BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2022

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE

Ingénierie, innovation et développement durable Innovation Technologique et Éco-Conception

Durée de l'épreuve : 4 heures

Aucun document autorisé.

L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de la calculatrice sans mémoire, « type collège » est autorisé.

Dès que ce sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 34 pages numérotées de 1/34 à 34/34.

Constitution du sujet :

Partie commune (durée indicative 2h30)	12 points
Partie spécifique (durée indicative 1h30)	8 points

Le candidat traite la partie commune et la partie spécifique en suivant les consignes contenues dans le sujet.

Ces 2 parties sont indépendantes et peuvent être traitées dans un ordre indifférent.

Tous les documents réponses sont à rendre avec la copie.

Dans la partie commune, le candidat doit choisir entre traiter la partie 2 (choix 1) ou la partie 4 (choix 2).

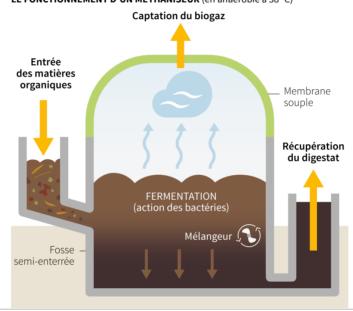
Les parties 1, 3 et 5 sont à traiter obligatoirement.

22-2D2IDITECNC1 Page : 1/34

PARTIE COMMUNE (12 points)

MÉTHANISEUR AGRICOLE

0	Présentation de l'étude et questionnement	pages	3 à 8
0	Documents techniques	pages	9 à 17
0	Documents réponses (à rendre avec la copie)	pages	18 à 20


22-2D2IDITECNC1 Page : 2/34

Mise en situation

Dans le cadre de la transition énergétique, l'évolution vers la production de gaz d'origine non fossile est indispensable. Les méthaniseurs agricoles sont une solution pour y parvenir ; d'ailleurs le nombre d'installations et de projets en cours est en plein essor...

Le méthaniseur transforme de la matière organique (biomasse) en biogaz (contenant du méthane) et en digestat (matière digérée restante), grâce à des microorganismes.

C'est un processus biologique naturel. La réaction a lieu en l'absence d'oxygène (décomposition anaérobique) et sous l'effet de la chaleur avec une température comprise entre 38 et 42°C dans une ou deux cuves fermées et mélangées appelées « digesteurs » (sorte de tube digestif).

LE FONCTIONNEMENT D'UN MÉTHANISEUR (en anaérobie à 38 °C)

Les matières organiques appelées aussi « intrants » (par exemple les déjections animales telles que le lisier, les résidus de cultures céréalières...) vont être décomposées par les micro-organismes pendant une durée de 30 à 70 jours généralement.

Cette dégradation génère du biogaz ; ce dernier constitue une énergie renouvelable. Il est essentiellement composé de méthane (CH_4) et de dioxyde de carbone (CO_2).

Le biogaz peut être valorisé directement dans une chaudière, par exemple, ou encore être épuré pour ne conserver que le méthane : on parle alors de « biométhane ».

Ce gaz est équivalent au gaz de ville, il peut être injecté directement sur le réseau de gaz existant pour chauffer des logements ou bien encore recharger des véhicules fonctionnant au « GNV » (Gaz Naturel pour Véhicules).

Les résidus obtenus, à savoir les digestats, ont des propriétés fertilisantes. Ils peuvent donc être valorisés après séparation de la matière solide (digestat solide) et de la partie liquide (digestat liquide) sous diverses formes : compost, épandage, etc.

Pour information, le processus de méthanisation est un phénomène qui se déroule aussi naturellement dans l'appareil digestif des bovins ou dans les marais.

22-2D2IDITECNC1 Page : 3/34

Partie 1 – Les méthaniseurs sont-ils une alternative pour permettre un développement durable ?

Tout le monde ou presque a déjà entendu parler de panneaux photovoltaïques ou d'énergie solaire. Ce n'est pas forcément le cas pour le biogaz produit par les méthaniseurs.

Question 1.1

DT1

Comparer la part d'énergie renouvelable issue du solaire photovoltaïque à celle provenant du biogaz pour l'année 2018.

Conclure si le biogaz est une alternative à prendre au sérieux ou non dans les années à venir.

Le biogaz peut être valorisé directement, par exemple en cogénération, ou épuré afin de l'utiliser sous forme de biométhane.

Question 1.2

Lister les 4 « variantes » de valorisation finale du biogaz.

DT2

Bien que la part d'énergie renouvelable issue du biogaz soit faible (quelques pourcents), les quantités énergétiques produites sont toutefois considérables. En effet, avec une production d'environ 4 TWh effective sur l'année 2020, l'énergie produite par le biogaz a tout de même permis de fournir l'intégralité des besoins énergétiques de 350 000 foyers.

Les objectifs de transition énergétique imposaient à horizon 2030 de produire 10 % de gaz d'origine renouvelable (biométhane). Cependant, avec la conjoncture de la Covid survenue en 2020, ces objectifs ont été revus à la baisse par les pouvoirs publics.

Question 1.3

DT3

Relever quels sont les nouveaux attendus minimum en % et en TWh/an à l'horizon 2030.

On dénombrait, en mars 2020, 139 installations en service et plus de 1134 projets en cours (demandes en cours d'étude).

Question 1.4

DT4

Relever la capacité de production totale possible en TWh/an de tous ces projets déclarés.

Conclure sur la capacité à atteindre le nouvel objectif fixé si 100 % des projets sont réalisés d'ici 2030.

22-2D2IDITECNC1 Page : 4/34

Chaque kWh de gaz vert produit, injecté et consommé permet une économie de 188 g de CO₂ / kWh par rapport à une production de gaz conventionnelle.

Question 1.5

Calculer le nombre de tonnes d'émission de CO₂ ainsi évité chaque année en France en considérant une production de gaz équivalente à 21x10⁹ kWh à l'horizon 2030.

Partie 2 (choix 1) – Comment choisir le processus de méthanisation adapté aux ressources disponibles et le mode de production d'énergie finale optimum ?

L'objectif de cette partie est de valider les choix qui ont été faits au niveau du processus de méthanisation : type de méthaniseur, choix de paramètres liés au process (température, etc.) ainsi que le choix fait pour la valorisation finale du biogaz.

On donne ci-contre un aperçu du schéma d'implantation aérien du site de méthanisation.

Le détail des constituants et les principaux flux d'énergie et de matières sont donnés sur le schéma de principe du DT5.

Page: 5/34

Question 2.1
DT5, DT8
DR1

Compléter, sur le document **DR1**, les principaux constituants du méthaniseur à l'aide des termes suivants :

« chaudière biogaz », « digesteur », « post-digesteur », « poste d'épuration biogaz », « poste d'injection biométhane », « stockage digestat liquide ».

Tracer en rouge, sur le document **DR1**, le flux du biogaz depuis sa fabrication dans le digesteur jusqu'au poste d'épuration (d'où ressortira du biométhane après épuration).

Afin d'assurer la production de biogaz, il est nécessaire de chauffer le digesteur et le postdigesteur à une température adaptée, ce qui favorisera le processus de méthanisation par la décomposition de bactéries de type « mésophile » ou « thermophile ».

Le choix du type de décomposition influencera aussi le temps de séjour du digestat brut. La chauffe est assurée directement à partir du biogaz produit grâce à la chaudière biogaz.

22-2D2IDITECNC1

Question 2.2

Justifier le choix retenu de s'orienter vers une décomposition mésophile en se limitant au point de vue énergétique.

Question 2.3

DT8 DR2

DT7

DT6

Déterminer par tracé, sur le document **DR2**, la température optimale permettant le meilleur taux de croissance des méthanogènes en décomposition mésophile et le temps de séjour dans le digesteur correspondant.

Conclure quant aux choix qui ont été retenus pour les valeurs de ces 2 paramètres pour notre installation.

Question 2.4

Expliquer le choix retenu de s'orienter vers l'injection de biométhane sur le réseau en valorisation finale, plutôt que la cogénération.

Partie 3 – Comment assurer la production optimale de biométhane au niveau du processus tout en limitant l'impact sur l'environnement ?

L'objectif de cette partie est de valider que le choix des intrants est judicieux, que le dimensionnement des éléments de stockage est correct et que le rendement de l'installation est optimum.

