BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2022

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DÉVELOPPEMENT DURABLE

Ingénierie, innovation et développement durable Architecture et Construction

Durée de l'épreuve : 4 heures

Aucun document autorisé.

L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de la calculatrice sans mémoire, « type collège » est autorisé.

Dès que ce sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 37 pages numérotées de 1/37 à 37/37.

Constitution du sujet :

Partie commune (durée indicative 2h30)	12 points
Partie spécifique (durée indicative 1h30)	8 points

Le candidat traite la partie commune et la partie spécifique en suivant les consignes contenues dans le sujet.

Ces 2 parties sont indépendantes et peuvent être traitées dans un ordre indifférent.

Tous les documents réponses sont à rendre avec la copie.

Dans la partie commune, le candidat doit choisir entre traiter la partie 2 (choix 1) ou la partie 4 (choix 2).

Les parties 1, 3 et 5 sont à traiter obligatoirement.

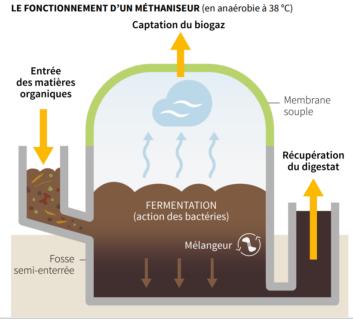
22-2D2IDACNC1 Page : 1/37

PARTIE COMMUNE (12 points)

MÉTHANISEUR AGRICOLE

0	Présentation de l'étude et questionnementpages 3 à 8	
0	Documents techniquespages 9 à 17	
0	Documents réponses (à rendre avec la copie) pages 18 à 2	0

22-2D2IDACNC1 Page : 2/37


Mise en situation

généralement.

Dans le cadre de la transition énergétique, l'évolution vers la production de gaz d'origine non fossile est indispensable. Les méthaniseurs agricoles sont une solution pour y parvenir ; d'ailleurs le nombre d'installations et de projets en cours est en plein essor...

Le méthaniseur transforme de la matière organique (biomasse) en biogaz (contenant du méthane) et en digestat (matière digérée restante), grâce à des microorganismes.

C'est un processus biologique naturel. La réaction a lieu en l'absence d'oxygène (décomposition anaérobique) et sous l'effet de la chaleur avec une température comprise entre 38 et 42°C dans une ou deux cuves fermées et mélangées appelées « digesteurs » (sorte de tube digestif).

Les matières organiques appelées aussi « intrants » (par exemple les déjections animales telles que le lisier, les résidus de cultures céréalières...) vont être

décomposées par les micro-organismes pendant une durée de 30 à 70 jours

Cette dégradation génère du biogaz ; ce dernier constitue une énergie renouvelable. Il est essentiellement composé de méthane (CH_4) et de dioxyde de carbone (CO_2).

Le biogaz peut être valorisé directement dans une chaudière, par exemple, ou encore être épuré pour ne conserver que le méthane : on parle alors de « biométhane ».

Ce gaz est équivalent au gaz de ville, il peut être injecté directement sur le réseau de gaz existant pour chauffer des logements ou bien encore recharger des véhicules fonctionnant au « GNV » (Gaz Naturel pour Véhicules).

Les résidus obtenus, à savoir les digestats, ont des propriétés fertilisantes. Ils peuvent donc être valorisés après séparation de la matière solide (digestat solide) et de la partie liquide (digestat liquide) sous diverses formes : compost, épandage, etc.

Pour information, le processus de méthanisation est un phénomène qui se déroule aussi naturellement dans l'appareil digestif des bovins ou dans les marais.

22-2D2IDACNC1 Page : 3/37

Partie 1 – Les méthaniseurs sont-ils une alternative pour permettre un développement durable ?

Tout le monde ou presque a déjà entendu parler de panneaux photovoltaïques ou d'énergie solaire. Ce n'est pas forcément le cas pour le biogaz produit par les méthaniseurs.

Question 1.1

DT1

Comparer la part d'énergie renouvelable issue du solaire photovoltaïque à celle provenant du biogaz pour l'année 2018.

Conclure si le biogaz est une alternative à prendre au sérieux ou non dans les années à venir.

Le biogaz peut être valorisé directement, par exemple en cogénération, ou épuré afin de l'utiliser sous forme de biométhane.

Question 1.2

Lister les 4 « variantes » de valorisation finale du biogaz.

DT2

Bien que la part d'énergie renouvelable issue du biogaz soit faible (quelques pourcents), les quantités énergétiques produites sont toutefois considérables. En effet, avec une production d'environ 4 TWh effective sur l'année 2020, l'énergie produite par le biogaz a tout de même permis de fournir l'intégralité des besoins énergétiques de 350 000 foyers.

Les objectifs de transition énergétique imposaient à horizon 2030 de produire 10 % de gaz d'origine renouvelable (biométhane). Cependant, avec la conjoncture de la Covid survenue en 2020, ces objectifs ont été revus à la baisse par les pouvoirs publics.

Question 1.3

DT3

DT4

Relever quels sont les nouveaux attendus minimum en % et en TWh/an à l'horizon 2030.

On dénombrait, en mars 2020, 139 installations en service et plus de 1134 projets en cours (demandes en cours d'étude).

Question 1.4

Relever la capacité de production totale possible en TWh/an de tous ces projets déclarés.

Conclure sur la capacité à atteindre le nouvel objectif fixé si 100 % des projets sont réalisés d'ici 2030.

22-2D2IDACNC1 Page: 4/37 Chaque kWh de gaz vert produit, injecté et consommé permet une économie de 188 g de CO₂ / kWh par rapport à une production de gaz conventionnelle.

Question 1.5


Calculer le nombre de tonnes d'émission de CO₂ ainsi évité chaque année en France en considérant une production de gaz équivalente à 21x10⁹ kWh à l'horizon 2030.

Partie 2 (choix 1) – Comment choisir le processus de méthanisation adapté aux ressources disponibles et le mode de production d'énergie finale optimum ?

L'objectif de cette partie est de valider les choix qui ont été faits au niveau du processus de méthanisation : type de méthaniseur, choix de paramètres liés au process (température, etc.) ainsi que le choix fait pour la valorisation finale du biogaz.

On donne ci-contre un aperçu du schéma d'implantation aérien du site de méthanisation.

Le détail des constituants et les principaux flux d'énergie et de matières sont donnés sur le schéma de principe du DT5.

Question 2.1
DT5, DT8
DR1

Compléter, sur le document **DR1**, les principaux constituants du méthaniseur à l'aide des termes suivants :

« chaudière biogaz », « digesteur », « post-digesteur », « poste d'épuration biogaz », « poste d'injection biométhane », « stockage digestat liquide ».

Tracer en rouge, sur le document **DR1**, le flux du biogaz depuis sa fabrication dans le digesteur jusqu'au poste d'épuration (d'où ressortira du biométhane après épuration).

Afin d'assurer la production de biogaz, il est nécessaire de chauffer le digesteur et le postdigesteur à une température adaptée, ce qui favorisera le processus de méthanisation par la décomposition de bactéries de type « mésophile » ou « thermophile ».

Le choix du type de décomposition influencera aussi le temps de séjour du digestat brut. La chauffe est assurée directement à partir du biogaz produit grâce à la chaudière biogaz.

22-2D2IDACNC1 Page : 5/37

Question 2.2

Justifier le choix retenu de s'orienter vers une décomposition mésophile en se limitant au point de vue énergétique.

Question 2.3

DT8 DR2

DT7

DT6

Déterminer par tracé, sur le document **DR2**, la température optimale permettant le meilleur taux de croissance des méthanogènes en décomposition mésophile et le temps de séjour dans le digesteur correspondant.

Conclure quant aux choix qui ont été retenus pour les valeurs de ces 2 paramètres pour notre installation.

Question 2.4

Expliquer le choix retenu de s'orienter vers l'injection de biométhane sur le réseau en valorisation finale, plutôt que la cogénération.

Partie 3 – Comment assurer la production optimale de biométhane au niveau du processus tout en limitant l'impact sur l'environnement ?

L'objectif de cette partie est de valider que le choix des intrants est judicieux, que le dimensionnement des éléments de stockage est correct et que le rendement de l'installation est optimum.

