BACCALAURÉAT TECHNOLOGIQUE

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2021

SCIENCES ET TECHNOLOGIES DE L'INDUSTRIE ET DU DEVELOPPEMENT DURABLE

Ingénierie, innovation et développement durable ARCHITECTURE ET CONSTRUCTION Mardi 08 juin 2021

Durée de l'épreuve : 4 heures

L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de la calculatrice sans mémoire, « type collège » est autorisé.

Dès que ce sujet vous est remis, assurez-vous qu'il est complet.

Ce sujet comporte 30 pages numérotées de 1/30 à 30/30.

Constitution du sujet :

Partie commune (durée indicative 2h30)	12 points
Partie spécifique (durée indicative 1h30)	8 points

Le candidat traite les 2 parties en suivant les consignes contenues dans le sujet. Ces 2 parties sont indépendantes et peuvent être traitées dans un ordre indifférent.

> Chacune des parties est traitée sur des copies séparées. Tous les documents réponses sont à rendre avec la copie.

21-2D2IDACME2 1/30

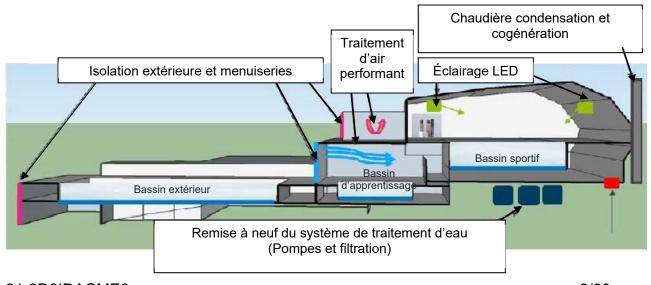
Réhabilitation du centre nautique des Vals du Dauphiné

0	Présentation de l'étude et questionnement	pages	3 à 8
0	Documents techniques	pages	9 à 14
0	Documents réponses	pages	15 à 16

21-2D2IDACME2 2/30

Mise en situation

Le centre nautique des Vals du Dauphiné à La Tour-du-Pin est situé dans le département de l'Isère (38) entre Lyon et Grenoble. La piscine est ouverte toute l'année, à des horaires variés.


L'établissement est équipé d'un bassin sportif intérieur. Pour les beaux jours, la piscine municipale dispose également d'un espace extérieur composé d'un second bassin, d'un plongeoir et d'une pataugeoire pour les enfants. Des équipements de bien-être comme un solarium permettent de se détendre.

Ouvert au début des années 1970, ce centre nautique intercommunal dispose d'une architecture particulière, que les habitants souhaitent conserver et valoriser. Construit à flanc de colline, les bassins posés sur des pieux profondément ancrés au sol sont répartis sur deux niveaux et l'ensemble de l'équipement sur 4 niveaux. Après plus de quarante années de fonctionnement et bien que régulièrement entretenu, le bâtiment poursuit sa rénovation afin de s'adapter aux normes en vigueur et de contrôler ses consommations énergétiques.

Au programme d'importants travaux de rénovation ont donc été entrepris tels que :

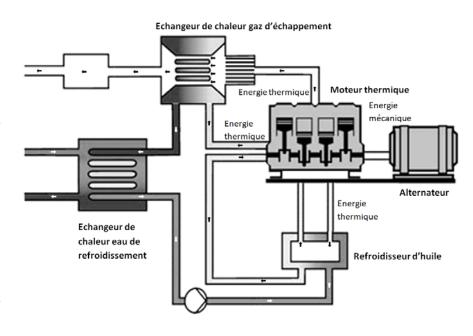
- le remplacement des menuiseries extérieures du RDC et R+1 y compris le sas d'entrée ;
- le remplacement de la centrale de traitement de l'air (CTA) ;
- la rénovation du traitement d'eau avec système de pompage et réchauffage bassin ;
- la rénovation complète de la chaufferie : mise en place d'une nouvelle chaudière à condensation et d'une micro-cogénération, reprise de tous les départs chaufferies ;
- le système de gestion technique du bâtiment (GTB) qui supervise et contrôle les services comme le chauffage, la ventilation et le conditionnement d'air, s'assurant qu'ils fonctionnent de la façon la plus efficace et la plus économique possible ;
- le remplacement des luminaires par des LED dans la halle du bassin sportif.