Question 3.1 DT9. DT10

Identifier le type d'agriculture prépondérante en Picardie (région Hauts-de-France).

Expliquer en quoi la Picardie est une terre propice à la méthanisation compte tenu du type d'intrant qu'elle propose.

Le méthaniseur fonctionnant 24h/24 et 7j/7, celui-ci dispose d'un incorporateur automatisé (cuve de stockage tampon) capable de couvrir les besoins journaliers en intrants solides. Ainsi, cela n'oblige pas à avoir une personne sur site en permanence et limite le temps de travail à 1h ou 2h le week-end pour la personne d'astreinte.

La masse volumique des intrants solides est de 700 kg·m⁻³.

Question 3.2 DT8. DT11

Calculer le tonnage journalier en intrants solides à stocker dans l'incorporateur.

En déduire la capacité journalière de stockage nécessaire en m³ en intrants solides.

Conclure si l'incorporateur retenu satisfaisait au besoin journalier.

L'installation est dimensionnée pour assurer un débit continu de biogaz de 500 Nm³·h⁻¹ (un normaux mètre cube par heure, noté Nm³·h⁻¹, correspond au débit en mètre cube par heure pour une température et une pression normalisée).

22-2D2IDITECNC1 Page: 6/34

Question 3.3

DT12

Justifier le fait que la solution retenue pour l'épuration du biogaz permet de filtrer en continu cette quantité de biogaz.

En déduire le débit injectable de biométhane en Nm³·h⁻¹ en sortie du poste d'épuration compte tenu du pourcentage de méthane contenu dans un m³ de biogaz.

Question 3.4 DT12

Calculer la valeur du débit réellement injecté après épuration en Nm3·h-1 sur le réseau compte tenu des diverses pertes annoncées.

On considérera, pour la suite, que le débit de biométhane assuré est de 250 Nm³·h⁻¹ (soit 50 % de la production de biogaz). Chaque Nm³ de biométhane produit est capable de fournir une énergie égale à 10 kWh.

Question 3.5

DT8

Calculer le volume annuel de biométhane produit en Nm³ compte tenu du temps de fonctionnement effectif de l'installation précisé sur le DT8.

En déduire l'énergie annuelle produite par le méthaniseur en GWh.

Une partie de l'énergie est autoconsommée pour chauffer le digesteur et post-digesteur. Pour une installation, elle est en moyenne de l'ordre de 15 % à 20 % en décomposition mésophile mais bien moindre dans notre cas.

Question 3.6

DT12

Relever le pourcentage d'autoconsommation pour le chauffage dans notre cas.

Expliquer de quelle manière nous pouvons atteindre une telle valeur à l'aide du DT12.

Une consommation non négligeable d'électricité est nécessaire pour faire fonctionner notre installation. On peut considérer qu'elle est exclusivement liée à la partie « process » au niveau digesteur et post-digesteur (malaxeur de cuve, incorporateur...) ainsi qu'au niveau du poste d'épuration et d'injection.

Question 3.7

DT8

Déterminer respectivement l'énergie annuelle consommée en kWh par la partie process $W_{process}$ ainsi que l'énergie consommée par la partie épuration et injection $W_{épuration \ et \ injection}$ compte tenu du temps effectif de fonctionnement de l'installation.

Notre méthaniseur doit atteindre un rendement énergétique global supérieur à 90 % pour assurer une rentabilité satisfaisante. Le rendement global de notre installation est tel que :

$$\eta_{global} \; = \frac{W_{finale \; produite \; (inject\'ee)}}{W_{finale \; produite \; (inject\'ee)} + \; W_{\'electrique \; consomm\'ee}}$$

Question 3.8

Déterminer, à l'aide du DT13, le rendement global de notre installation.

Page: 7/34

DT13

Conclure si notre méthaniseur est viable économiquement.

22-2D2IDITECNC1

Partie 4 (choix 2) – Comment valoriser au mieux le digestat et minimiser son impact sur l'environnement ?

L'objectif de cette partie est de vérifier que les capacités de stockage tampon des digestats sont correctement dimensionnées et que les digestats sont valorisés de manière optimale afin de limiter l'impact environnemental.

Question 4.1

Expliquer en quoi le digestat est une très bonne alternative pour l'environnement comparé aux engrais chimiques utilisés actuellement.

Ce digestat nécessite toutefois des précautions particulières. En effet, l'ammoniac (NH₃) qu'il contient peut se volatiliser dans l'air lors de l'épandage (dans le cas du digestat liquide). Le digestat peut aussi générer des gaz à effet de serre, tel que le protoxyde d'azote (N₂O) notamment.

Question 4.2

Relever les deux préconisations les plus efficaces permettant de réduire la formation d'ammoniac et de protoxyde d'azote lors de la phase d'épandage du digestat.

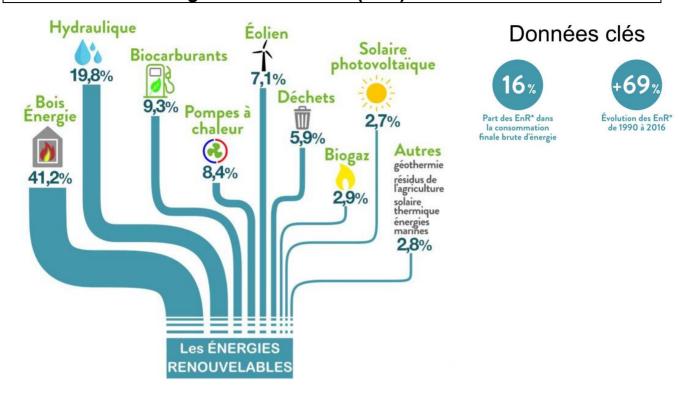
Il faut stocker sur une période plus ou moins longue les digestats solides et liquides sur site ou sur des sites déportés : hangars agricoles pour le digestat solide ou lagunes de stockage pour le digestat liquide.

Question 4.3

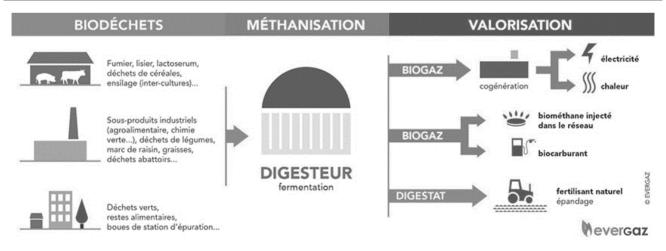
DT8, DT11 DR3 Compléter, sur le document DR3, dans le tableau correspondant :

- les quantités de digestat liquide et solide à stocker ;
- les capacités totales estimées de stockage de digestat liquide et solide en tenant compte des coefficients de sécurité ;
- les durées de stockage en mois correspondantes.

Conclure, sur le document **DR3**, si les capacités de stockage de digestat liquide et solide sont suffisantes pour assurer la durée minimale de stockage attendue.

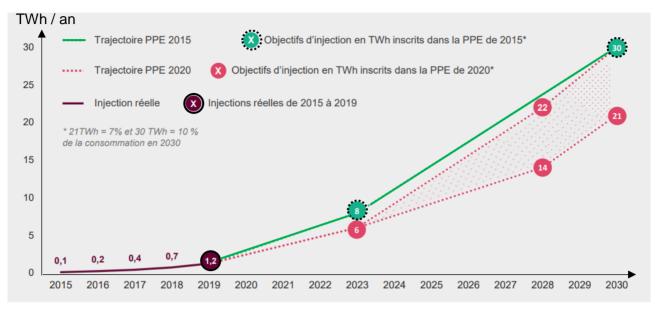

Partie 5 – Comment intégrer le méthaniseur dans l'environnement de proximité des usagers ?

Question 5.1

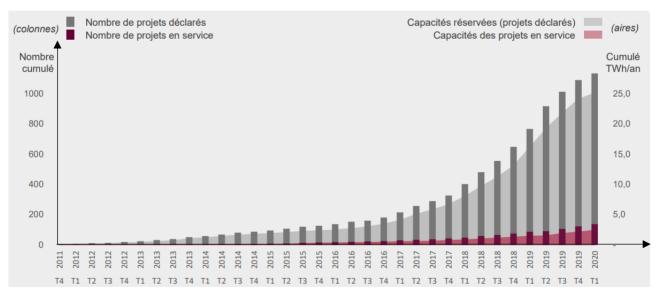

Relever, pour chaque nuisance, un à deux arguments permettant de réduire les risques potentiels de nuisances olfactives, visuelles et auditives que pourrait engendrer le méthaniseur pour la population de proximité.

