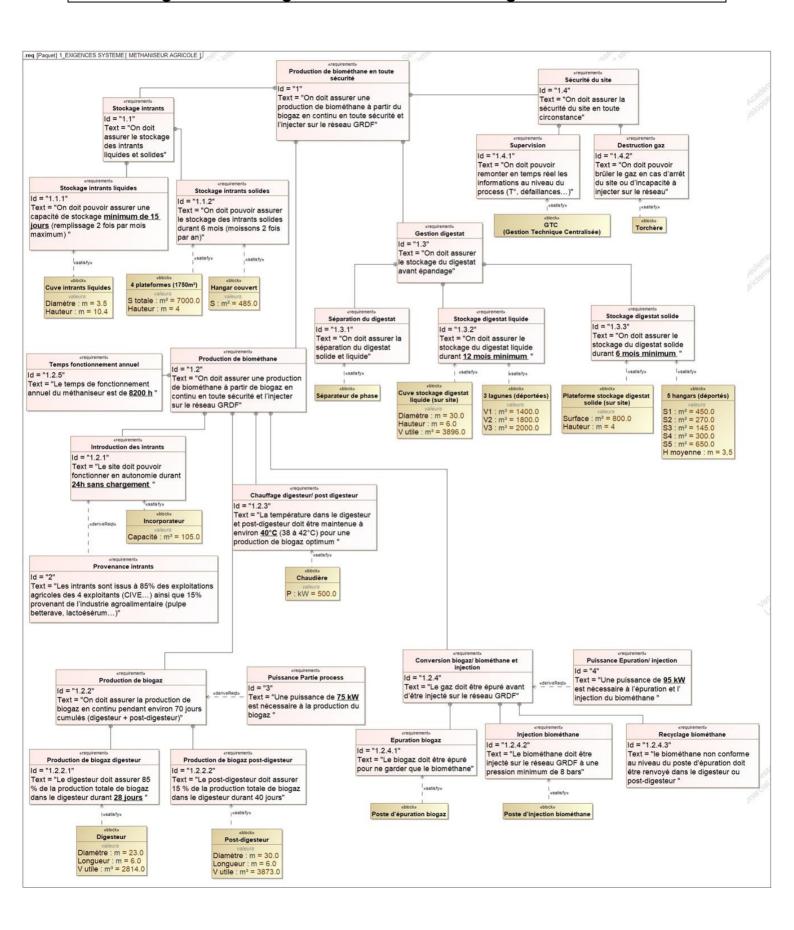
22-2D2IDSINNC1 Page: 10/32

DT5 – Principaux constituants du processus de méthanisation et flux d'énergies / matières associées

DT6 - Comparaison méthanisation mésophile et thermophile

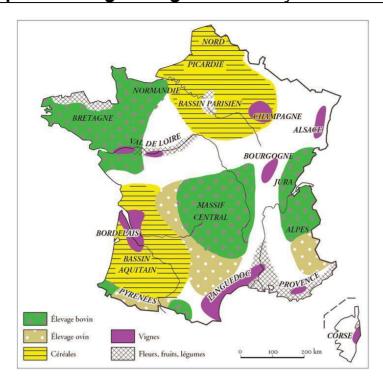
Le tableau ci-dessous compare la méthanisation mésophile et la méthanisation thermophile

	méthanisation mésophile	méthanisation thermophile
Température	35-40°C	50-65°C
spécificités	Environ 20 % de chaleur autoconsommée Le plus couramment utilisé Biologie plus stable donc plus facile à maîtriser	Environ 35 % de chaleur autoconsommée Hygiénisation plus poussée des germes pathogènes (présente un intérêt lors de l'utilisation de biodéchets) Temps de séjour plus court Meilleure dégradation des chaînes carbonées Biologie plus difficile à maîtriser
		Risque d'inhibition à l'ammonium plus forte

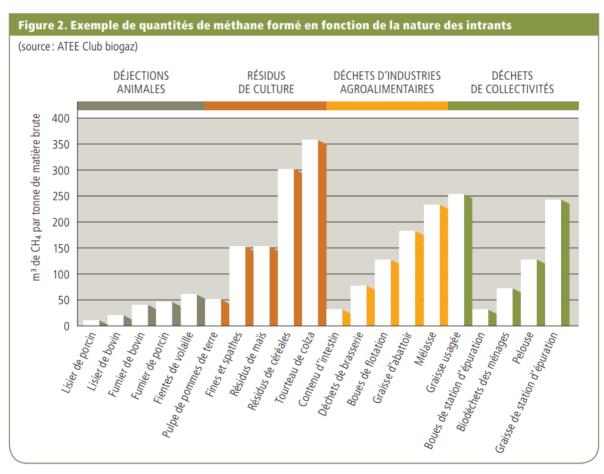

DT7 - Comparatif des solutions de valorisation du biogaz

Quelle efficacité énergétique ?