Question 3.1 DT9. DT10

Identifier le type d'agriculture prépondérante en Picardie (région Hauts-de-France).

Expliquer en quoi la Picardie est une terre propice à la méthanisation compte tenu du type d'intrant qu'elle propose.

Le méthaniseur fonctionnant 24h/24 et 7j/7, celui-ci dispose d'un incorporateur automatisé (cuve de stockage tampon) capable de couvrir les besoins journaliers en intrants solides. Ainsi, cela n'oblige pas à avoir une personne sur site en permanence et limite le temps de travail à 1h ou 2h le week-end pour la personne d'astreinte.

La masse volumique des intrants solides est de 700 kg·m⁻³.

Question 3.2 DT8. DT11

Calculer le tonnage journalier en intrants solides à stocker dans l'incorporateur.

En déduire la capacité journalière de stockage nécessaire en m³ en intrants solides.

Conclure si l'incorporateur retenu satisfaisait au besoin journalier.

L'installation est dimensionnée pour assurer un débit continu de biogaz de 500 Nm³·h⁻¹ (un normaux mètre cube par heure, noté Nm³·h⁻¹, correspond au débit en mètre cube par heure pour une température et une pression normalisée).

22-2D2IDACNC1 Page : 6/37

Question 3.3

DT12

Justifier le fait que la solution retenue pour l'épuration du biogaz permet de filtrer en continu cette quantité de biogaz.

En déduire le débit injectable de biométhane en Nm³·h¹¹ en sortie du poste d'épuration compte tenu du pourcentage de méthane contenu dans un m³ de biogaz.

Question 3.4 DT12

Calculer la valeur du débit réellement injecté après épuration en Nm³·h⁻¹ sur le réseau compte tenu des diverses pertes annoncées.

On considérera, pour la suite, que le débit de biométhane assuré est de 250 Nm³·h⁻¹ (soit 50 % de la production de biogaz). Chaque Nm³ de biométhane produit est capable de fournir une énergie égale à 10 kWh.

Question 3.5

Calculer le volume annuel de biométhane produit en Nm³ compte tenu du temps de fonctionnement effectif de l'installation précisé sur le DT8.

En déduire l'énergie annuelle produite par le méthaniseur en GWh.

Une partie de l'énergie est autoconsommée pour chauffer le digesteur et post-digesteur. Pour une installation, elle est en moyenne de l'ordre de 15 % à 20 % en décomposition mésophile mais bien moindre dans notre cas.

Question 3.6

Relever le pourcentage d'autoconsommation pour le chauffage dans notre cas.

Expliquer de quelle manière nous pouvons atteindre une telle valeur à l'aide du DT12.

Une consommation non négligeable d'électricité est nécessaire pour faire fonctionner notre installation. On peut considérer qu'elle est exclusivement liée à la partie « process » au niveau digesteur et post-digesteur (malaxeur de cuve, incorporateur...) ainsi qu'au niveau du poste d'épuration et d'injection.

Question 3.7

DT8

Déterminer respectivement l'énergie annuelle consommée en kWh par la partie process $W_{process}$ ainsi que l'énergie consommée par la partie épuration et injection $W_{épuration\ et\ injection}$ compte tenu du temps effectif de fonctionnement de l'installation.

Notre méthaniseur doit atteindre un rendement énergétique global supérieur à 90 % pour assurer une rentabilité satisfaisante. Le rendement global de notre installation est tel que :

$$\eta_{global} \; = \frac{W_{finale \; produite \; (inject\'ee)}}{W_{finale \; produite \; (inject\'ee)} + \; W_{\'electrique \; consomm\'ee}}$$

Question 3.8

DT13

Déterminer, à l'aide du DT13, le rendement global de notre installation. **Conclure** si notre méthaniseur est viable économiquement.

22-2D2IDACNC1 Page : 7/37

Partie 4 (choix 2) – Comment valoriser au mieux le digestat et minimiser son impact sur l'environnement ?

L'objectif de cette partie est de vérifier que les capacités de stockage tampon des digestats sont correctement dimensionnées et que les digestats sont valorisés de manière optimale afin de limiter l'impact environnemental.

Question 4.1

Expliquer en quoi le digestat est une très bonne alternative pour l'environnement comparé aux engrais chimiques utilisés actuellement.

Ce digestat nécessite toutefois des précautions particulières. En effet, l'ammoniac (NH₃) qu'il contient peut se volatiliser dans l'air lors de l'épandage (dans le cas du digestat liquide). Le digestat peut aussi générer des gaz à effet de serre, tel que le protoxyde d'azote (N₂O) notamment.

Question 4.2

Relever les deux préconisations les plus efficaces permettant de réduire la formation d'ammoniac et de protoxyde d'azote lors de la phase d'épandage du digestat.

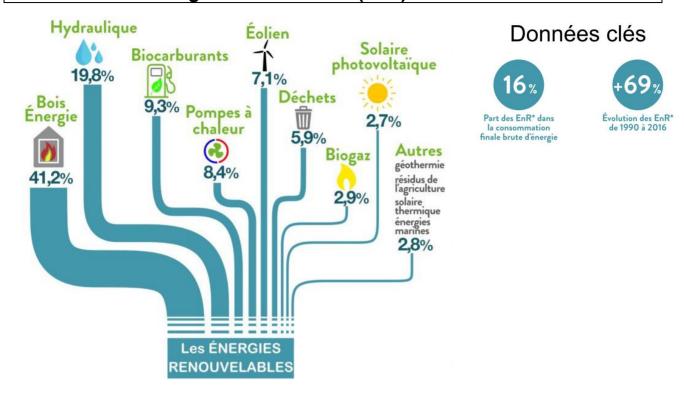
Il faut stocker sur une période plus ou moins longue les digestats solides et liquides sur site ou sur des sites déportés : hangars agricoles pour le digestat solide ou lagunes de stockage pour le digestat liquide.

Question 4.3

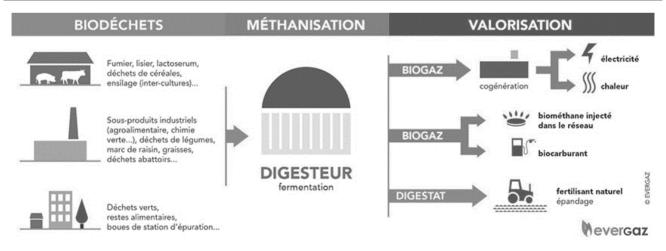
DT8, DT11 DR3 Compléter, sur le document DR3, dans le tableau correspondant :

- les quantités de digestat liquide et solide à stocker ;
- les capacités totales estimées de stockage de digestat liquide et solide en tenant compte des coefficients de sécurité ;
- les durées de stockage en mois correspondantes.

Conclure, sur le document **DR3**, si les capacités de stockage de digestat liquide et solide sont suffisantes pour assurer la durée minimale de stockage attendue.

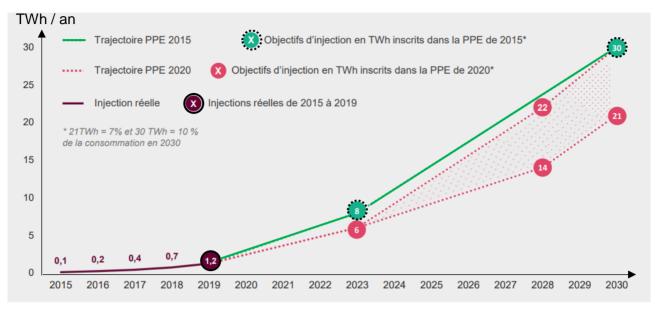

Partie 5 – Comment intégrer le méthaniseur dans l'environnement de proximité des usagers ?

Question 5.1

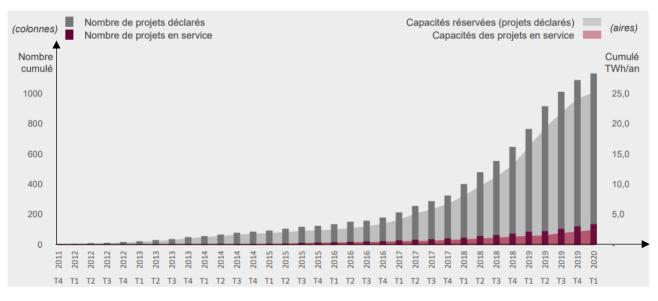

Relever, pour chaque nuisance, un à deux arguments permettant de réduire les risques potentiels de nuisances olfactives, visuelles et auditives que pourrait engendrer le méthaniseur pour la population de proximité.