22-2D2IDITECNC1 Page : 8/34

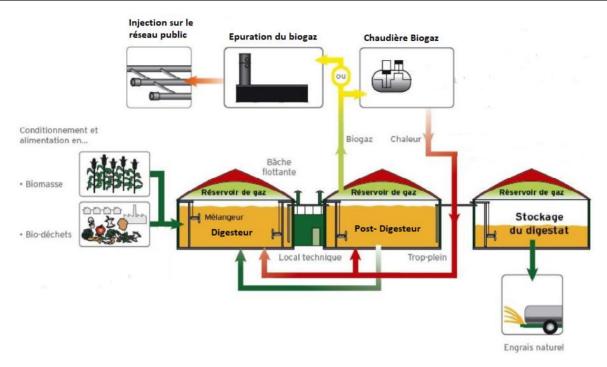
DT1 - Part des Énergies Renouvelable (EnR) en 2018 en France



DT2 - Schéma de principe de la méthanisation


22-2D2IDITECNC1 Page : 9/34

DT3 – Objectifs révisés issus de la Programmation Pluriannuelle de l'Energie (PPE) publiés en Avril 2020


Dans la nouvelle PPE publiée au Journal Officiel le 23 avril 2020, les pouvoirs publics revoient à la baisse les ambitions de développement de la filière biométhane. À l'horizon 2028, c'est une fourchette de 14 à 22 TWh/an qui est fixée, avec la baisse des coûts de production comme variable d'ajustement. Ce choix cumulé à la crise COVID risque d'impacter le nombre de projets concrétisés dans les prochaines années.

DT4 – Évolution du nombre et de la capacité des projets inscrits au registre des capacités (projets déclarés et en service)

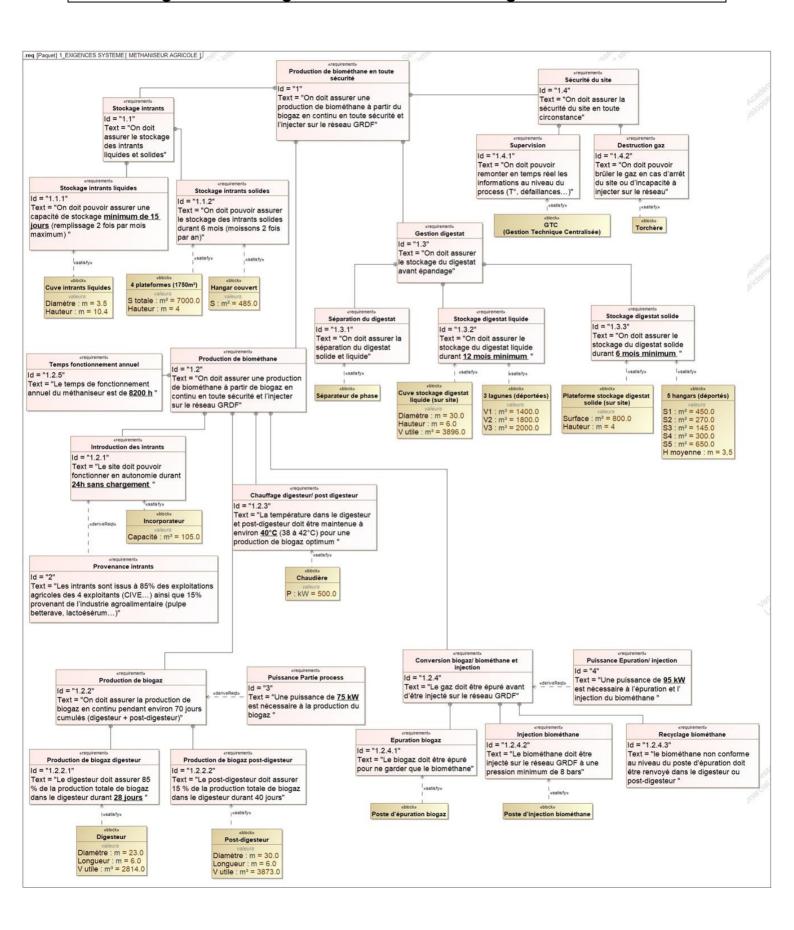
Source: Open Data Réseaux Energies

DT5 – Principaux constituants du processus de méthanisation et flux d'énergies / matières associées

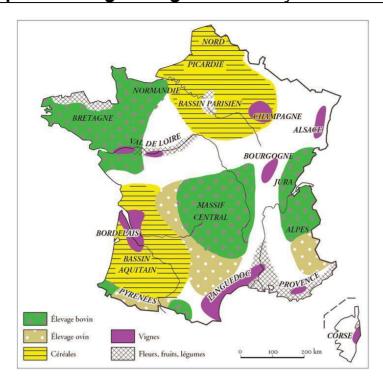
DT6 - Comparaison méthanisation mésophile et thermophile

Le tableau ci-dessous compare la méthanisation mésophile et la méthanisation thermophile

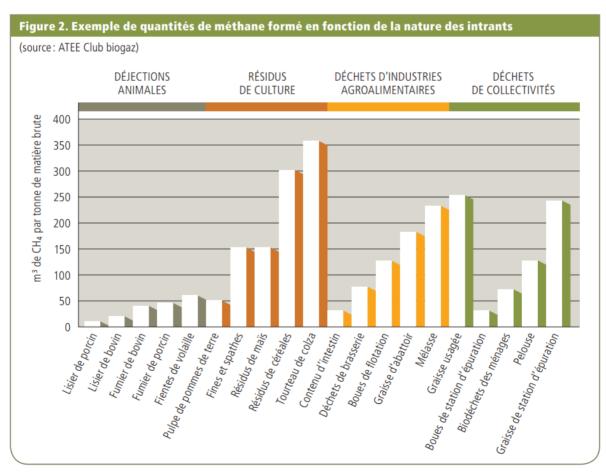
	méthanisation mésophile	méthanisation thermophile
Température	35-40°C	50-65°C
		Environ 35 % de chaleur autoconsommée
	Environ 20 % de chaleur	Hygiénisation plus poussée des germes
	autoconsommée	pathogènes (présente un intérêt lors de
	Le plus couramment utilisé	l'utilisation de biodéchets)
spécificités	Biologie plus stable donc plus	Temps de séjour plus court
	facile à maîtriser	Meilleure dégradation des chaînes carbonées
		Biologie plus difficile à maîtriser
		Risque d'inhibition à l'ammonium plus forte


DT7 - Comparatif des solutions de valorisation du biogaz

Quelle efficacité énergétique ?


(الله	
Valorisation par injection	Valorisation par cogénération
Rendement énergétique de l'installation	Rendement énergétique de l'installation
Rendement épuration : 98 %	 Rendement électrique moyen : 40 %
Rendement injection : 100 %	Rendement thermique moyen : 42 %
Rendement brut global : 98 %	Rendement brut global : 82 %
(avec chauffage du méthaniseur)	(avec chauffage du méthaniseur)

22-2D2IDITECNC1 Page : 11/34


DT8 - Diagramme d'exigences du méthaniseur agricole

DT9 - Cartographie des régions agricoles françaises



DT10 - Potentiel méthanogène en fonction du type d'intrant

22-2D2IDITECNC1 Page : 13/34

DT11 - Synoptique de l'installation chiffrée

22-2D2IDITECNC1 Page : 14/34

DT12 – Extrait de données issues du dossier ICPE (Installations Classées pour la Protection de l'Environnement)

1.8.6.4 Compression

Le biogaz prétraité et purifié pénètrera au cœur même du système d'épuration, où il sera comprimé à 9 bars. Il passera à travers un système comprenant plusieurs étages de membranes qui séparent le CO₂ du CH₄.

Le système est composé d'un compresseur principal travaillant à 9 bars servant principalement à produire le biométhane.

Un compresseur intermédiaire travaillant à 3 bars permettra de réguler le taux de CH₄ dans le Off-Gaz et de respecter la règlementation.

1.8.6.5 Séchage, chauffage du biogaz

Afin de chauffer les digesteurs, une première partie de l'eau chaude provient de la chaleur récupérée sur les compresseurs (échangeur huile-eau). Une chaudière permet de répondre aux compléments de chauffage.