(الله	7 ()
Valorisation par injection	Valorisation par cogénération
Rendement énergétique de l'installation	Rendement énergétique de l'installation
Rendement épuration : 98 %Rendement injection : 100 %	 Rendement électrique moyen : 40 % Rendement thermique moyen : 42 %
Rendement brut global : 98 % (avec chauffage du méthaniseur)	Rendement brut global : 82 % (avec chauffage du méthaniseur)

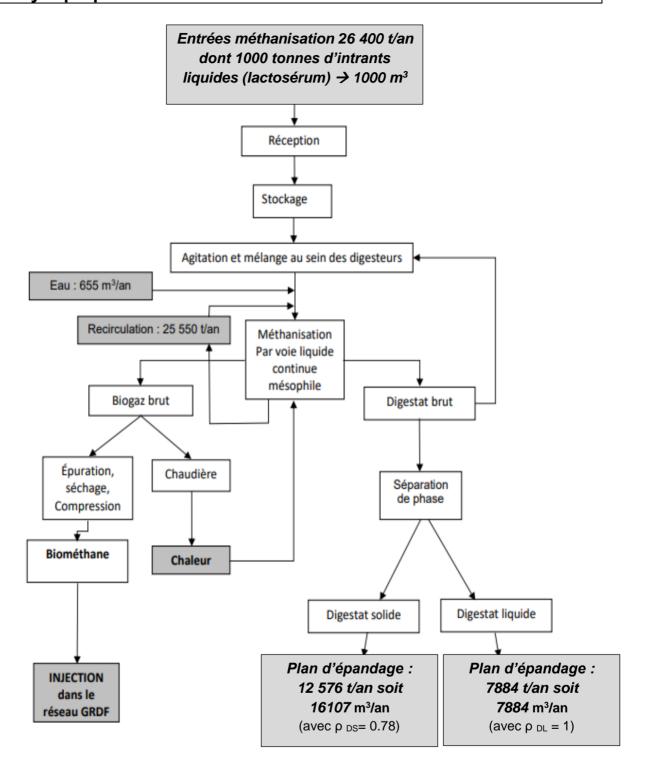

22-2D2IDSINNC1 Page : 11/32

DT8 - Diagramme d'exigences du méthaniseur agricole



22-2D2IDSINNC1 Page: 12/32

DT9 - Cartographie des régions agricoles françaises



DT10 - Potentiel méthanogène en fonction du type d'intrant

22-2D2IDSINNC1 Page : 13/32

DT11 - Synoptique de l'installation chiffrée

22-2D2IDSINNC1 Page : 14/32

DT12 – Extrait de données issues du dossier ICPE (Installations Classées pour la Protection de l'Environnement)

1.8.6.4 Compression

Le biogaz prétraité et purifié pénètrera au cœur même du système d'épuration, où il sera comprimé à 9 bars. Il passera à travers un système comprenant plusieurs étages de membranes qui séparent le CO₂ du CH₄.

Le système est composé d'un compresseur principal travaillant à 9 bars servant principalement à produire le biométhane.

Un compresseur intermédiaire travaillant à 3 bars permettra de réguler le taux de CH₄ dans le Off-Gaz et de respecter la règlementation.

1.8.6.5 Séchage, chauffage du biogaz

Afin de chauffer les digesteurs, une première partie de l'eau chaude provient de la chaleur récupérée sur les compresseurs (échangeur huile-eau). Une chaudière permet de répondre aux compléments de chauffage.

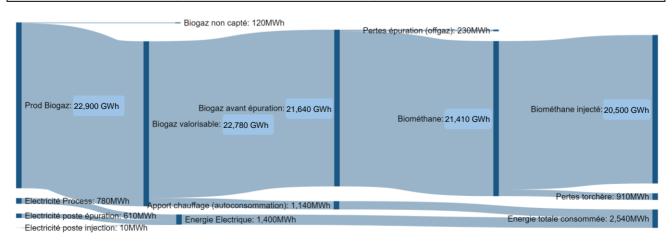
1.8.6.6 L'épuration

Ces étapes ont lieu dans un conteneur métallique dédié.

Les membranes présentent une capacité de 604 Nm³·h⁻¹ de biogaz.

Le module d'épuration a pour objectif de convertir le biogaz (60 % de méthane, 40 % de CO₂ et quelques impuretés) en biométhane injectable dans le réseau GRTgaz.

1.8.6.8 Bilan de la valorisation du méthane


L'étude de faisabilité réalisée par GRDF a montré que la totalité du biométhane peut être injectée sur le réseau. En effet il existe une consommation importante de gaz dans la région, même en été.

Le bilan de valorisation du méthane est (en % du volume produit) de manière générale le suivant :

- 90 % valorisé en injection ;
- < 5 % valorisé en interne (chaudière);
- < 4 % détruit en torchère ;
- < 1 % perdu par le offgaz.

Le rendement épuratoire de CH₄ est supérieur à 99,3 %.

DT13 - Bilan énergétique méthaniseur agricole (diagramme Sankey)

^{*}Biogaz non capté lors des opérations de maintenance (ouverture du digesteur ou post-digesteur à l'air libre).