22-2D2IDACNC1 Page: 8/37

DT1 - Part des Énergies Renouvelable (EnR) en 2018 en France

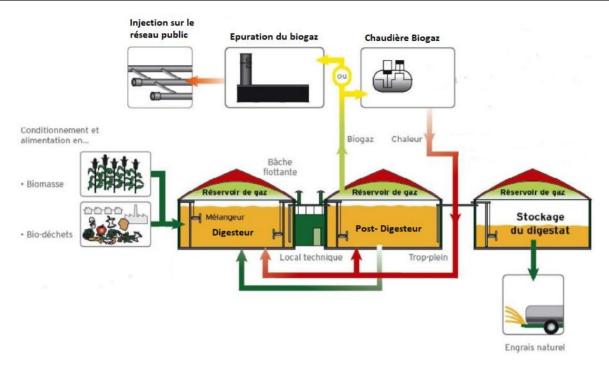


DT2 - Schéma de principe de la méthanisation


22-2D2IDACNC1 Page: 9/37

DT3 – Objectifs révisés issus de la Programmation Pluriannuelle de l'Energie (PPE) publiés en Avril 2020

Dans la nouvelle PPE publiée au Journal Officiel le 23 avril 2020, les pouvoirs publics revoient à la baisse les ambitions de développement de la filière biométhane. À l'horizon 2028, c'est une fourchette de 14 à 22 TWh/an qui est fixée, avec la baisse des coûts de production comme variable d'ajustement. Ce choix cumulé à la crise COVID risque d'impacter le nombre de projets concrétisés dans les prochaines années.


DT4 – Évolution du nombre et de la capacité des projets inscrits au registre des capacités (projets déclarés et en service)

Source: Open Data Réseaux Energies

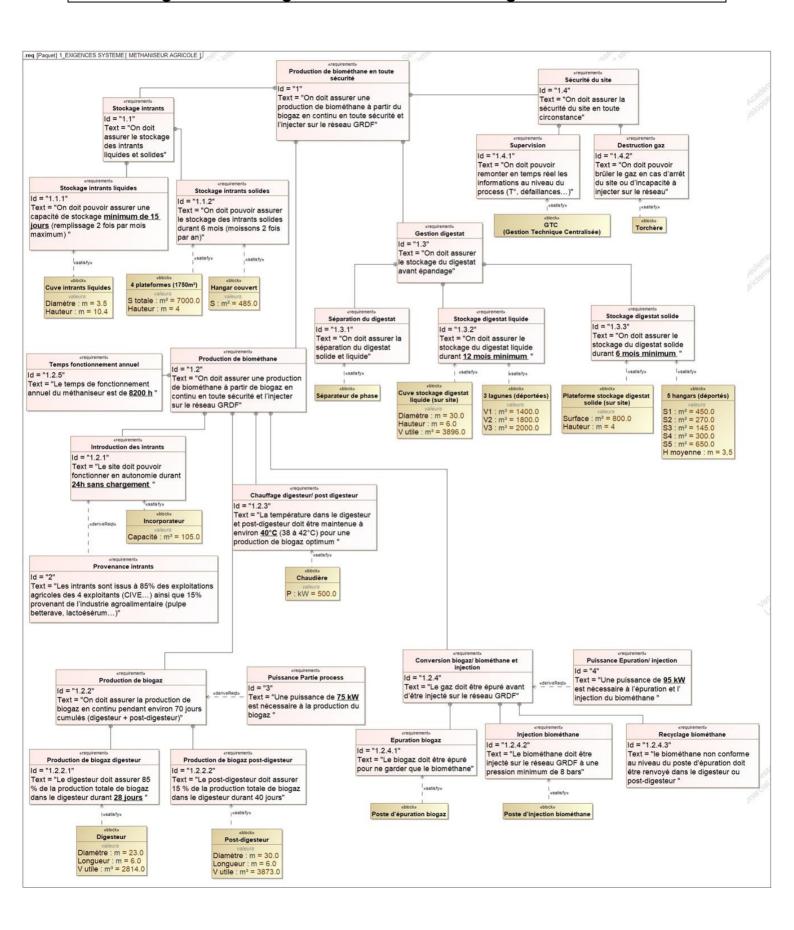
22-2D2IDACNC1 Page : 10/37

DT5 – Principaux constituants du processus de méthanisation et flux d'énergies / matières associées

DT6 - Comparaison méthanisation mésophile et thermophile

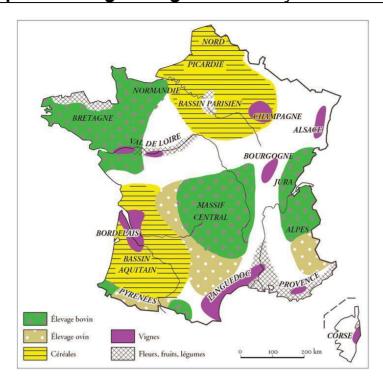
Le tableau ci-dessous compare la méthanisation mésophile et la méthanisation thermophile

	méthanisation mésophile	méthanisation thermophile
Température	35-40°C	50-65°C
		Environ 35 % de chaleur autoconsommée
	Environ 20 % de chaleur	Hygiénisation plus poussée des germes
	autoconsommée	pathogènes (présente un intérêt lors de
	Le plus couramment utilisé	l'utilisation de biodéchets)
spécificités	Biologie plus stable donc plus	Temps de séjour plus court
	facile à maîtriser	Meilleure dégradation des chaînes carbonées
		Biologie plus difficile à maîtriser
		Risque d'inhibition à l'ammonium plus forte

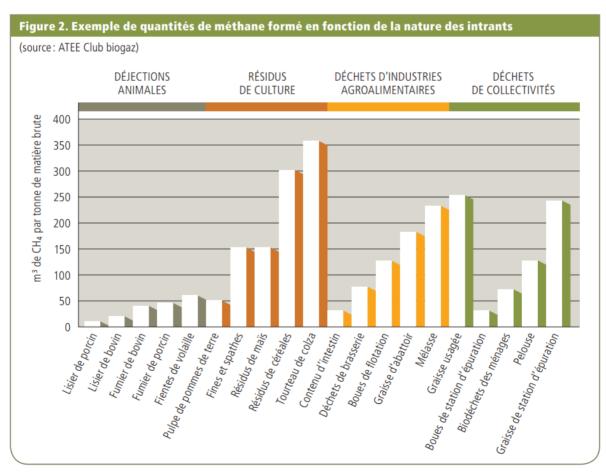

DT7 - Comparatif des solutions de valorisation du biogaz

Quelle efficacité énergétique ?

(الله	7 ()
Valorisation par injection	Valorisation par cogénération
Rendement énergétique de l'installation	Rendement énergétique de l'installation
Rendement épuration : 98 %	■ Rendement électrique moyen : 40 %
Rendement injection : 100 %	Rendement thermique moyen : 42 %
Rendement brut global: 98 % (avec chauffage du méthaniseur)	Rendement brut global : 82 % (avec chauffage du méthaniseur)