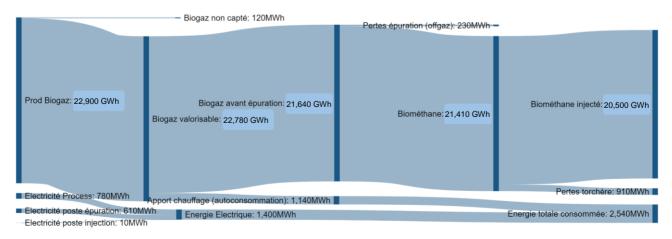
1.8.6.6 L'épuration

Ces étapes ont lieu dans un conteneur métallique dédié.

Les membranes présentent une capacité de 604 Nm³·h⁻¹ de biogaz.

Le module d'épuration a pour objectif de convertir le biogaz (60 % de méthane, 40 % de CO₂ et quelques impuretés) en biométhane injectable dans le réseau GRTgaz.

1.8.6.8 Bilan de la valorisation du méthane


L'étude de faisabilité réalisée par GRDF a montré que la totalité du biométhane peut être injectée sur le réseau. En effet il existe une consommation importante de gaz dans la région, même en été.

Le bilan de valorisation du méthane est (en % du volume produit) de manière générale le suivant :

- 90 % valorisé en injection ;
- < 5 % valorisé en interne (chaudière) ;
- < 4 % détruit en torchère ;
- < 1 % perdu par le offgaz.

Le rendement épuratoire de CH₄ est supérieur à 99,3 %.

DT13 - Bilan énergétique méthaniseur agricole (diagramme Sankey)

*Biogaz non capté lors des opérations de maintenance (ouverture du digesteur ou post-digesteur à l'air libre).

22-2D2IDITECNC1 Page : 15/34

DT14 – Les avantages du digestat (extrait article « Le-gaz.fr » Avril 2018)

LE DIGESTAT, CE FERTILISANT ISSU DE LA MÉTHANISATION IDÉAL POUR L'AGRICULTURE

Le digestat c'est quoi ? C'est le nom donné à la matière organique résiduaire provenant du process de méthanisation. Lorsque des résidus d'élevages bovins, ovins ou d'agriculture sont valorisés pour être transformés en biométhane, la partie restante est donc le digestat. Toute la question est de savoir quoi en faire ?

Le monde agricole trouve par là un formidable fertilisant. Un fertilisant naturel produit sur place et à moindre coût qui plus est. Utilisé en France mais aussi en Belgique et en Suisse, il affiche des qualités d'un point de vue du rendement toutes aussi intéressantes que les engrais chimiques comme l'explique cet exploitant : "J'ai choisi le digestat pour une raison économique. C'est un aussi bon engrais qu'un chimique. Il apporte les mêmes éléments fertilisants « NPK », soit de l'azote, du phosphore et du potassium et il est nettement moins cher que le chimique".

Le digestat est de la matière organique digérée, d'où son nom. Il permet de booster les cultures à moindre coût lorsque le méthaniseur est implanté au sein même de l'exploitation agricole. Un exemple d'économie circulaire sobre du point de vue de l'environnement. L'agriculteur transforme le résidu de sa culture en biométhane qu'il revend et utilise le digestat pour fertiliser les prochaines cultures.

La boucle est bouclée. Chez nos voisins belges, il est même de plus en plus recherché, la demande ayant dans certains cas été multipliée par 5 en une année à peine. Disponible, performant, économique, le digestat affiche de nombreux avantages. Il est bien plus propre pour les sols que les engrais chimiques.

DT15 – Tableau récapitulatif des actions à mener pour réduire les impacts environnementaux liés au processus de méthanisation

		Actions	Type d'action	Emissions	Faisabilité technique	Maturité	Efficacité	Investissement
	GES ET polluants	Optimiser les distances de transport	Réduire	CO ₂ , NO _x	***	•	***	€
		Laver et rincer les véhicules à chaque débarquement (transport matières solides)	Eviter	Odeurs	*	•	*	€
Appro. substrats	Odeurs	Intégrer des canalisation fermées au process de transport des matières liquides (cas de IAA)	Eviter	Odeurs	?	•	**	€
		Adapter horaires et fréquences de déchargement	Eviter	Odeurs	?	•	**	€
Stockage/	GES ET polluants	Minimiser les durées de stockage	Réduire	CH ₄ , CO ₂ , NH ₃	*	•	***	€
traitement	Polluants odeu	Confiner lieux de réception puis aspirer et traiter l'air vicié	Eviter et Traiter	NH ₃ , composés soufrés, odeurs	***	•	***	€€€
		Détecter et suivre les fuites de biogaz	Eviter	CH ₄ , CO ₂	**	0	**	€€€
Production	GES	Etre vigilant lors des réceptions des ouvrages de méthanisation (étanchéité)	Eviter	CH ₄ , CO ₂	*	•	***	€€
de biogaz	Polluants	Réduire et limiter la formation de H ₂ S en amont ou dans le digesteur	Réduire	H ₂ S	*	•	**	€
		Suivre les émissions de H ₂ S	Mesurer	H₂S	*	•	**	€€€
	GES	Détecter et suivre les fuites de biogaz	Eviter	CH ₄ , CO ₂	**	0	**	€€€
Stockage /		Optimiser la valorisation énergétique	Eviter	CO, CO ₂	*	•	**	€
valorisation biogaz	Polluants	Eliminer l'ammoniac du biogaz par prétraitement pour améliorer la combustion	Eviter	NOx	?	•	**	€€
	Folidaris	Eliminer les polluants traces du biogaz	Traiter	Siloxanes, mercaptans	?	•	**	€€€
	GES	Recouvrir les fosses de stockage et récupérer le biogaz résiduaire	Eviter	CH ₄ , CO ₂	**	•	***	€€
Stockage/	GES	Maximiser les temps de séjour dans le digesteur et post-digesteur et capter le biogaz	Réduire	CH ₄ , CO ₂	*	•	***	€
traitement digestat	Polluants	Recouvrir, aspirer et traiter l'air vicié / valoriser les biogaz résiduaire	Eviter	NH ₃	**	•	***	€€
		Traiter l'air vicié	Traiter	NH ₃	**	•	**	€€€
		Utiliser une rampe à pendillards ou des enfouisseurs à disques	Réduire	N ₂ O, NH ₃	*	•	***	€€
Epandage digestat	GES ET polluants	Respecter des périodes d'épandage appropriées	Réduire	N ₂ O, NH ₃	*	•	***	€
		Couvrir les véhicules transportant le digestat	Réduire	NH ₃	*	•	*	€

Page: 16/34

22-2D2IDITECNC1

DT16 - Extrait « La méthanisation en 10 questions » Octobre 2019

Une unité de méthanisation émet-elle des odeurs ?

Des odeurs peuvent provenir des déchets avant méthanisation

Lors de la méthanisation, la décomposition des déchets est réalisée en absence d'oxygène, sans contact avec l'air ambiant et donc sans odeur. Au terme du process, les acides gras volatils responsables des odeurs sont détruits : le digestat produit est pratiquement inodore, même une fois épandu dans les champs. D'ailleurs, de nombreux agriculteurs recourent à la méthanisation pour réduire les odeurs d'épandage agricole des fumiers et des lisiers.

Une unité de méthanisation fait-elle du bruit?

Les émissions sonores d'une unité de méthanisation sont minimes

Lorsque l'installation de méthanisation est équipée d'une unité de cogénération pour produire à la fois de l'électricité et de la chaleur, un moteur tourne en continu. Ce moteur est placé dans un caisson insonorisé qui permet de réduire le bruit à moins de 51 dB (soit le niveau sonore d'une machine à laver) dans un rayon de 50 mètres.

Le matériel de manutention et les engins de chantier utilisés à l'intérieur de l'installation sont également conformes aux limites réglementaires en matière d'émissions sonores, soit moins de 70 dB en journée. Ils sont utilisés pendant les horaires de travail habituels. de 8h à 18h en semaine.

Le trafic est optimisé et limité au maximum

Une grosse installation de méthanisation (unité industrielle) nécessite le passage de 10 camions par jour travaillé.

Pour une unité de méthanisation plus petite (à la ferme), le trafic n'augmente que d'un camion par jour durant les horaires de travail.