22-2D2IDSINNC1 Page: 15/32

DT14 – Les avantages du digestat (extrait article « Le-gaz.fr » Avril 2018)

LE DIGESTAT, CE FERTILISANT ISSU DE LA MÉTHANISATION IDÉAL POUR L'AGRICULTURE

Le digestat c'est quoi ? C'est le nom donné à la matière organique résiduaire provenant du process de méthanisation. Lorsque des résidus d'élevages bovins, ovins ou d'agriculture sont valorisés pour être transformés en biométhane, la partie restante est donc le digestat. Toute la question est de savoir quoi en faire ?

Le monde agricole trouve par là un formidable fertilisant. Un fertilisant naturel produit sur place et à moindre coût qui plus est. Utilisé en France mais aussi en Belgique et en Suisse, il affiche des qualités d'un point de vue du rendement toutes aussi intéressantes que les engrais chimiques comme l'explique cet exploitant : "J'ai choisi le digestat pour une raison économique. C'est un aussi bon engrais qu'un chimique. Il apporte les mêmes éléments fertilisants « NPK », soit de l'azote, du phosphore et du potassium et il est nettement moins cher que le chimique".

Le digestat est de la matière organique digérée, d'où son nom. Il permet de booster les cultures à moindre coût lorsque le méthaniseur est implanté au sein même de l'exploitation agricole. Un exemple d'économie circulaire sobre du point de vue de l'environnement. L'agriculteur transforme le résidu de sa culture en biométhane qu'il revend et utilise le digestat pour fertiliser les prochaines cultures.

La boucle est bouclée. Chez nos voisins belges, il est même de plus en plus recherché, la demande ayant dans certains cas été multipliée par 5 en une année à peine. Disponible, performant, économique, le digestat affiche de nombreux avantages. Il est bien plus propre pour les sols que les engrais chimiques.

DT15 – Tableau récapitulatif des actions à mener pour réduire les impacts environnementaux liés au processus de méthanisation

	L
	F
Appro. substrats	
	ŀ
Stockage/ traitement substrats	F
Production de biogaz	ŀ
	ŀ
Stockage / valorisation biogaz	
	L
Stockage/ traitement digestat	
	۱
	L
	ſ
Epandage	ı

	Actions	Type d'action	Emissions	Faisabilité technique	Maturité	Efficacité	Investissement
GES ET polluants	Optimiser les distances de transport	Réduire	CO ₂ , NOx	***	•	***	€
	Laver et rincer les véhicules à chaque débarquement (transport matières solides)	Eviter	Odeurs	*	•	*	€
Odeurs	Intégrer des canalisation fermées au process de transport des matières liquides (cas de IAA)	Eviter	Odeurs	?	•	**	€
	Adapter horaires et fréquences de déchargement	Eviter	Odeurs	?	•	**	€
GES ET polluants	Minimiser les durées de stockage	Réduire	CH ₄ , CO ₂ , NH ₃	*	•	***	€
Polluants odeur	Confiner lieux de réception puis aspirer et traiter l'air vicié	Eviter et Traiter	NH ₃ , composés soufrés, odeurs	***	•	***	€€€
	Détecter et suivre les fuites de biogaz	Eviter	CH ₄ , CO ₂	**	0	**	€€€
GES	Etre vigilant lors des réceptions des ouvrages de méthanisation (étanchéité)	Eviter	CH ₄ , CO ₂	*	•	***	€€
Polluants	Réduire et limiter la formation de H ₂ S en amont ou dans le digesteur	Réduire	H₂S	*	•	**	€
	Suivre les émissions de H ₂ S	Mesurer	H₂S	*	•	**	€€€
GES	Détecter et suivre les fuites de biogaz	Eviter	CH ₄ , CO ₂	**	0	**	€€€
GLS	Optimiser la valorisation énergétique	Eviter	CO, CO ₂	*	•	**	€
Polluants	Eliminer l'ammoniac du biogaz par prétraitement pour améliorer la combustion	Eviter	NOx	?	•	**	€€
Folidaris	Eliminer les polluants traces du biogaz	Traiter	Siloxanes, mercaptans	?	•	**	€€€
GES	Recouvrir les fosses de stockage et récupérer le biogaz résiduaire	Eviter	CH ₄ , CO ₂	**	•	***	€€
GES	Maximiser les temps de séjour dans le digesteur et post-digesteur et capter le biogaz	Réduire	CH ₄ , CO ₂	*	•	***	€
Polluants	Recouvrir, aspirer et traiter l'air vicié / valoriser les biogaz résiduaire	Eviter	NH ₃	**	•	***	€€
	Traiter l'air vicié	Traiter	NH ₃	**	•	**	€€€
	Utiliser une rampe à pendillards ou des enfouisseurs à disques	Réduire	N ₂ O, NH ₃	*	0	***	€€
GES ET polluants	Respecter des périodes d'épandage appropriées	Réduire	N₂O, NH₃	*	•	***	€
	Couvrir les véhicules transportant le digestat	Réduire	NH ₃	*	•	*	€

22-2D2IDSINNC1 Page: 16/32

DT16 - Extrait « La méthanisation en 10 questions » Octobre 2019

Une unité de méthanisation émet-elle des odeurs ?