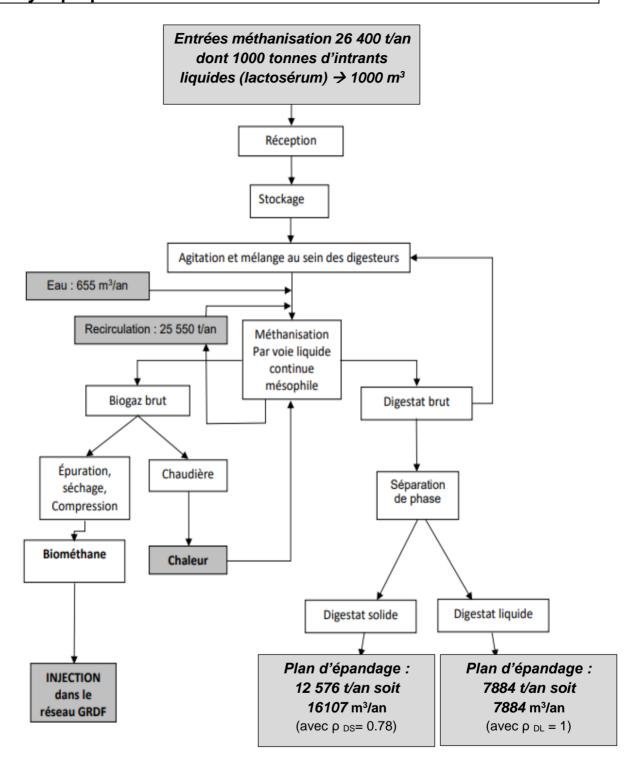

22-2D2IDACNC1 Page : 11/37

DT8 - Diagramme d'exigences du méthaniseur agricole



22-2D2IDACNC1 Page: 12/37

DT9 - Cartographie des régions agricoles françaises



DT10 - Potentiel méthanogène en fonction du type d'intrant

22-2D2IDACNC1 Page : 13/37

DT11 - Synoptique de l'installation chiffrée

22-2D2IDACNC1 Page : 14/37

DT12 – Extrait de données issues du dossier ICPE (Installations Classées pour la Protection de l'Environnement)

1.8.6.4 Compression

Le biogaz prétraité et purifié pénètrera au cœur même du système d'épuration, où il sera comprimé à 9 bars. Il passera à travers un système comprenant plusieurs étages de membranes qui séparent le CO₂ du CH₄.

Le système est composé d'un compresseur principal travaillant à 9 bars servant principalement à produire le biométhane.

Un compresseur intermédiaire travaillant à 3 bars permettra de réguler le taux de CH₄ dans le Off-Gaz et de respecter la règlementation.

1.8.6.5 Séchage, chauffage du biogaz

Afin de chauffer les digesteurs, une première partie de l'eau chaude provient de la chaleur récupérée sur les compresseurs (échangeur huile-eau). Une chaudière permet de répondre aux compléments de chauffage.

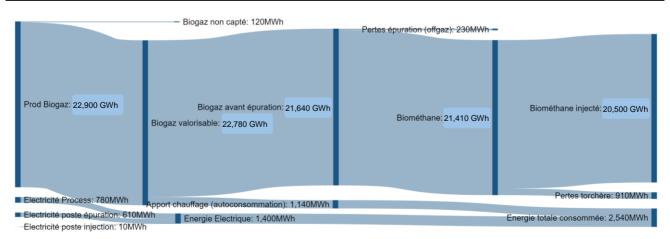
1.8.6.6 L'épuration

Ces étapes ont lieu dans un conteneur métallique dédié.

Les membranes présentent une capacité de 604 Nm³·h⁻¹ de biogaz.

Le module d'épuration a pour objectif de convertir le biogaz (60 % de méthane, 40 % de CO₂ et quelques impuretés) en biométhane injectable dans le réseau GRTgaz.

1.8.6.8 Bilan de la valorisation du méthane


L'étude de faisabilité réalisée par GRDF a montré que la totalité du biométhane peut être injectée sur le réseau. En effet il existe une consommation importante de gaz dans la région, même en été.

Le bilan de valorisation du méthane est (en % du volume produit) de manière générale le suivant :

- 90 % valorisé en injection ;
- < 5 % valorisé en interne (chaudière) ;
- < 4 % détruit en torchère ;
- < 1 % perdu par le offgaz.

Le rendement épuratoire de CH₄ est supérieur à 99,3 %.

DT13 - Bilan énergétique méthaniseur agricole (diagramme Sankey)

^{*}Biogaz non capté lors des opérations de maintenance (ouverture du digesteur ou post-digesteur à l'air libre).

22-2D2IDACNC1 Page: 15/37

DT14 – Les avantages du digestat (extrait article « Le-gaz.fr » Avril 2018)

LE DIGESTAT, CE FERTILISANT ISSU DE LA MÉTHANISATION IDÉAL POUR L'AGRICULTURE

Le digestat c'est quoi ? C'est le nom donné à la matière organique résiduaire provenant du process de méthanisation. Lorsque des résidus d'élevages bovins, ovins ou d'agriculture sont valorisés pour être transformés en biométhane, la partie restante est donc le digestat. Toute la question est de savoir quoi en faire ?

Le monde agricole trouve par là un formidable fertilisant. Un fertilisant naturel produit sur place et à moindre coût qui plus est. Utilisé en France mais aussi en Belgique et en Suisse, il affiche des qualités d'un point de vue du rendement toutes aussi intéressantes que les engrais chimiques comme l'explique cet exploitant : "J'ai choisi le digestat pour une raison économique. C'est un aussi bon engrais qu'un chimique. Il apporte les mêmes éléments fertilisants « NPK », soit de l'azote, du phosphore et du potassium et il est nettement moins cher que le chimique".

Le digestat est de la matière organique digérée, d'où son nom. Il permet de booster les cultures à moindre coût lorsque le méthaniseur est implanté au sein même de l'exploitation agricole. Un exemple d'économie circulaire sobre du point de vue de l'environnement. L'agriculteur transforme le résidu de sa culture en biométhane qu'il revend et utilise le digestat pour fertiliser les prochaines cultures.

La boucle est bouclée. Chez nos voisins belges, il est même de plus en plus recherché, la demande ayant dans certains cas été multipliée par 5 en une année à peine. Disponible, performant, économique, le digestat affiche de nombreux avantages. Il est bien plus propre pour les sols que les engrais chimiques.

DT15 – Tableau récapitulatif des actions à mener pour réduire les impacts environnementaux liés au processus de méthanisation

	L
M	F
Appro. substrats	
	H
	ı
Stockage/	ŀ
traitement substrats	F
Substrats	Ļ
Production	L
de biogaz	ı
	ı
	ı
	ľ
Stockage /	L
valorisation	ı
biogaz	
	r
Stockage/	L
traitement digestat	
	ŀ
Epandage	ı

	Actions	Type d'action	Emissions	Faisabilité technique	Maturité	Efficacité	Investissement
GES ET polluants	Optimiser les distances de transport	Réduire	CO ₂ , NO _x	***	•	***	€
	Laver et rincer les véhicules à chaque débarquement (transport matières solides)	Eviter	Odeurs	*	•	*	€
Odeurs	Intégrer des canalisation fermées au process de transport des matières liquides (cas de IAA)	Eviter	Odeurs	?	•	**	€
	Adapter horaires et fréquences de déchargement	Eviter	Odeurs	?	•	**	€
GES ET polluants	Minimiser les durées de stockage	Réduire	CH ₄ , CO ₂ , NH ₃	*	•	***	€
Polluants odeur	Confiner lieux de réception puis aspirer et traiter l'air vicié	Eviter et Traiter	NH ₃ , composés soufrés, odeurs	***	•	***	€€€
	Détecter et suivre les fuites de biogaz	Eviter	CH ₄ , CO ₂	**	0	**	€€€
GES	Etre vigilant lors des réceptions des ouvrages de méthanisation (étanchéité)	Eviter	CH ₄ , CO ₂	*	•	***	€€
Polluants	Réduire et limiter la formation de H ₂ S en amont ou dans le digesteur	Réduire	H₂S	*	•	**	€
	Suivre les émissions de H ₂ S	Mesurer	H₂S	*	•	**	€€€
GES	Détecter et suivre les fuites de biogaz	Eviter	CH ₄ , CO ₂	**	0	**	€€€
GLS	Optimiser la valorisation énergétique	Eviter	CO, CO ₂	*	•	**	€
Polluants	Eliminer l'ammoniac du biogaz par prétraitement pour améliorer la combustion	Eviter	NOx	?	•	**	€€
Polluants	Eliminer les polluants traces du biogaz	Traiter	Siloxanes, mercaptans	?	•	**	€€€
GES	Recouvrir les fosses de stockage et récupérer le biogaz résiduaire	Eviter	CH ₄ , CO ₂	**	•	***	€€
GES	Maximiser les temps de séjour dans le digesteur et post-digesteur et capter le biogaz	Réduire	CH ₄ , CO ₂	*	•	***	€
Polluants	Recouvrir, aspirer et traiter l'air vicié / valoriser les biogaz résiduaire	Eviter	NH ₃	**	•	***	€€
	Traiter l'air vicié	Traiter	NH ₃	**	•	**	€€€
050 55	Utiliser une rampe à pendillards ou des enfouisseurs à disques	Réduire	N ₂ O, NH ₃	*	0	***	€€
GES ET polluants	Respecter des périodes d'épandage appropriées	Réduire	N ₂ O, NH ₃	*	•	***	€
	Couvrir les véhicules transportant le digestat	Réduire	NH ₃	*	•	*	€

22-2D2IDACNC1 Page: 16/37

DT16 - Extrait « La méthanisation en 10 questions » Octobre 2019

Une unité de méthanisation émet-elle des odeurs?