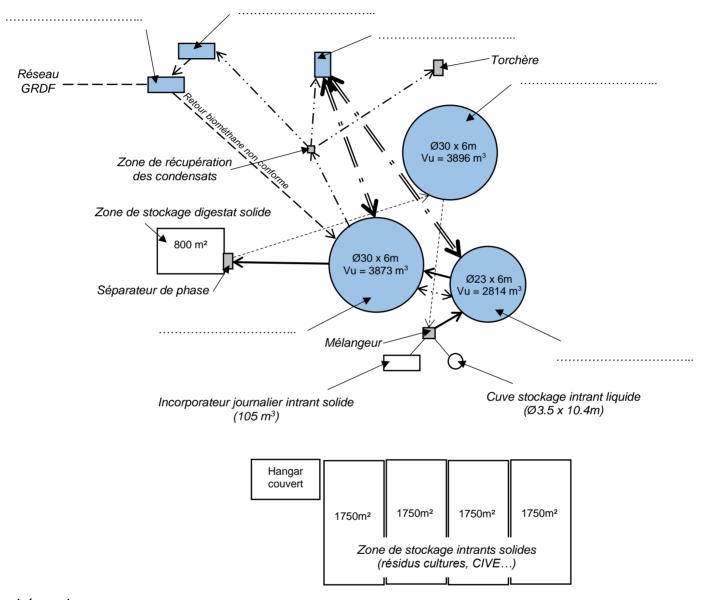
Le transport est toujours optimisé pour réduire les distances, limiter les désagréments pour les riverains et réduire la consommation de carburant. De même, les horaires et les trajets de circulation sont adaptés pour éviter les heures de pointe et les zones les plus fréquentées.

Quel est son impact sur le paysage?

Tout est fait pour rendre l'installation la moins visible possible

Pour créer une harmonie visuelle et gêner le moins possible les riverains, plusieurs solutions existent comme le choix de teintes de matériaux adaptées aux milieux environnants, l'enfouissement partiel des cuves de stockage ou des digesteurs, l'implantation de haies autour du site...

Les porteurs de projet sont également fortement incités à recourir à un architecte expert en intégration paysagère.



L'intégration paysagère est à prendre en compte dès le choix du site d'installation de l'unité de méthanisation. Des couleurs proches de celles de la nature permettent de mieux intégrer les bâtiments dans leur environnement.

22-2D2IDITECNC1 Page: 17/34

DOCUMENT RÉPONSES - DR1

Représentation simplifiée de l'implantation des principaux contituants du méthaniseur et principaux flux d'énergie et de matière

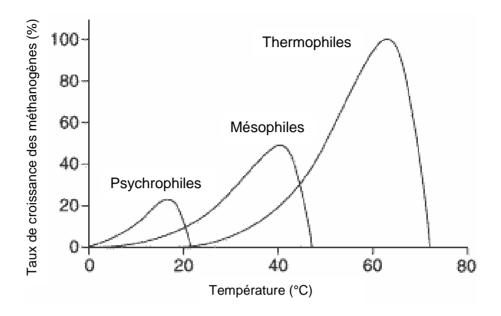
<u>Légende</u>:

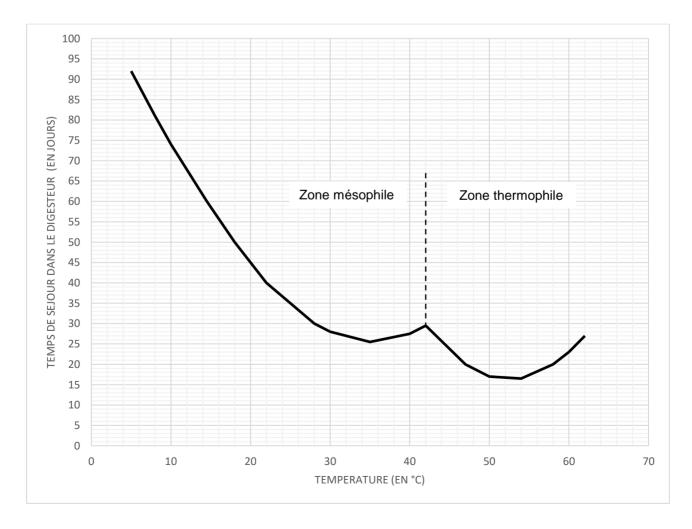
Intrants (solide et/ou liquide)

——— Digestat brut

Digestat liquide

-··-·· Réseau biogaz


---- Réseau biométhane


22-2D2IDITECNC1

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES – DR2

Courbes de temps de séjour et de température en fonction des différents types de décomposition possibles

22-2D2IDITECNC1 Page : 19/34

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES – DR3

Tableau récapitulatif des capacités des stockages des digestats solides et liquides

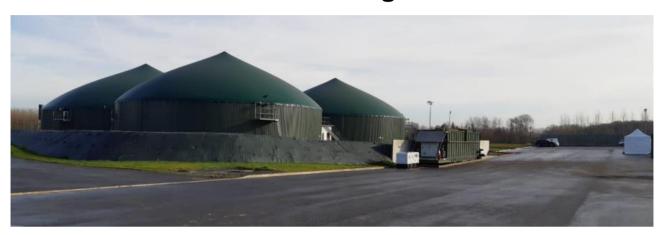
STOCKAGE DIGESTAT LIQUIDE:

Type de stockage	Lieu de	Capacité de		Volume digestat	Durée de stockage
	stockage	stockage en m ³		liquide annuel à	possible en mois
				stocker (en m³)	
Our a stadus as			-		
Cuve stockage	sur site				
digestat liquide			_		
Lagune N°1	déporté	1400			
	'		_		
Lagune N°2	déporté	1800			
<u> </u>	'				
Lagune N°3	déporté	2000			
- C	•				
capacité totale	e de stockage				

STOCKAGE DIGESTAT SOLIDE:

Type de stockage	Lieu de stockage	Surface (m²)	Hauteur moyenne stockage prévue (m)	Coef. de sécurité	Capacité de stockage en m³	Volume digestat solide annuel à stocker (en m³)	Durée de stockage possible en mois
plateforme de stockage	sur site			1			
Hangar N°1	déporté	450					
Hangar N°2	déporté	145			406		
Hangar N°3	déporté	300	3.5	0.8	840		
Hangar N°4	déporté	270			756		
Hangar N°5	déporté	650			1820		
		capacité	é totale de s	stockage			

CONCLUSION:


22-2D2IDITECNC1 Page : 20/34

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

PARTIE SPÉCIFIQUE (8 points)

Innovation Technologique et Éco-Conception

Méthaniseur Agricole

Constitution du sujet :

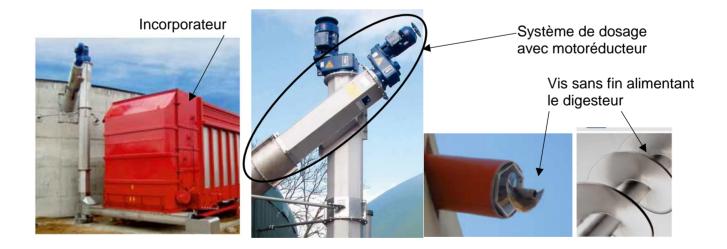
•	Dossier sujet et questionnement	Pages 22 à 26
•	Dossier technique	Pages 27 à 32
•	Documents réponses (à rendre avec la copie)	Pages 33 à 34

22-2D2IDITECNC1 Page : 21/34

Mise en situation

L'étude qui suit nous permettra de valider :

- √ que le système de dosage des intrants solides au niveau du digesteur est correctement dimensionné (Partie A);
- √ que les matériaux retenus pour les conduites de biogaz et/ou biométhane, leur dimensionnement et leur mode d'assemblage sont satisfaisants (partie B);
- ✓ que le poste d'injection est capable d'isoler le site du réseau de distribution GRDF en cas de défaillance (Partie C).


Travail demandé

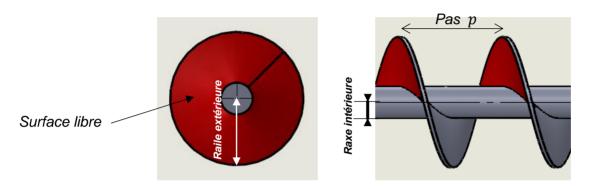
Partie A – Comment assurer le dosage correct et continu des intrants ?