Des odeurs peuvent provenir des déchets avant méthanisation

Lors de la méthanisation, la décomposition des déchets est réalisée en absence d'oxygène, sans contact avec l'air ambiant et donc sans odeur. Au terme du process, les acides gras volatils responsables des odeurs sont détruits : le digestat produit est pratiquement inodore, même une fois épandu dans les champs. D'ailleurs, de nombreux agriculteurs recourent à la méthanisation pour réduire les odeurs d'épandage agricole des fumiers et des lisiers.

Une unité de méthanisation fait-elle du bruit?

Les émissions sonores d'une unité de méthanisation sont minimes

Lorsque l'installation de méthanisation est équipée d'une unité de cogénération pour produire à la fois de l'électricité et de la chaleur, un moteur tourne en continu. Ce moteur est placé dans un caisson insonorisé qui permet de réduire le bruit à moins de 51 dB (soit le niveau sonore d'une machine à laver) dans un rayon de 50 mètres.

Le matériel de manutention et les engins de chantier utilisés à l'intérieur de l'installation sont également conformes aux limites réglementaires en matière d'émissions sonores, soit moins de 70 dB en journée. Ils sont utilisés pendant les horaires de travail habituels. de 8h à 18h en semaine.

Le trafic est optimisé et limité au maximum

Une grosse installation de méthanisation (unité industrielle) nécessite le passage de 10 camions par jour travaillé.

Pour une unité de méthanisation plus petite (à la ferme), le trafic n'augmente que d'un camion par jour durant les horaires de travail.

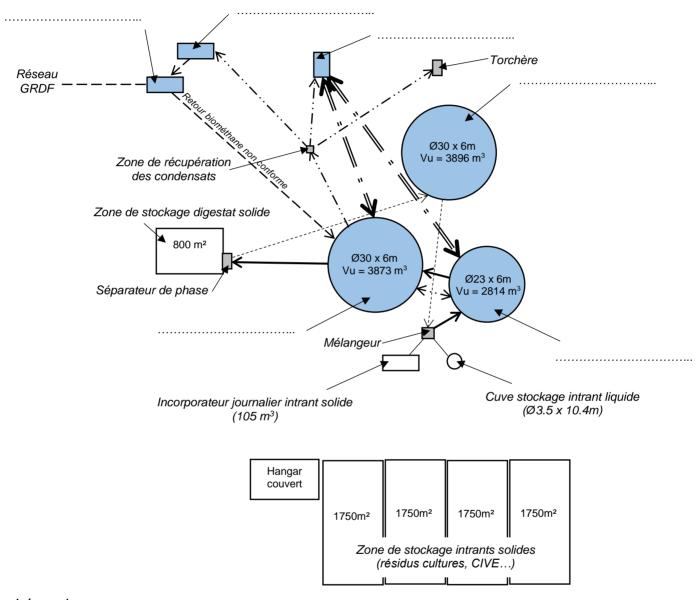
Le transport est toujours optimisé pour réduire les distances, limiter les désagréments pour les riverains et réduire la consommation de carburant. De même, les horaires et les trajets de circulation sont adaptés pour éviter les heures de pointe et les zones les plus fréquentées.

Quel est son impact sur le paysage?

Tout est fait pour rendre l'installation la moins visible possible

Pour créer une harmonie visuelle et gêner le moins possible les riverains, plusieurs solutions existent comme le choix de teintes de matériaux adaptées aux milieux environnants, l'enfouissement partiel des cuves de stockage ou des digesteurs, l'implantation de haies autour du site...

Les porteurs de projet sont également fortement incités à recourir à un architecte expert en intégration paysagère.



L'intégration paysagère est à prendre en compte dès le choix du site d'installation de l'unité de méthanisation. Des couleurs proches de celles de la nature permettent de mieux intégrer les bâtiments dans leur environnement.

22-2D2IDSINNC1 Page: 17/32

DOCUMENT RÉPONSES - DR1

Représentation simplifiée de l'implantation des principaux contituants du méthaniseur et principaux flux d'énergie et de matière

<u>Légende</u>:

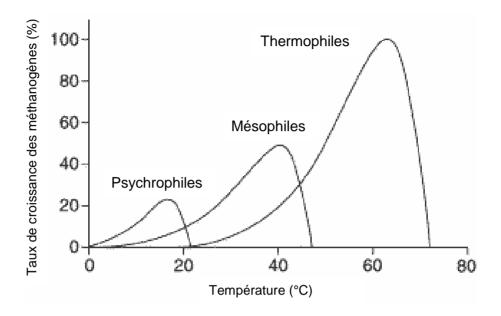
Intrants (solide et/ou liquide)