Des odeurs peuvent provenir des déchets avant méthanisation

Lors de la méthanisation, la décomposition des déchets est réalisée en absence d'oxygène, sans contact avec l'air ambiant et donc sans odeur. Au terme du process, les acides gras volatils responsables des odeurs sont détruits : le digestat produit est pratiquement inodore, même une fois épandu dans les champs. D'ailleurs, de nombreux agriculteurs recourent à la méthanisation pour réduire les odeurs d'épandage agricole des fumiers et des lisiers.

Une unité de méthanisation fait-elle du bruit?

Les émissions sonores d'une unité de méthanisation sont minimes

Lorsque l'installation de méthanisation est équipée d'une unité de cogénération pour produire à la fois de l'électricité et de la chaleur, un moteur tourne en continu. Ce moteur est placé dans un caisson insonorisé qui permet de réduire le bruit à moins de 51 dB (soit le niveau sonore d'une machine à laver) dans un rayon de 50 mètres.

Le matériel de manutention et les engins de chantier utilisés à l'intérieur de l'installation sont également conformes aux limites réglementaires en matière d'émissions sonores, soit moins de 70 dB en journée. Ils sont utilisés pendant les horaires de travail habituels. de 8h à 18h en semaine.

Le trafic est optimisé et limité au maximum

Une grosse installation de méthanisation (unité industrielle) nécessite le passage de 10 camions par jour travaillé.

Pour une unité de méthanisation plus petite (à la ferme), le trafic n'augmente que d'un camion par jour durant les horaires de travail.

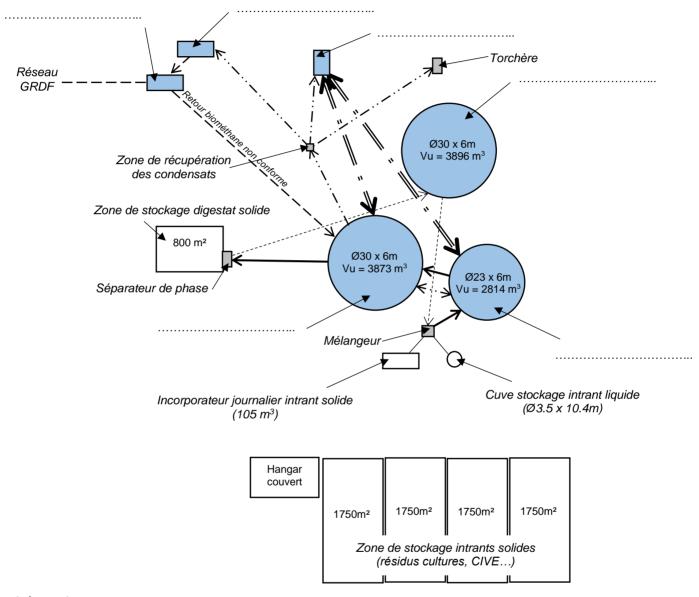
Le transport est toujours optimisé pour réduire les distances, limiter les désagréments pour les riverains et réduire la consommation de carburant. De même, les horaires et les trajets de circulation sont adaptés pour éviter les heures de pointe et les zones les plus fréquentées.

Quel est son impact sur le paysage?

Tout est fait pour rendre l'installation la moins visible possible

Pour créer une harmonie visuelle et gêner le moins possible les riverains, plusieurs solutions existent comme le choix de teintes de matériaux adaptées aux milieux environnants, l'enfouissement partiel des cuves de stockage ou des digesteurs, l'implantation de haies autour du site...

Les porteurs de projet sont également fortement incités à recourir à un architecte expert en intégration paysagère.



L'intégration paysagère est à prendre en compte dès le choix du site d'installation de l'unité de méthanisation. Des couleurs proches de celles de la nature permettent de mieux intégrer les bâtiments dans leur environnement.

22-2D2IDACNC1 Page: 17/37

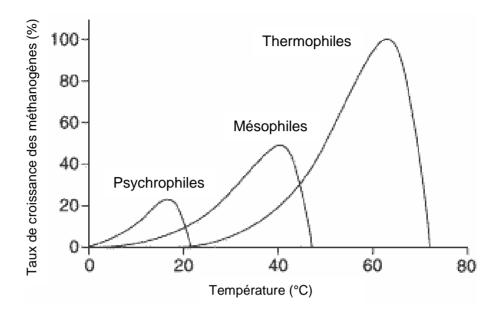
DOCUMENT RÉPONSES - DR1

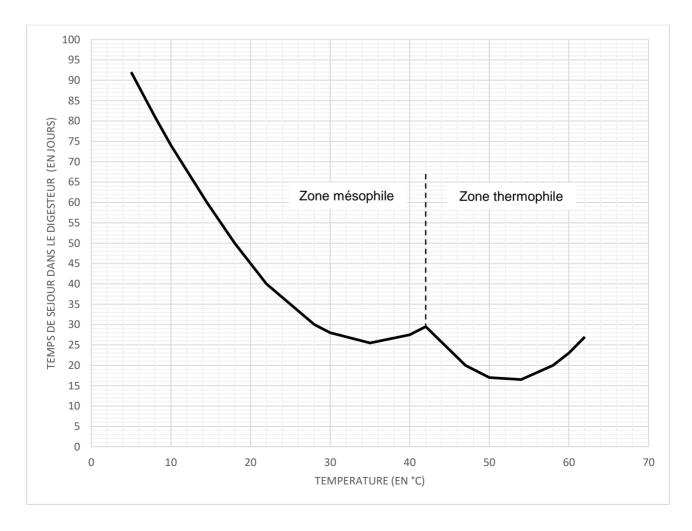
Représentation simplifiée de l'implantation des principaux contituants du méthaniseur et principaux flux d'énergie et de matière

<u>Légende</u>:

Intrants (solide et/ou liquide)
Digestat brut
Digestat liquide
Réseau chaleur

-··-·· Réseau biogaz


---- Réseau biométhane


22-2D2IDACNC1 Page : 18/37

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES - DR2

Courbes de temps de séjour et de température en fonction des différents types de décomposition possibles

22-2D2IDACNC1 Page : 19/37

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES – DR3

Tableau récapitulatif des capacités des stockages des digestats solides et liquides

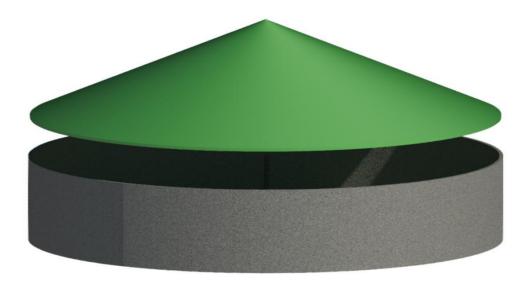
STOCKAGE DIGESTAT LIQUIDE:

Type de stockage	Lieu de stockage	Capacité de stockage en m³	Volume digestat liquide annuel à stocker (en m³)	Durée de stockage possible en mois
Cuve stockage digestat liquide	sur site			
Lagune N°1	déporté	1400		
Lagune N°2	déporté	1800		
Lagune N°3	déporté	2000		
capacité totale	de stockage			

STOCKAGE DIGESTAT SOLIDE:

Type de stockage	Lieu de stockage	Surface (m²)	Hauteur moyenne stockage prévue (m)	Coef. de sécurité	Capacité de stockage en m³	Volume digestat solide annuel à stocker (en m³)	Durée de stockage possible en mois	
plateforme de stockage	sur site			1				
Hangar N°1	déporté	450						
Hangar N°2	déporté	145			406			
Hangar N°3	déporté	300	3.5	0.8	840			
Hangar N°4	déporté	270			756			
Hangar N°5	déporté	650			1820			
		capacité	é totale de s	stockage				