L'incorporateur de 105 m³ chargé journalièrement par les opérateurs constitue le stockage tampon nécessaire aux besoins journaliers en intrants du digesteur.

Le dosage automatisé est ensuite assuré grâce à un système de motoréducteur sur lequel est installé une vis sans fin. La vitesse d'introduction des intrants est ajustée grâce à un variateur de fréquence qui permet d'assurer un dosage en continu.

La chaîne de puissance du système de dosage est donnée sur le document DTS1.

Question A.1 **Déterminer** la quantité horaire d'intrants à injecter dans le digesteur $V_{horaire\ à\ injecter}$ en m³·h⁻¹.


22-2D2IDITECNC1 Page : 22/34

L'axe de sortie du réducteur est fixé à la vis sans fin grâce à une liaison encastrement démontable (accouplement élastique).

Question A.2 Calculer la vitesse de rotation maximum de la vis sans fin $N_{\text{max}\,VSF}$ en $\text{tr}\cdot\text{min}^{-1}$.

Afin de connaître la vitesse de rotation à imposer, il faut connaître la quantité de matière injectée par la vis pour chaque tour. Elle est obtenue grâce à la formule suivante :

$$Volume_{dosage/tour_{(m^3)}} = Surface \; libre_{\,(m^2)}x \; Pas_{\,(m)} = \; \Pi x \; (R_{aile\; ext\'erieure}^{\,2} - \; R_{axe\; int\'erieur}^{\,2}) \; x \; p$$

Le pas p correspondant à la distance entre 2 sommets ou creux de l'hélice.

Question A.3 Calculer le volume dosé par tour $V_{dosage/tour}$ en m³-tr -1 (ou mm³-tr -1) par la vis sans fin.

On considérera pour la suite que $N_{\max VSF} = 0.35 \text{ tr} \cdot \text{s}^{-1}$ et que le $V_{dosage/tour} = 9 \cdot 10^{-3} \text{ m}^3 \cdot \text{tr}^{-1}$

Question A.4 Calculer ainsi le débit horaire maximum de la vis sans fin $Q_{\max VSF}$ en m³.h⁻¹.

Conclure si la vis sans fin pourra doser le volume attendu $V_{horaire\ \grave{a}\ injecter}.$

Partie B – Comment assurer l'acheminement du gaz dans les tuyaux en toute sécurité ?

Le biogaz avant épuration est chargé en hydrogène sulfuré (H₂S) en très faible quantité. C'est un gaz inflammable, incolore, à l'odeur nauséabonde d'œuf pourri, très toxique.

Il est faiblement soluble dans l'eau mais avec la condensation dans les tubulures (tuyaux), il peut donner naissance à l'**acide sulfhydrique** qui est **corrosif**. Le choix des matériaux pour les tubulures est donc primordial.

Le biogaz est acheminé dans notre cas depuis le digesteur et post-digesteur vers l'unité d'épuration grâce à des tubulures enterrées en polymères type polyéthylène « PEHD ».

22-2D2IDITECNC1 Page : 23/34

Les tubulures apparentes (hors sol) sont obligatoirement en métal. Il s'agit ici d'acier inoxydable choisi pour des raisons de sécurité évidentes liées à leur résistance en cas d'explosion à proximité des tubulures.

On peut voir sur le DTS3 que l'acier est de loin le plus onéreux des métaux et alliages.

Question B.1

DTS3

Justifier, en argumentant, le choix d'utiliser l'acier inoxydable au niveau des tubulures apparentes en vous appuyant sur le critère de corrosion uniquement.

Justifier, en argumentant, le choix de matériau retenu pour les tubulures enterrées en vous appuyant à la fois sur le critère de corrosion et le critère de prix.

Les tubulures sont généralement constituées de tubes de cinq à six mètres de long qu'il faut assembler entre eux.

Pour éviter toute fuite au niveau des raccords, l'étanchéité est un point sensible. Il existe différentes solutions pour assurer l'étanchéité statique entre deux éléments (pâte à joint, joints d'étanchéité...).

Question B.2

Justifier, en argumentant, le choix retenu d'assembler les tubulures enterrées en PEHD par électrosoudage.

Les tubulures entre le digesteur et le poste d'épuration sont des tubes « PE100 DN 300». PE 100 fait référence à la matière (Polyéthylène). « DN 300 » correspond au diamètre du tube :

- ✓ DN : « Diamètre Nominal » désigne le diamètre intérieur d'un tube.
- √ 300 : correspond approximativement au diamètre intérieur en millimètres (à quelques millimètres près)

Ils sont aussi « PN4 ». Cela signifie qu'ils sont capables de résister à une pression normalisée de 4 bars, valeur suffisante pour supporter les 40 mbars maximum dans les tuyaux.

Les tubulures entre le poste d'épuration et d'injection doivent être « PN16 ». En effet, la pression en sortie du poste d'épuration du fait de la compression du gaz pourra atteindre à terme plus de 10 bars.

Il nous faut donc déterminer l'épaisseur minimale des tubulures pour résister à cette pression.

On précise que la limite élastique du PE100 est de 19,6 x 10⁶ Pa et, pour éviter tout problème, on prendra un Coefficient de Sécurité « CS » égal à 1,5.

22-2D2IDITECNC1 Page : 24/34

Question B.3

DTS5

Compléter, sur le document DRS1 :

- ✓ les valeurs de contraintes maximum σ_{max} pour chacune des 3 simulations du DTS5 :
- ✓ les 3 valeurs de contraintes maximum $\sigma_{max\ CS}$ avec prise en compte du coefficient de sécurité en détaillant les calculs ;
- ✓ la valeur de la limite élastique Re en MPa ;
- √ la condition de validité assurant la résistance et si les épaisseurs sont conformes ou non.

Conclure sur le document **DRS1** sur l'épaisseur minimum que devra faire la tubulure.

Le débit au niveau du poste d'injection doit être de 250 Nm³·h⁻¹ (Normaux m³·h⁻¹). Cette valeur correspond à un débit à pression atmosphérique de 1 bar et une température de 20 ℃.

Sachant que la pression d'injection est de l'ordre de 9 bars dans notre cas, le débit « réel » à satisfaire est donc de $250 / (9 + 1) = 25 \text{ m}^3 \cdot \text{h}^{-1}$ si l'on néglige l'influence de la température.

Le poste d'injection est instrumenté de manière à mesurer la vitesse du fluide. Elle est dans notre cas de l'ordre de 0,9 m·s⁻¹.

Question B.4

DRS2

DTS6

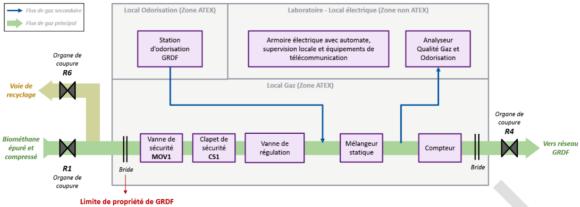
Déterminer, par tracé sur le document **DRS2**, le diamètre DN minimal de la tubulure nécessaire au niveau du poste d'injection.

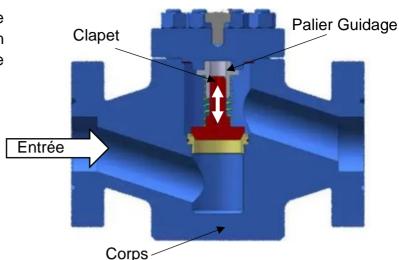
En déduire, en argumentant, la référence du tube adapté à l'aide du DTS6 sachant que l'épaisseur minimum retenue est de 8 mm et que la valeur de SDR est de 11 dans notre cas (pour 16 bars).

Partie C – Comment assurer la protection du poste d'injection en toute circonstance ?

En cas d'arrêt de production, le poste d'injection doit être capable d'isoler le réseau de gaz GRDF du site.

Un clapet de sécurité « CS1 » (ou clapet anti-retour) est installé comme indiqué sur le schéma fluidique simplifié ci-dessous.




Schéma de l'installation d'injection avec odorisation GRDF

22-2D2IDITECNC1 Page : 25/34

On donne ci-contre un aperçu en coupe du clapet anti-retour retenu : avec un système de rappel par ressort de compression.