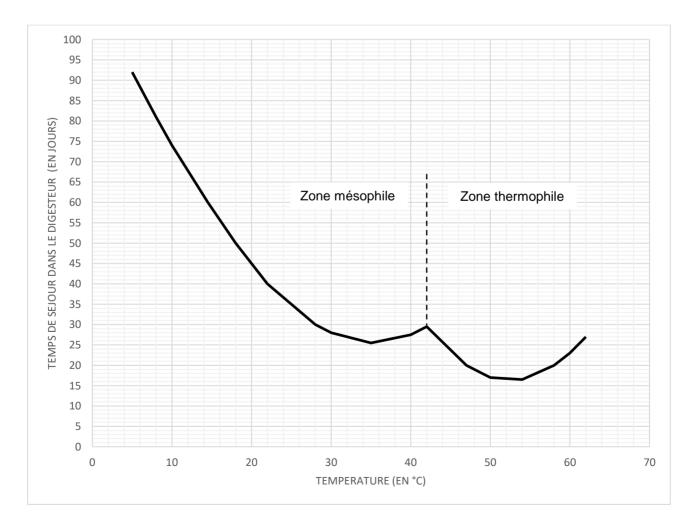
Digestat brut

Digestat liquide

Réseau chaleur

-··-·· Réseau biogaz


---- Réseau biométhane


22-2D2IDSINNC1 Page : 18/32

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES - DR2

Courbes de temps de séjour et de température en fonction des différents types de décomposition possibles

22-2D2IDSINNC1 Page : 19/32

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES – DR3

Tableau récapitulatif des capacités des stockages des digestats solides et liquides

STOCKAGE DIGESTAT LIQUIDE:

Type de stockage	Lieu de	Capacité de		Volume digestat	Durée de stockage
	stockage	stockage en m3		liquide annuel à	possible en mois
				stocker (en m³)	
Cuve stockage	sur site				
digestat liquide					
Lagune N°1	déporté	1400			
	•				
Lagune N°2	déporté	1800			
Lagune N°3	déporté	2000			
capacité totale	e de stockage				
]		

STOCKAGE DIGESTAT SOLIDE:

Type de stockage	Lieu de stockage	Surface (m²)	Hauteur moyenne stockage prévue (m)	Coef. de sécurité	Capacité de stockage en m³	Volume digestat solide annuel à stocker (en m³)	Durée de stockage possible en mois	
plateforme de stockage	sur site			1				
Hangar N°1	déporté	450						
Hangar N°2	déporté	145			406			
Hangar N°3	déporté	300	3.5	0.8	840			
Hangar N°4	déporté	270			756			
Hangar N°5	déporté	650			1820			
		capacité	é totale de s	stockage				

CONCLUSION:

22-2D2IDSINNC1 Page : 20/32

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

PARTIE SPÉCIFIQUE (8 points)

SYSTÈMES D'INFORMATION ET NUMÉRIQUE

MÉTHANISEUR AGRICOLE

Constitution du sujet :

•	Dossier sujet et questionnement	Pages 22 à 24
•	Dossier technique	Pages 25 à 29
•	Documents réponses (à rendre avec la copie)	Pages 30 à 32

22-2D2IDSINNC1 Page : 21/32

Mise en situation

Pour des raisons de sécurité et de rentabilité, il est important de pouvoir surveiller et gérer ce méthaniseur agricole à distance.

Le site est donc équipé d'une gestion technique des bâtiments (GTB) qui permet à un opérateur distant d'être informé en temps réel sur les grandeurs physiques (températures...) liées au bon fonctionnement du méthaniseur et d'être alerté en cas de problème.

Dans un tel système, il est donc essentiel de disposer de moyens de communication fiables et performants.

L'étude qui suit nous permettra de valider la possibilité de gérer à distance le méthaniseur agricole.

Travail demandé

Partie A – Valider la surveillance du site par un opérateur distant

Pour assurer le bon fonctionnement du méthaniseur agricole, il est nécessaire de surveiller plusieurs grandeurs physiques en différents points :

- température :
- pression;

La température dans le digesteur est une grandeur physique essentielle à son bon fonctionnement. Elle nécessite d'être contrôlée en permanence avec une précision de 0,1 °C.

Question A.1 DTS1

À l'aide du document technique DTS1, choisir un capteur permettant d'acquérir la température dans le digesteur et justifier votre choix.

Question A.2

DRS1

Compléter les cadres étiquettes vides de la chaîne d'information du DRS1 avec les termes suivants :

- « Capteur de température » « Convertisseur Analogique Numérique » -
- « Signal analogique » « Signal numérique » « Téléphone » « ADSL »

Question A.3

DTS2

À l'aide du document DTS2, citer 2 grandeurs physiques avec leurs unités qui peuvent être observées à distance par un opérateur.

Question A.4 | Conclure sur la possibilité de surveiller à distance les différentes grandeurs physiques permettant un bon fonctionnement du système.

22-2D2IDSINNC1 Page: 22/32

Partie B - Valider la possibilité d'alerter l'opérateur

Pour assurer la sécurité du site, il est essentiel de pouvoir gérer différentes situations en cas d'anomalie identifiée sur les grandeurs physiques relevées.