21-2D2IDACME2 3/30

Travail demandé

Partie 1: quelle est la solution la plus intéressante d'un point de vue énergétique et écologique, dans le cadre de la rénovation du centre aquatique ?

Étude du bilan énergétique et écologique


Question 1.1 DT1 **Décrire**, d'après le document DT1, la tendance des consommations énergétiques des piscines françaises.

Citer la technologie de consommation d'énergie la plus performante.

Principe de la cogénération

La cogénération est la production simultanée d'une énergie thermique et d'une énergie mécanique à partir d'une unique source d'énergie primaire.

L'énergie thermique est utilisée pour les besoins de chauffage du bâtiment et des bassins (avec ou sans production d'Eau Chaude Sanitaire). L'énergie mécanique est utilisée pour produire de l'électricité via un alternateur.

Question 1.2

DT2 – DT3 DR1 **Identifier** les deux blocs du diagramme de blocs internes (IBD) de la chaufferie permettant de chauffer l'eau des bassins. **Cocher**, sur le DR10, les cases correspondant aux flux d'énergies entrant ou sortant du module de cogénération.

Question 1.3

DT4

Justifier le choix de la cogénération d'un point de vue du bilan écologique, pour le centre aquatique de la Tour du Pin.

21-2D2IDACME2 4/30

Choix du moteur de cogénération

Partie 2 : la solution énergétique alternative par Cogénération au Gaz Naturel est-elle pertinente d'un point de vue économique ?

EDF Obligations d'Achat, aussi nommé EDF OA est l'entité d'EDF responsable de l'achat des énergies renouvelables ou à forte efficacité énergétique. L'entreprise est dans l'obligation d'acheter cette énergie, en vertu du code de l'énergie. D'après l'Arrêté du 3 novembre 2016 fixant les conditions d'achat et du complément de rémunération pour l'électricité produite par les installations de cogénération d'électricité et de chaleur valorisée à partir de gaz naturel, l'année est découpée en deux parties : l'hiver contractuel compris entre le 1er novembre et le 31 mars, et l'été contractuel compris entre le 1er avril et le 30 octobre.

En première approche, le choix d'un moteur ecoGEN33-Agc a été fait (voir DT6), il consomme une puissance P_{gaz} de 98 kW. On prendra le temps de production pour la revente à 3600 heures par an.

Question 2.1

Calculer l'énergie E_{gaz} consommée par an en MW·h pour la revente. **Déterminer** le coût du gaz consommé par an (voir DT5) et **compléter** le document réponse DR2.

DT5, DR2

Le rendement électrique du système de cogénération est de 33,8%.

Question 2.2

Calculer la puissance électrique P_{élec} délivrée par l'installation. **Déterminer** l'énergie électrique E_{élec} produite par an.

DT5, DR2

En déduire le gain en euros/an dû à la revente de la totalité l'électricité (voir DT5) et **compléter** le document réponse DR2.

La cogénération permet de réduire la consommation de gaz et fait faire une économie de 9376 euros par an sur la facture de gaz.

Question 2.3

Déduire le gain d'exploitation par an en euros sur le tableau récapitulatif des coûts d'exploitation à partir du DR2.

DR2, DT6

Déterminer, à l'aide du document DT6, le nombre d'années nécessaires (temps de retour sur investissement) pour amortir le coût de l'installation d'un système de cogénération avec un moteur ecoGEN33-Agc.

Le maitre d'ouvrage souhaite un temps de retour sur investissement inférieur à 8 ans. La puissance utile pour couvrir les besoins en chauffage de la piscine doit être limitée à 85 kW de puissance thermique car il est techniquement impossible de stocker tout excédant de production.

Question 2.4

Justifier si le choix du moteur ecoGEN33-Agc est pertinent par rapport aux autres moteurs présentés sur le document DT6.

DT6

21-2D2IDACME2 5/30

Validation des composants de filtrage

Partie 3 : les normes de filtration sont-elles respectées ?

La question de l'hygiène en piscine et le nettoyage des locaux sont essentiels. Le manque d'hygiène reste une des principales sources de pollution.