CONCLUSION:

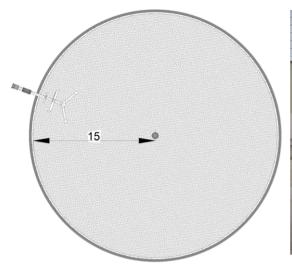

22-2D2IDACNC1 Page : 20/37

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

PARTIE SPÉCIFIQUE (8 points)

Architecture et Construction

Digesteur Étude préliminaire de l'ouvrage

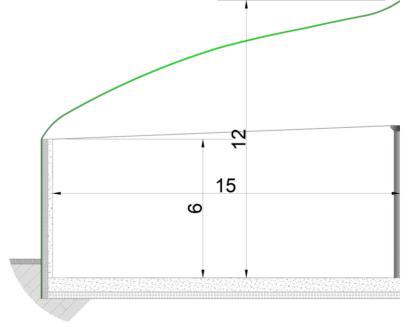

Constitution du sujet :

•	Dossier sujet et questionnement	Pages 22 à 25
•	Dossier technique	Pages 26 à 32
•	Documents réponses (à rendre avec la copie)	Pages 33 à 37

22-2D2IDACNC1 Page : 21/37

Mise en situation

On vous demande d'étudier une pièce maîtresse d'une unité de méthanisation : son postdigesteur.



Cette cuve est la plus grande avec 30 m de diamètre intérieur.

La cuve en béton armé est un ouvrage de génie civil qu'il faut étudier avec soin.

En effet, elle est soumise à plusieurs contraintes dues au gaz ou au liquide de digestat : milieu liquide et agressif, pressions, fuites, masses importantes, température à conserver entre 38 et 42 °C...

Une étude préliminaire est menée. Vous avez la charge de la sécurité incendie, du prédimensionnement de l'isolation et enfin de la stabilité du post-digesteur.

22-2D2IDACNC1 Page : 22/37

Partie A - Étude de la Sécurité Incendie

Le comportement au feu en cas d'incendie est apprécié d'après deux critères : la <u>résistance</u> au feu et la réaction au feu.

La réglementation envers ce type d'ouvrages stipule qu'il faut respecter des normes :

- Matériaux de classe A1, selon la norme NF EN 13501-1;
- Murs extérieurs et murs séparatifs REI 120, selon la norme NF EN 13 501- ;
- Planchers REI 120, selon la norme NF EN 13501-2;

Commençons par la résistance au feu. Il faut satisfaire l'exigence de REI.

Question A.1
DTS 3 et 4

Rechercher les 2 épaisseurs que doivent faire les voiles (élévations) et le radier (la dalle). **Associer** également les épaisseurs d'enrobages qui seront nécessaires pour respecter cette exigence.

Question A.2 DTS 2

Relever les 2 épaisseurs prévues sur le plan. **Comparer** : Sont-elles suffisantes pour respecter ce critère de Résistance au feu ?

Intéressons-nous à présent à la <u>réaction</u> au feu des matériaux d'isolation.

Prenons deux matériaux issus du recyclage du verre : produits A laine de verre et produit B verre cellulaire.

Question A.3 DTS3, 5, 6

Lequel des deux est le meilleur matériau à privilégier vis-à-vis du critère de sécurité Incendie ? **Justifier** votre réponse.

Partie B - Etude des performances thermiques des parois

Après diverses études connexes :

- Attaques chimiques Hygrométrie (la chaleur ambiante, l'humidité, la condensation)
- Coût Débit de fuite de la cuve malgré un cuvela
- Rigidité
 Remblais en contact sur la tôle de Polystyrène XPS
- Tassements Poids de l'ouvrage sur Verre cellulaire

Nous arrivons à l'utilisation de deux isolants différents annotés sur le plan DTS2 :

Isolant 1	Élévations périphériques (dont une partie enterrée)	Polystyrène XPS*
Isolant 2	Partie en sous face : enterrée et comprimée	Verre cellulaire

^{*:} On veillera tout particulièrement à mettre un vide d'air important entre la tôle ondulée (ininflammable) et l'isolant XPS pour pouvoir respecter le critère A1, il faut protéger l'isolant.

22-2D2IDACNC1 Page : 23/37

L'étude porte à présent sur la prise en compte du critère thermique. Le digestat doit être conservé entre 38 et 42 °C pour dégager le biométhane tout en consommant le moins d'énergie possible. Ainsi pour limiter ces pertes, on souhaite atteindre une résistance thermique R de :

7 m2 · K · W-1 à travers les murs (flux horizontal) et

5 m² · K · W⁻¹ à travers le plancher (flux vertical vers le bas).

Données:

- Conductivité de l'isolant XPS : 0.035 W · m⁻¹ · K⁻¹
- Conductivité du bardage d'Aluminium : 185 W · m⁻¹ · K⁻¹
- o Conductivité du Béton Armé : 1,7 W⋅m⁻¹⋅K⁻¹
- o Le Rsi et le Rse seront négligées.
- Hypothèse : on néglige les épaisseurs de revêtements comme la peinture ou les enduits bitumineux mis en œuvre.

Question B.1

DTS1 et DTS2

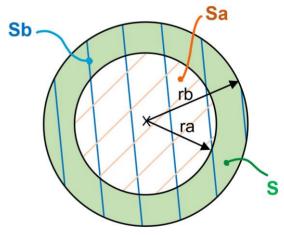
Pour le Polystyrène XPS, peut-on atteindre la résistance thermique R_{voile} souhaitée de 7 m² · K · W⁻¹ avec l'épaisseur retenue sur le plan ? **Calculer** et **conclure**.

Question B.2

DTS1, 2 et 6

Pour atteindre exactement une résistance thermique de 5 m² · K · W⁻¹, calculer l'épaisseur du Verre cellulaire avec sa conductivité. Les 30 cm prévus sur le plan sont-ils bien choisis ? **Conclure**.

Partie C – Étude de la stabilité de l'ouvrage


Afin de garantir la stabilité de l'ouvrage nous allons faire une descente de charge et la mettre en relation avec l'Étude de sol et ainsi choisir le système de fondation.

Question C.1

DTS2 DRS1 Sur le DRS1, **calculer** les volumes. **Compléter** les schémas et expressions littérales.

Notes:

- Pour celui du Digestat, on partira du postulat que la cuve est totalement pleine sur la hauteur de 6 m à cause d'un incident qui obstrue les évacuations.
- On donne l'indice ci-contre.

Question C.2

Dans le DRS2, **indiquer** la valeur de la masse volumique manquante.

DTS6 DRS2

Puis **calculer** les masses des précédents éléments. Utiliser les valeurs de volumes présentes dans ce tableau, quelles que soient les valeurs trouvées à la question C.1.

Donnée : accélération de la pesanteur : g = 9,81 m.s⁻²

22-2D2IDACNC1 Page: 24/37

Question C.3 DRS3	Calculer les charges permanentes (G) et d'exploitation de l'ouvrage (Q). A nouveau, utiliser les valeurs présentes dans ce nouveau tableau, quelles que soient les valeurs trouvées à la précédente question.
Question C.4	Calculer la charge totale P_u aux états limites ultimes (ELU) qui s'applique sur le sol (descente de charges) : $P_u = 1,35 \times G + 1,5 \times Q$
Question C.5 DTS7 et DRS4	L'étude géotechnique est donnée sur le DTS7. Annoter les résistances de chaque couche d'horizon de sol sur le DRS4.
Question C.6 DTS1	En considérant la surface de l'ouvrage et pour une valeur de charges aux E.L.U de P_u = 120 MN, calculer la contrainte σ_u engendrée par l'ouvrage sur le sol.
Question C.7 DTS2 DTS7 et DRS4	D'après le plan DTS2, l'ouvrage repose-t-il sur la terre végétale, les limons, les limons silteux ou le calcaire ? Énoncer dans quelle couche de sol l'ouvrage sera fondé selon cette projection. Justifier .
Question C.8 DTS7 et DRS4	Vérifier par rapport à la reconnaissance géotechnique que le bâtiment ne risque pas de s'enfoncer et reste stable sur cette couche.
Question C.9 DTS7 et DRS4	Proposer une solution à préconiser au Maître d'Ouvrage pour éviter l'enfoncement dans le sol de l'ouvrage. Rédiger une note avec deux propositions.
Question C.10 DTS6	On souhaite à présent vérifier que la couche d'isolant 2 située sous l'ouvrage est capable de résister à la contrainte exercée par l'ouvrage. Donner la résistance à la compression admissible par le verre cellulaire. En prenant une valeur de $\sigma_u = 0.165 \ MPa$, justifier que l'isolant 2 résistera à la contrainte induite par l'ouvrage.