L'algorithme ci-dessous décrit le fonctionnement du système d'alerte :

```
début de la fonction alerter
      si valeur > seuil 1 faire
            déclencher les alarmes
            afficher la valeur en rouge clignotant
            envoyer un SMS à l'opérateur
      sinon
            si valeur > seuil 2 faire
                   afficher la valeur en rouge
                   envoyer un SMS à l'opérateur
            sinon
                   afficher toutes les valeurs en noir
            finsi
      finsi
      si acquittement = 1 faire
            extinction des alarmes
            afficher toutes les valeurs en noir
      finsi
fin de la fonction alerter
 Question B.1
              Compléter l'algorigramme du document réponses DRS2.
 DRS2
 Question B.2 | Compléter le programme du document réponses DRS3.
 DRS3
               Conclure sur la possibilité de gérer différentes situations de
 Question B.3
               fonctionnement (normal, alarme niveau 1,...) à l'aide d'un système
               automatisé.
```

Partie C – Valider la communication entre GRDF et le méthaniseur

Pour assurer la sécurité d'approvisionnement en gaz, il est nécessaire que le producteur (méthaniseur) et Gaz Réseau Distribution France (GRDF) communiquent afin d'injecter plus ou moins de gaz sur le réseau suivant les besoins.

Le système de l'exploitant communique en temps réel avec GRDF via un système automatisé utilisant un protocole de communication reconnu.

Pour information : le terme xDSL est un terme générique qui englobe toutes les technologies DSL (ADSL, SDSL, VDSL,...).

22-2D2IDSINNC1 Page: 23/32

Question C.1 | À l'aide du document technique DTS3, citer les deux moyens retenus pour assurer la connexion internet.

Pourquoi est-il nécessaire de prévoir deux connexions ?

DTS4

DTS3

Question C.2 | À l'aide du document DTS4, citer le protocole de communication qui est retenu pour assurer la communication entre le producteur et GRDF.

DTS5

Question C.3 | En vous aidant du document DTS5, **expliquer** pourquoi le Modbus est un protocole de communication « half duplex ».

Sur le site du méthaniseur, le système est paramétré de la manière suivante :

Débit: 9600 bit.s-1

Format d'un caractère : 11 bits

Question C.4

En vous aidant du document technique DTS5 :

DTS5

Calculer la durée minimale entre 2 trames.

Calculer la durée maximale d'une trame Modbus RTU.

Question C.5 | Comparer les résultats précédents avec la réactivité d'un homme qui est d'environ 1 seconde et justifier l'automatisation du système.

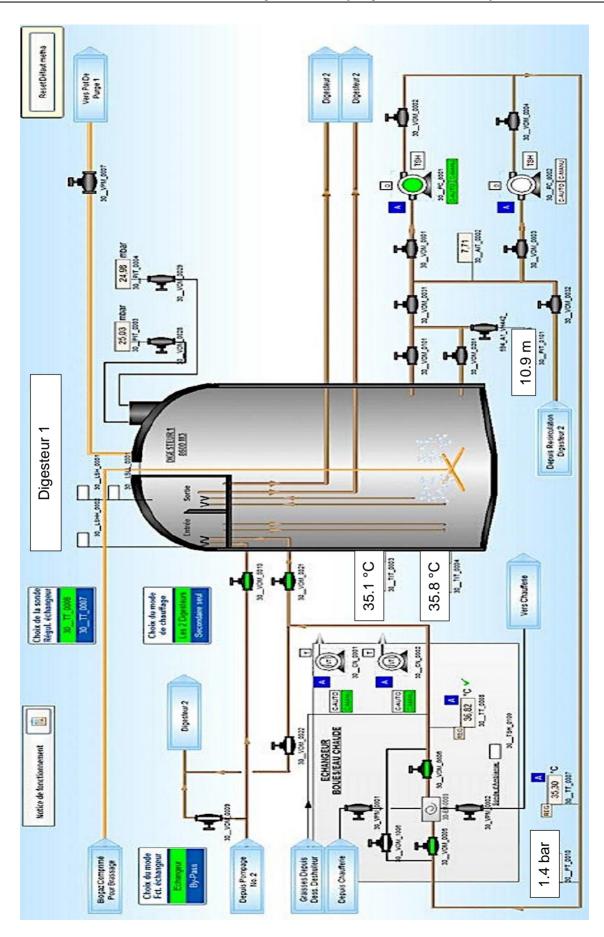
Question C.6

Conclure sur le système de communication utilisé entre GRDF et le méthaniseur.