Un baigneur propage 30 millions de bactéries (1 million pour une personne ayant pris une douche savonnée), 25 à 60 ml d'urine, jusqu'à 1l de sueur et 0,5 g de matières organiques. La contamination est principalement localisée au niveau du film superficiel de l'eau mais affecte aussi la totalité de l'eau de tous les bassins, l'air et les sols. La filtration de l'eau des bassins est donc essentielle.

Question 3.1	Indiquer quelles sont les exigences satisfaites par les éléments
DT8	suivants – bâche tampon, filtres bassins, pompes bassins – à partir du document technique DT8.
Question 3.2	Identifier, sur le document DR3, le circuit d'aspiration et le circuit de
DT8 DR3	refoulement lors de la filtration de l'eau du bassin extérieur et du bassin intérieur (circuit C1) à partir du document DT8.
DINO	Justifier la réponse en donnant au moins un argument technique.

L'hydraulicité (circulation de l'eau) d'une piscine doit permettre à la fois d'éviter les zones mortes (zones d'eau non brassées), d'évacuer la pollution rapidement et d'assurer une diffusion uniforme du désinfectant. On distingue trois manières d'assurer la circulation de l'eau :

- **Circulation classique**: l'évacuation de l'eau est assurée par une ou plusieurs bondes de fond et les arrivées sont disposées en petite profondeur.
- Circulation inversée : l'évacuation de l'eau se fait exclusivement par la surface, (skimmers ou goulottes périphériques) tandis que l'eau traitée arrive par des bouches situées au fond ou à la base des parois.
- Circulation mixte : dans ce cas, l'évacuation se fait simultanément par la surface et le fond. La circulation mixte permet l'évacuation efficace des pollutions ainsi qu'un bon brassage du milieu. Les arrivées d'eau sont situées prioritairement sur les parois, en petite profondeur.

Question 3.3	Indiquer quel est le type d'hydraulicité utilisé dans	la piscin
DT8	(classique, inversé ou mixte). Justifier votre réponse.	

21-2D2IDACME2 6/30

Le circuit de filtration C1 est utilisé aussi bien pour le nettoyage du bassin extérieur (en été) que du bassin intérieur (en hiver). Pour la suite de l'étude on s'intéressera uniquement à la filtration durant l'été où seul le bassin extérieur est utilisé.

Question 3.4

Calculer le volume du bassin extérieur à partir du DT7.

DT7, DT8

Relever le temps nécessaire pour la filtration de ce type de bassin sur le diagramme des exigences du DT8.

Calculer le débit réglementaire pour le bassin extérieur en m³·h⁻¹.

La norme de recirculation de l'eau des bassins impose des obligations pour garantir aux usagers une eau conforme aux normes sanitaires. L'élimination de la couche d'eau superficielle des bassins doit se faire à 50 % au minimum par les surfaces, le reste par le fond.

Question 3.5

Calculer le débit d'eau évacuée en surface à partir du DT8.

DT8

Question 3.6 DT8

Relever sur le document DT8 le débit de la goulotte de reprise pour le bassin extérieur. Conclure sur la conformité du débit des goulottes de reprise vis à vis de la norme de recirculation de l'eau.

Transmission et visualisation des informations liées à la cogénération

Partie 4 : l'organisation proposée du réseau est-elle satisfaisante ?

Le schéma du réseau est donné sur le DT9. Les automates de la partie maintenance de la piscine communiquent sur le réseau via le protocole ModbusTCP.

DT9

Question 4.1 | **Déterminer** l'adresse IP de l'automate qui gère la partie cogénération d'après le schéma de câblage du réseau informatique donné sur le DT9.