Partie D - Synthèse

- « Une piscine, ou une fosse à digesteur, sont des ouvrages de Génie Civil parmi les plus difficiles à réaliser après une centrale nucléaire, un bunker, un hôpital et un viaduc... »
- Question D.1 Pour conclure sur cette étude, **expliquer** en quelques lignes pourquoi les phases de conception et de réalisation d'un digesteur sont complexes.

22-2D2IDACNC1 Page : 25/37

DTS1 - Formulaire

- Résistance des matériaux -

• Contrainte à la compression ou à la traction :

[Pa]
$$\sigma = \frac{F}{S}$$
 [m²]

Avec:

- σ : Contrainte en [N·m⁻²] ou [Pa]

- F: Force (poids par exemple) [N]

- S: Surface [m²]

- Thermique -

• Résistance : $R = \frac{e}{\lambda}$

Avec:

- R: Résistance thermique [m²·K·W⁻¹]

- e: Epaisseur [m]

- λ: Conductivité thermique [W·m⁻¹·K⁻¹]

• Résistance totale d'une paroi :

$$R_T = R_{si} + R_{se} + \sum_{i} \left(\frac{e}{\lambda}\right) + \sum_{i} (R)$$

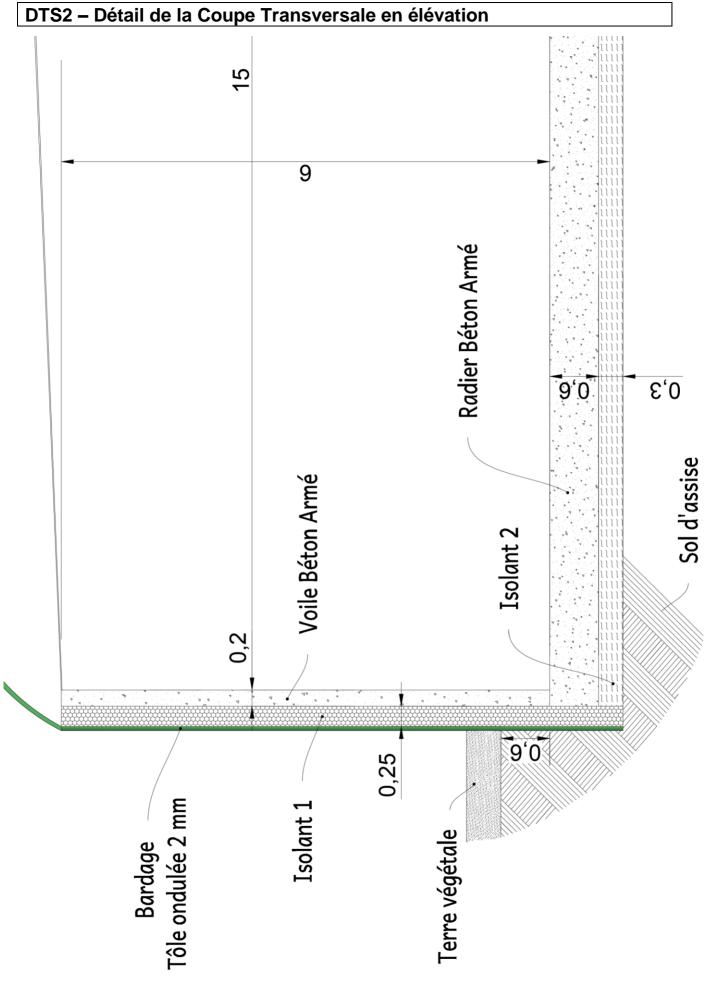
Avec:

- RT: Résistance thermique totale de la paroi [m² · K · W⁻¹]

- e: Epaisseur [m]

- λ : Conductivité thermique [$W \cdot m^{-1} \cdot K^{-1}$]

- Rsi: Résistance thermique superficielle d'échange intérieur [$m^2 \cdot K \cdot W^{-1}$]

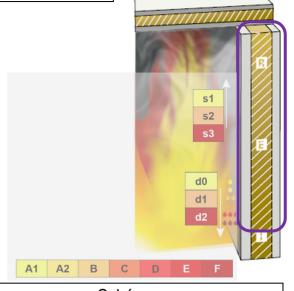

- Rse: Résistance thermique superficielle d'échange extérieur [m² · K · W-1]

- R: Résistance thermique d'un élément [m² · K · W-1]

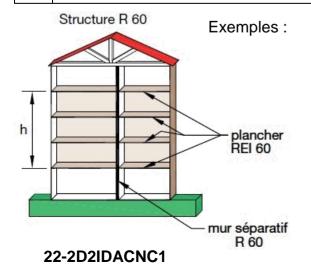
22-2D2IDACNC1

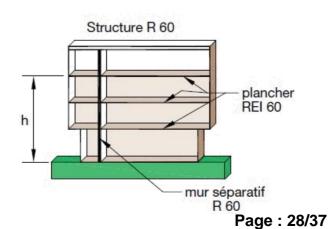
Page: 26/37

22-2D2IDACNC1 Page : 27/37


DTS3 - Classification des Matériaux : EUROCLASSES

- RÉSISTANCE AU FEU -


Exemples: « EI 60 », « REI 120 »


Elle correspond au temps pendant lequel un matériau peut jouer son rôle selon un ou plusieurs critères.

Exemple : REI 30, doit satisfaire pendant 30 minutes les trois critères à la fois : R, E et I

	Définition	Schéma
R	Résistance mécanique (capacité portante)	
E	Étanchéité aux gaz et flammes	The little services and the services are the services and the services are
	(aux flammes et absence d'émissions de gaz inflammable du côté de la face non exposée au feu)	
	Isolation thermique	
I	(Elévation de température : Il définit le temps pour atteindre la température de 140°C en moyenne et 180°C ponctuellement sur la face opposée au feu)	< 140 °C en moyenne < 180 °C en pic
60	Les degrés s'expriment en durée :	15, 20, 30, 45, 60, 90, 120 en minutes

- RÉACTION AU FEU -

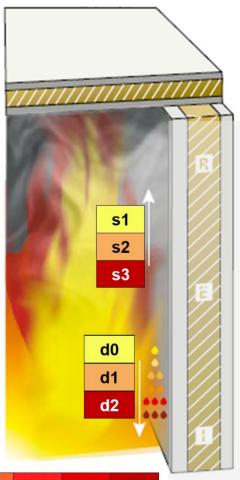
Exemples: « A1 », « C, s3, d0 », « E, s2, d1 »

La réaction au feu d'un matériau exprime son aptitude à s'enflammer, à contribuer au démarrage et à la propagation d'un incendie.

Trois critères pour établir le comportement d'un produit :

Inflammabilité en 7 classes : de A1, A2, B, C, D, E et F

	Produits
A1	- Incombustible, aucune contribution au feu
A2	- Peu combustibles, aucune contribution au feu
В	- Combustibles dont la contribution au feu et au "flash over" est très limitée
С	- Contributions à l'incendie importante et au flash over limitée
D	- Contributions à l'incendie élevée et flash over significative
Ε	- Combustibles dont la contribution à l'embrasement généralisé est importante
F	 Combustibles dont la contribution à l'embrasement généralisé est très importante Produits pour lesquels aucune performance de réaction au feu n'a été déterminée ou revendiquée par le fabriquant


Production et opacité de fumée : s (Smoke)

s1	- Faible quantité et vitesse
s2	- Emission de fumées limitées
s3	- Fort dégagement

Production de gouttelettes (particules, débris) enflammées : d (Drop)

d0	- Aucune formation de gouttelettes avant 600 s
d1	- Gouttelettes dont l'enflammement persistant pendant plus de 10 secondes avant 600 s
d2	- Les gouttelettes brulent pendant plus de 10 s

Note: les produits A1 n'ont pas d'indices s ou d en plus car ils sont incombustibles.