Partie D - Synthèse

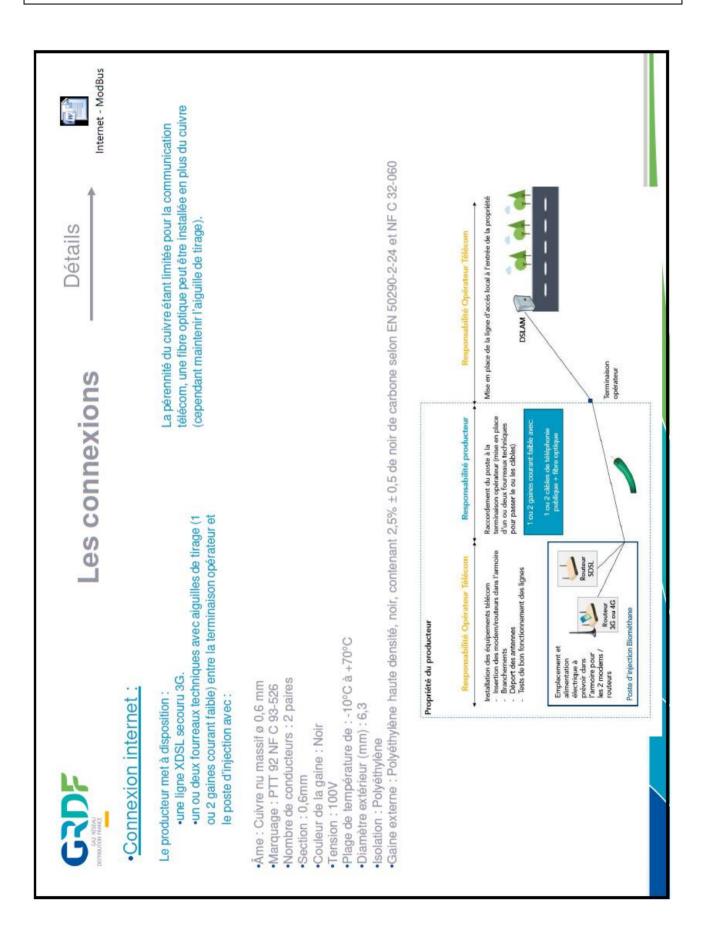
Question D.1

En vous aidant des travaux réalisés, **conclure** sur la possibilité de gérer un méthaniseur à distance.


22-2D2IDSINNC1 Page: 24/32

DTS1 – Caractéristiques de différents capteurs de température

DS1621	 Plage de mesures : -55 à +125 °C Sortie de données : série à 3 fils (DS1620), bus l²C série à 2 fils (DS1621) Temps de conversion (maximum) : 750 ms Alimentation : +2,7 V à +5,5 V c.c. Précision : ± 2 °C 	SDA 1 1 8 VDD SCL 2 7 A0 TOUT 3 6 A1 GND 4 5 A2 DS1621 8-PIN DIP (300 MIL) See Mech. Drawings Section
DHT11	 Alimentation: 3 à 5 Vcc Consommation maxi: 2,5 mA Plage de mesure: Température: 0 à +50 °C Humidité: 20 à 100 % HR Précision: Température: ± 2 °C Humidité: ± 5 % HR Dimensions: 16 x 12 x 7 mm 	
PT-100	 Configuration 3 fils Élément sensible platine 100 Ω selon norme NF EN 60751 classe B Gaine inox 316L diamètre 3 ou 6 mm Longueur 150 à 1000 mm (longueur utile, sous le raccord de tête) Domaine de température -75°C +250°C Tête étanche légère en alu, IP67, température maxi pour la tête : 135°C Précision 0,1°C 	


22-2D2IDSINNC1 Page : 25/32

DTS2 – Écran de contrôle de l'opérateur (capture d'écran)

22-2D2IDSINNC1 Page : 26/32

DTS3 - Les connexions

22-2D2IDSINNC1 Page : 27/32

Les connexions

Liaison Modbus :

GRDF met à disposition les informations d'injection à travers une liaison Modbus. L'installation coté GRDF sera esclave de l'échange donc l'installation du producteur sera maitre de cette liaison. L'installation du producteur (Automate ou IHM ou autres) communique avec le RTU (Remote Terminal Unit) en communication Modbus RTU Esclave en RS 485 (2 fils). Le câble de liaison exigé est un multipaire-blindé (0.75-1 mm² SUB_D9). Il sera demandé deux paires supplémentaires de disponible non utilisées.

Alimentation électrique de l'Installation d'Injection

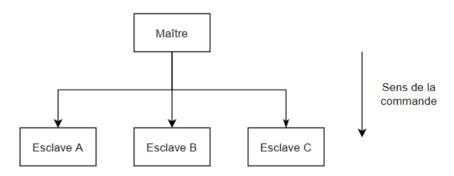
Une alimentation en 230V, monophasée, est nécessaire. Un câble d'alimentation au moins de type 3G10 en rigide pour une longueur maximale de 50m environ.

Onduleur

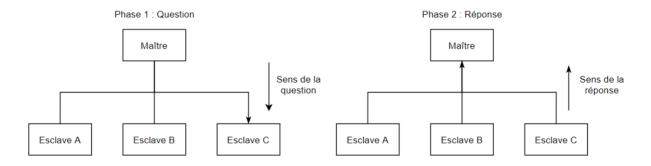
nécessite une intervention des équipes de GRDF sur le terrain. La reprise de l'Injection se fait lorsque la qualité du Biométhane est conforme. En cas de microcoupure, l'Installation d'Injection se met systématiquement en défaut, ce qui ferme automatiquement la vanne d'injection, et

GRDF prend à sa charge l'installation d'un onduleur dans le poste d'injection. Il est dimensionné pour maintenir l'alimentation des éléments électriques nécessaires à l'injection pendant quelques minutes.