On précise que :

- ✓ ØD = 100 mm
- ✓ L nominale ressort = 100 mm
- ✓ Ø intérieur ressort mini = 45 mm
- ✓ Course ressort : 30 mm

Le clapet doit pouvoir être complètement ouvert dès que la pression d'injection dépasse 8 bars (pression minimum d'injection dans le réseau).

On rappelle que : 1 bar = 0,1 MPa (ou N·mm⁻²)

Question C.1 Calculer l'effort $F_{pression}$ généré sur la surface du piston par la pression d'injection.

Le clapet est guidé en translation par rapport au corps (liaison pivot glissant entre le clapet et le palier de guidage).

Le poids propre du piston, les frottements au niveau de la liaison ainsi que la pression résiduelle en sortie (côté ressort) sont négligés. Le bilan des actions mécaniques appliquées au piston conduit à 2 forces égales et opposées suivant la direction de translation : d'une part la force de pression sur le piston côté entrée et d'autre part la force du ressort.

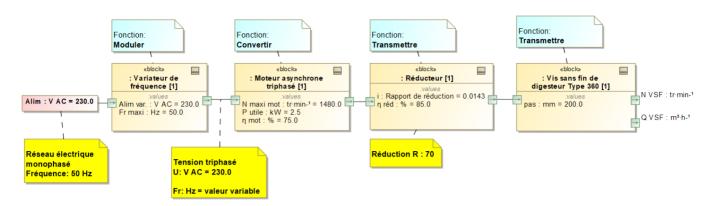
Le DTS7 recense plusieurs simulations de ressorts avec les forces de rappel maximales qu'ils sont susceptibles de fournir.

Question C.2

DTS7

Déterminer, en justifiant, les dimensions du ressort le plus adapté dans notre cas (diamètre du fil, nombre de spires et constante de raideur) en considérant que l'effort lié à la pression est de 6 kN.

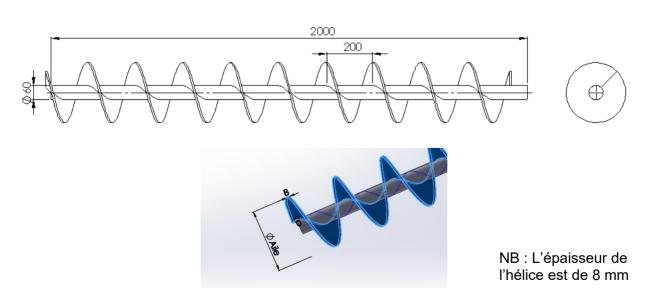
NB : il faudra veiller à ce que le ressort retenu permette l'ouverture complète du clapet à cette pression.


Partie D – En quoi les choix retenus au niveau des composants sont-ils capitaux pour l'installation ?

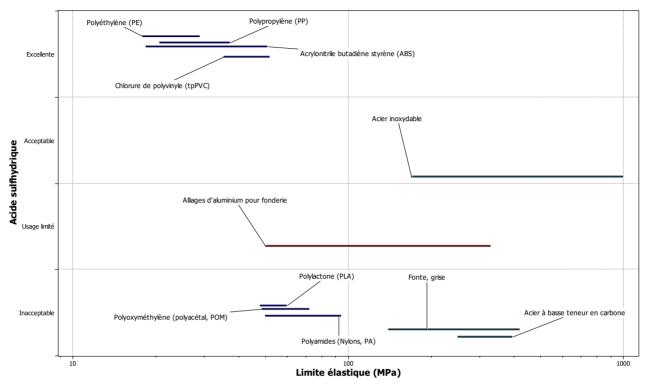
Question D.1

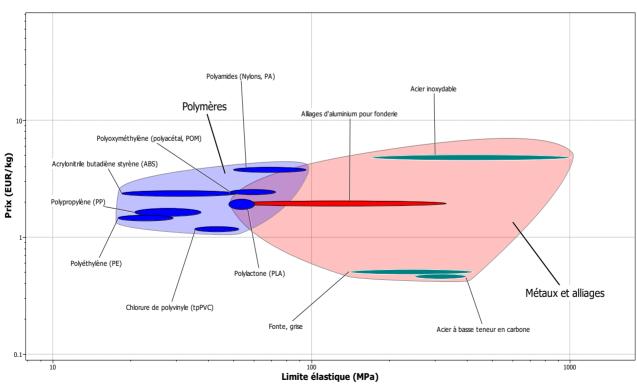
Conclure quant à l'intérêt d'avoir conduit les trois études précédentes pour assurer le bon fonctionnement du méthaniseur.

22-2D2IDITECNC1 Page : 26/34


DTS1 - Chaîne de puissance du système dosage

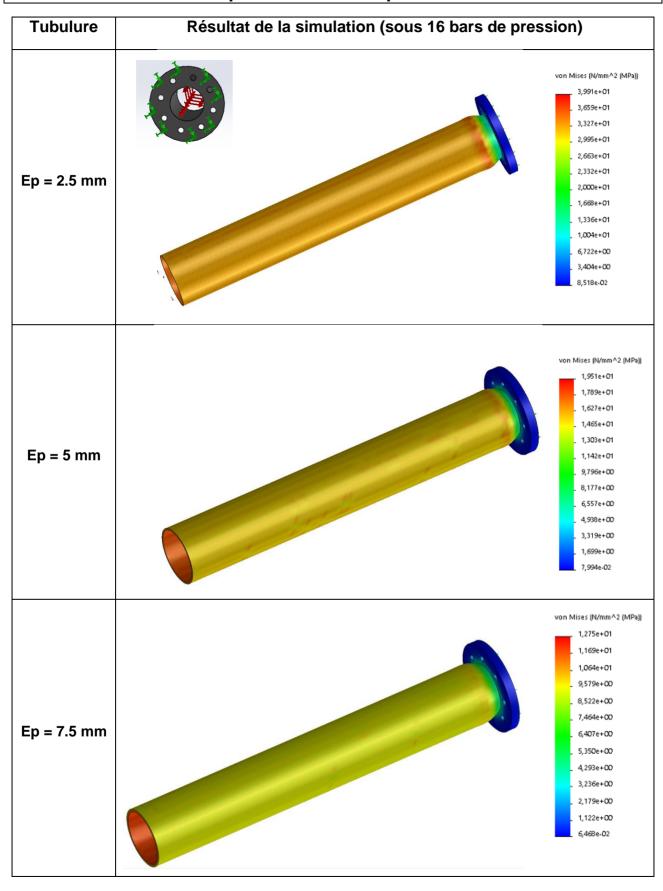
DTS2 – Extrait des caractéristiques « système de dosage à vis sans fin »


Aperçu des variantes de modèles


Туре	Vis sans fin de sous-construction, type 360	Vis sans fin raide, type 360	Vis sans fin de digesteur, type 360	Vis sans fin de sous-construction, type 450	Vis sans fin raide, type 450	Vis sans fin de digesteur, type 450	Vis sans fin de digesteur, type 600 / 90 degrés	Vis sans fin de digesteur, type 600 / 55 degrés
Ø Aile de vis sans fin (mm)	250	280	250	360	360	360	450	450
Épaisseur du matériau	8	8	8	8	8	8	8	8
Longueur de construction (m)	<5,50	<7,20	<3,50	<4,50	<4,50	<3,50	<3,50	<3,50
Puissance motrice (kW)	3	5	2,5	4	5	3,6	3,6	3,6
Longueur de construction (m)	<8,50	<9,00		<6,00	<8,00			
Puissance motrice (kW)	4	6,8		5,5	6,8			
Matériau V2A	х	Х	Х	Х	Х	Х	X	х
Zone de gaz V4A			Х			х	X	х
Alésage – paroi de digesteur			450			550	700	700
x = équipement de série								

22-2D2IDITECNC1 Page : 27/34

DTS3 – Extrait des caractéristiques mécaniques des matériaux (multicritère)