A1 A2 B C D E F

22-2D2IDACNC1 Page : 29/37

DTS4 - Règle simple concernant les murs porteurs et les dalles

Les parois en béton sont régies par des règles simples. L'épaisseur permet de définir ses performances. Pour d'autres matériaux, comme les plaques de plâtre, les fabricants doivent fournir les procès-verbaux à la Maîtrise d'Ouvrage et au Contrôle Technique de la Construction et aux autorités en cas de sinistre.

Caractéristiques (en cm) d'un mur en béton armé selon le degré de Résistance au feu exigé							
REI [min]	30	60	90	120	180	240	
Epaisseur du mur [cm]	10	11	13	15	20	25	
Enrobage des aciers nécessaire [cm]	1	2	3	4	6	7	

Caractéristiques (en cm) des dalles en béton armé							
selon le degré de Résistance au feu exigé							
REI [min]	30	60	90	120	180	240	
Epaisseur de la dalle [cm]	6	7	9	11	15	17,5	
Enrobage des aciers nécessaire [cm]	1	2	2	3	4	4	

DTS5 - Produit A: Laine de Verre

22-2D2IDACNC1 Page: 30/37

DTS6 - Produit B: Verre cellulaire

FOAMGLAS® TAPERED T3+

Caractéristiques du produit en fonction de la norme EN 13167

Masse volumique (\pm 15%) (EN 1602) : 100 kg/m³ Epaisseur moyenne (EN 823) \pm 2 mm : de 60 à 300 mm

Conductivité thermique (EN ISO 10456) : $\lambda_D \le 0.036 \text{ W/(m·K)}$ Réaction au feu (EN 13501-1) : Euroclasse A1 Charge ponctuelle (EN 12430) : PL ≤ 1.5 mm Résistance à la compression (EN 826-A) : CS ≥ 400 kPa Résistance à la flexion (EN 12089) : BS ≥ 400 kPa Résistance à la traction (EN 1607) : TR ≥ 150 kPa Fluage (EN 1606) : CC (1.5/1/50) 225

Description

: L'isolation FOAMGLAS® est fabriquée à partir de verre recyclé (≥ 60%)* et de matières premières abondantes dans la nature (sable, dolomite, chaux). FOAMGLAS® est un matériau minéral à 100% et ne contient pas de liant, de gaz ignifugeant ou de gaz nocif pour la couche d'ozone. FOAMGLAS® ne contient pas de COV ou autres substances volatiles.

Réaction au feu (EN 13501-1)

: Le matériau qui le compose est conforme à Euroclasse A1. Il est incombustible et ne dégage pas de fumées toxiques en cas d'incendie.

Limites de températures de service : de -265 °C à +430 °C Résistance à la diffusion de vapeur d'eau : μ = ∞ (EN ISO 10456)

Hygroscopicité : nulle Capillarité : nulle

Point de fusion : >1000 °C (DIN 4102-17) Coefficient de dilatation thermique : 9 x 10⁻⁶ K⁻¹ (EN 13471)

Chaleur spécifique : 1000 J/(kg·K) (EN ISO 10456)

Caractéristiques du FOAMGLAS®

Performance thermique à l'épreuve du temps

Etanche à l'eau

Résistant aux attaques

Résistant à la compression

Facile à découper

Incombustible

Etanche à la vapeur d'eau

Dimensionnellement stable

Résistant aux acides

Ecologique

Page : 31/37

22-2D2IDACNC1

DTS7 – Étude géotechnique

- Etude géotechnique -

Reconnaissance des sols

Les sondages exécutés par forage et essai pressiométrique ont permis d'obtenir :

Nature des sols reconnus	Caractéristique mécanique
Terre végétale sur 0,40 m	(Décapé)
Limons sur 2,40 m	0,15 MPa minimum
Limons silteux sur 1 m	0,33 MPa minimum
Calcaire en dessous	1,90 MPa minimum

Hydrologie

Les 8 relevés piézométriques sont restés secs jusqu'à la base. La nappe phréatique est au sein du substratum calcaire et n'intéresse pas ce projet. On estime qu'elle se situe à - 4,50 m de la surface du sol.

22-2D2IDACNC1 Page : 32/37

DOCU	IMENT RÉPON	ISES DRS	1 – Métré :	Volumes	
Volume [m³]					
Détail des calculs	$v_{Isolant 1} = \dots \dots$ $v_{Isolant 1} = (\pi \times 15,45^2 - \pi \times 15,2^2) \times 6,9$	$v_{Isolant 2} = \pi \times r_2^2 \times ep$ $v_{Isolant 2} = \dots \dots$	$v_{Radier} = \pi \times r_2^2 \times ep$ $v_{Radier} = \pi \times 15,2^2 \times$	$v_{Voite} = (\pi \times r_2^2 - \pi \times r_1^2) \times h$ $v_{Voite} = \dots \dots$	${\cal V}_{Digestat} =$
Schéma	$\frac{15.2 r_2}{m}$	$r_2 = 15.2$ $\frac{r_2}{ep} = 0.30 m$	$r_2 = r_2 $	$\dots \dots $	$ \begin{array}{c} $
Dési- gnation	Isolant 1 (péri- phérique)	Isolant 2 (en sous face)	Radier	Voile	Digestat (Matière organique diluée)
	Θ	(2)	(3)	4	(Z)

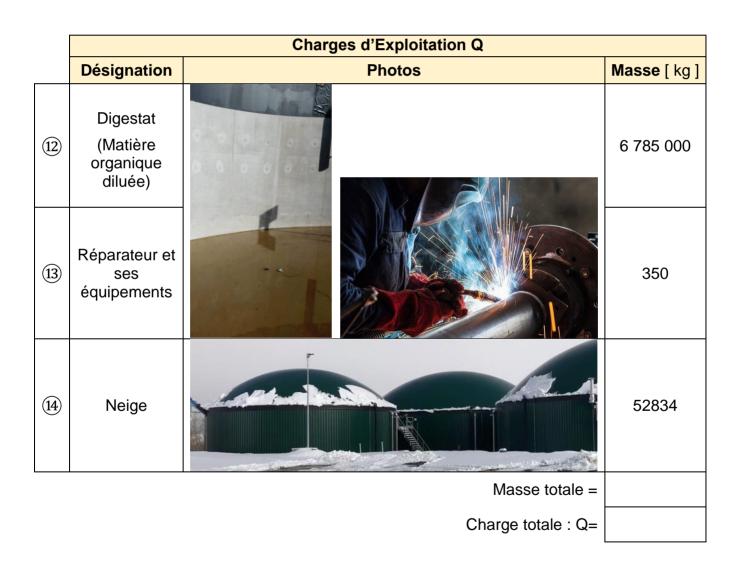
Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES DRS2 – Métré : Masses de l'Ouvrage

	Désignation	Volume [m³]	Masse volumique [kg·m ⁻³]	Masse [kg]
1	Polystyrène XPS	170	30	
2	Verre cellulaire	220		
3	Radier	440	2500	
4	Voile	120	2500	
12)	Digestat	4240	1600	

22-2D2IDACNC1 Page : 34/37

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2


DOCUMENT RÉPONSES DRS3 – Descente de charges

		Charges Permanentes G	
	Désignation	Photos	Masse [kg]
1	Polystyrène XPS (périphérique)		5400
2	Verre cellulaire (en sous face)		24 000
3	Radier		1 102 000
4	Voile		300 900
(5)	Bardage aluminium de profil 20/125 de couleur verte avec support		800
6	Double- membrane souple		680
7	Filet principal et secondaire		78
8	Poteau central		500
9	Agitateur		890
10	Echangeur de chaleur tubulaire radiateur		740

22-2D2IDACNC1 Page : 35/37

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

(1)	Autres équipements et réseaux		400
		Masse totale =	
		Charge totale : G =	

22-2D2IDACNC1 Page : 36/37

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DOCUMENT RÉPONSES DRS4 – Coupe verticale des horizons de sols

	0,00		Résistance [MPa]
0,40	-0,40	TV	Décapé
2,00		Limons	
	-2,40		
1,00	 -3,4 0	Limons silteux	
1,10	-4,50	Calcaire	
	-		Nappe

22-2D2IDACNC1 Page : 37/37

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les ni		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° (d'ins	crip	tio	n :			
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2