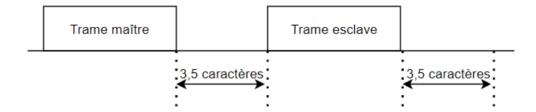
22-2D2IDSINNC1 Page : 28/32


DTS5 - Le protocole Modbus

Modbus est un protocole de communication reposant sur une structure maître-esclave.

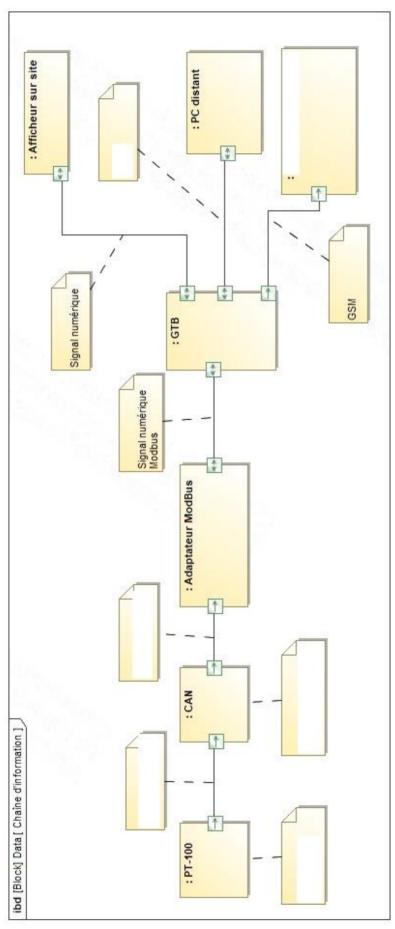

La transmission est bidirectionnelle, mais pas simultanément, c'est-à-dire que 2 systèmes ne peuvent pas envoyer de message en même temps, sinon il y a collision.

Voici 2 cas de figure :


- Le maître envoie une commande

- Le maître envoie une question et attend une réponse

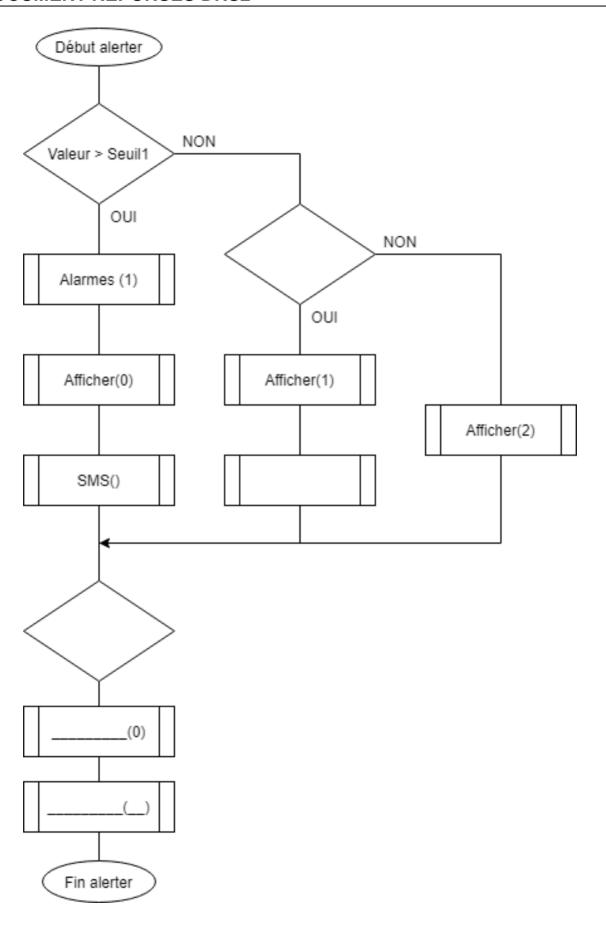
Entre chaque trame, il y a un silence équivalent au minimum à 3,5 fois le temps de transmission d'un caractère.


Une trame du Modbus RTU est constituée de la manière suivante :

Adresse esclave	Code fonction	Data	CRC
1 octet	1 octet	N octets	2 octets

La taille maximale des données est de 256 octets.

22-2D2IDSINNC1 Page: 29/32


DOCUMENT RÉPONSES DRS1

22-2D2IDSINNC1 Page : 30/32

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES DRS2

22-2D2IDSINNC1 Page : 31/32

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES DRS3

```
if (valeur>seuil1)
 23456
   ₽{
 7
    else if (valeur>seuil2)
 8
   ₽{
 9
10
11
    else
12
13
14
15
    if
        (acquittement==1)
16
17
   ₽{
18
         alarmes(0);
         afficher(__);
19
20
    }
21
```

22-2D2IDSINNC1 Page : 32/32

Modèle CCYC : ©DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM: (en majuscules)																					
N° candidat :		uméros	figure	nt sur	la con	vocatio	n si b	esoin	deman	dorà	in sun	roillant		N° (d'ins	crip	tio	n :			
Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les ni	umeros	/ Ingure	nt sur	ia con	/ocatic	on, si b	esom	deman	derat	in surv	emant	.)								1.2