22-2D2IDITECNC1 Page : 28/34

DTS4 – Comparatif des modes d'assemblage pour une étanchéité de type statique

Etanchéité	Montage	Spécificités
Directe	Surfaces rodées et complémentaires	 ✓ Adapté aux matériaux métalliques surtout car l'étanchéité est obtenue grâce à la pression exercée entres les 2 pièces par bridage; ✓ Mise en œuvre complexe: nécessite des états de surfaces particuliers et/ ou formes particulières; ✓ Coûteux; ✓ Nécessite un accès pour intervention (regard de visite si enterré); ✓ Étanchéité à contrôler régulièrement (limitée dans le temps); ✓ Démontable.
Semi-directe	Pâte à joint	 ✓ Adapté à tous les matériaux; ✓ Mise en œuvre simple et rapide; ✓ Économique; ✓ Convient en aérien comme enterré; ✓ Étanchéité limitée dans le temps du fait de la dégradation possible du joint (notamment lorsqu'il est enterré, température); ✓ Démontable.
Indirecte	Joint d'étanchéité	 ✓ Adapté à tous les matériaux; ✓ Mise en œuvre simple et rapide par pression (bridage); ✓ Économique; ✓ Nécessite un accès pour intervention (regard de visite si enterré); ✓ Étanchéité à contrôler régulièrement (limitée dans le temps); ✓ Démontable.
Permanente	Soudage	 ✓ Nécessite que les matériaux puissent se souder (éviter la fonte) : Métaux : soudage par poste à souder TIG ou MIG Plastique : électrosoudage ✓ Mise en œuvre complexe car nécessite de l'outillage spécifique en fonction du matériau à souder ; ✓ Coûteux ; ✓ Convient en aérien comme enterré ; ✓ Étanchéité garantie sur la durée (plusieurs dizaines d'années) ; ✓ Indémontable.

22-2D2IDITECNC1 Page : 29/34

DTS5 - Simulation RDM pour différentes épaisseurs de tubulure

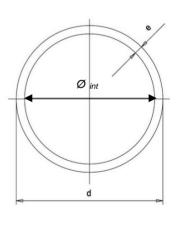
22-2D2IDITECNC1 Page : 30/34

DTS6 – Extrait du catalogue des tubulures PE 100 spécial ATEX « SIMONA »

PE Tubes de pression électro conducteur

12 Bouton Produits 🔥	1 Informations	i Comparer
----------------------	----------------	------------

Matériau	\$DR ♦	d (mm)	e (mm)	Poids (kg/m)	Longueur (m)	Référence d'article
PE-EL	11	63	5.8	1.160	5	010000353
PE-EL	11	75	6.8	1.620	5	010001693
PE-EL	11	90	8.2	2.350	5	010000356
PE-EL	11	110	10.0	3.480	5	010000358
PE-EL	11	125	11.4	4.510	5	010000360
PE-EL	11	140	12.7	5.620	5	010001694
PE-EL	17,6	63	3.6	0.760	5	010000352
PE-EL	17,6	75	4.3	1.080	5	010001121
PE-EL	17,6	90	5.1	1.530	5	010000355
PE-EL	17,6	110	6.3	2.300	5	010000357
PE-EL	17,6	125	7.1	2.940	5	010000359
PE-EL	17,6	140	8.0	3.690	5	010000361


Le **Standard Dimension Ratio** (**SDR**) est le rapport entre le diamètre extérieur d'un tube « d » et l'épaisseur de sa paroi « e ».

« SDR 11 » signifie que le diamètre du tube est 11 fois supérieur à l'épaisseur de sa paroi.

Un grand SDR indique une paroi fine pour un tube donné, donc moins robuste en pression. Un faible SDR indique une paroi épaisse, donc plus robuste en pression.

La valeur du SDR d'un tube correspond à une pression nominale supportée en **Bars**, quel que soit le diamètre du tube.

	PN- Pre	ssion Nominale
SDR	PE 80	PE 100
41	3,2	4
33	4	5
26	5	6,3
17,6	7,5	9,6
17	8	10
11	12,5	16
7,4	20	25

 $\emptyset_{int} = d - 2e$

Ex : un tube PE 100 avec un SDR de 17.6 supporte une pression de 9.6 bars

22-2D2IDITECNC1 Page: 31/34

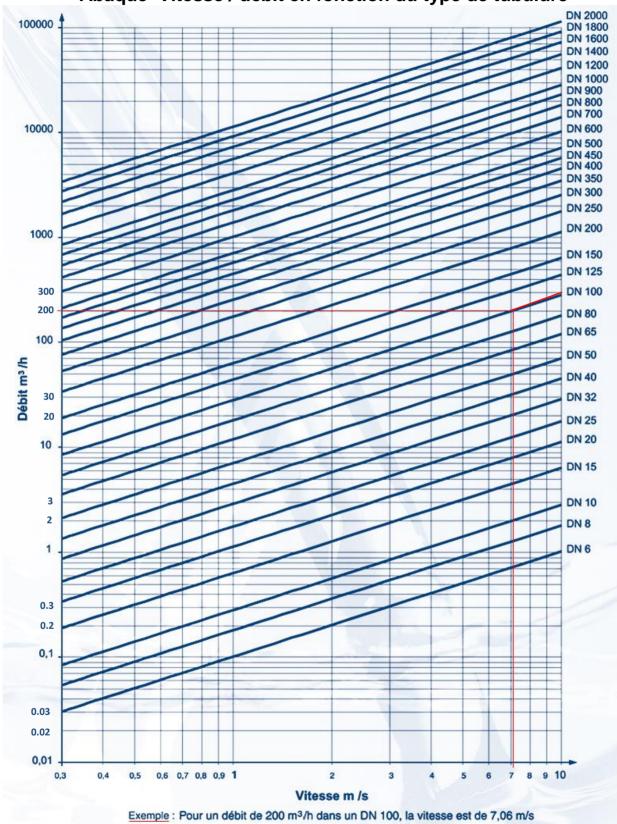
DTS7 – Résultats de simulation en fonction des dimensions du ressort

Simulatio	n N°1	Simula	tion N°2		
Diamètre du fil	10	mm	Diamètre du fil	12	mm
Nombre de spire totales	10	#	Nombre de spire totales	10	#
Diametre interieur	40	mm	Diametre interieur]
Diametre exterieur			Diametre exterieur	40	mm
Course maxi	70	mm		64	mm
Course maxi	30	mm	Course maxi	30	mm
	Calculer			Calculer	
Raideur du ressort	70.212	N/mm	Raideur du ressort	172.272	N/mm
Force maximale	2081.584	N	Force maximale	5107.366	N
Simulatio	on N°3		Simula	tion N°4	
Diamètre du fil	14	mm	Diamètre du fil		
Nombre de spire totales	13	#		7	mm
Diametre interieur			Nombre de spire totales	8	#
	40	mm	Diametre interieur	50	mm
Diametre exterieur	68	mm	Diametre exterieur	64	mm
Course maxi	30	mm	Course maxi	30	mm
	Calculer			Calculer	
Raideur du ressort	209.993	N/mm	Raideur du ressort	19.878	N/mm
Force maximale	6245.022	N	Force maximale	587.158	N
Simulatio	n N°5		Simula	tion N°6	
	/II IV J			tion it o	1
Diamètre du fil	12	mm	Diamètre du fil	13	mm
Nombre de spire totales	7	#	Nombre de spire totales	7	#
Diametre interieur	50	mm	Diametre interieur	50	mm
Diametre exterieur	64	mm	Diametre exterieur	76	mm
Course maxi	30	mm	Course maxi	30	mm
	Calculer			Calculer	
Raideur du ressort	203.463	N/mm	Raideur du ressort	207.557	N/mm
Force maximale	5992.922	N	Force maximale	6113.501	N
					1

22-2D2IDITECNC1 Page : 32/34

DOCUMENT RÉPONSES DRS1

Choix de l'épaisseur minimum de la tubulure en PE 100


		Tubulures											
	Ep = 2.5 mm	Ep = 5 mm	Ep = 7.5 mm										
Contrainte σ _{max} simulation (MPa)													
Contrainte max admissible avec coefficient de sécurité $\sigma_{\text{max CS}}$ (MPa)													
Re (MPa)													
Condition de validité													
Validité	☐ Conforme	□ Conforme	☐ Conforme										
	☐ Non Conforme	☐ Non Conforme	□ Non Conforme										
	<u> </u>	1	<u> </u>										

22-2D2IDITECNC1 Page : 33/34

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat : (Les numéros figurent sur la convocation, si besoin demander à un surveillant												oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES DRS2

Abaque Vitesse / débit en fonction du type de tubulure

Diamètre « DN » retenu :

22-2D2IDITECNC1 Page: 34/34

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat : (Les numéros figurent sur la convocation, si besoin demander à un surveillant												oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2