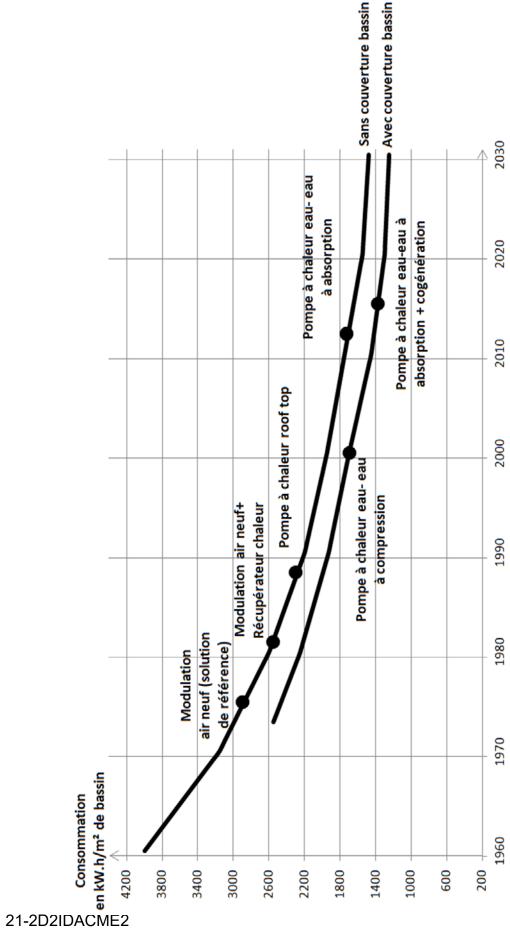
L'adresse IP de l'automate qui gère le système de filtration de la piscine est 192.168.0.34 et son masque de sous réseau est 255.255.255.248.

Question 4.2 Déterminer, en précisant la méthode utilisée, l'adresse du sous réseau de la partie maintenance de la piscine. DT9

Question 4.3 Déterminer, en précisant la méthode utilisée, l'adresse de broadcast du sous réseau de la partie maintenance de la piscine.

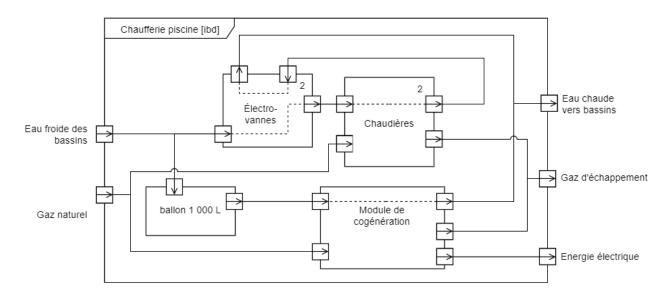
21-2D2IDACME2 7/30 Question 4.4 | **Déterminer** le nombre d'adresses disponibles pour ce sous réseau.

Question 4.5 **Déterminer** le nombre d'adresses qui sont restées libres dans le sous réseau de la partie maintenance.

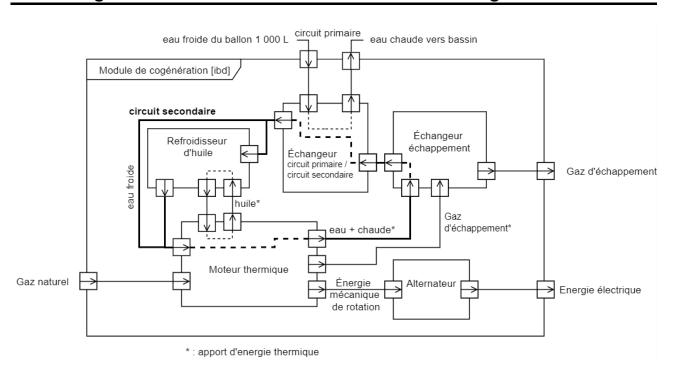

Suite à un problème technique, il n'est plus possible d'afficher les valeurs de fonctionnement de la chaudière. Un technicien a donc réalisé un ping sur le réseau entre la console de supervision et l'automate de la chaudière afin de vérifier le bon fonctionnement de la connectique du réseau.

Une capture du paquet ICMP a été réalisée grâce au logiciel Wireshark et est disponible sur le DT10

Question 4.6 DT10


Déterminer l'adresse IP de l'automate de la chaudière en hexadécimal et en décimal à partir du synoptique d'un paquet ICMP donné sur le DT10.

21-2D2IDACME2 8/30



9/30

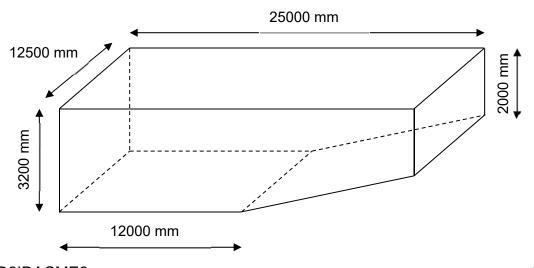
DT2 : Diagramme des blocs internes de la chaufferie (circuit primaire)

DT3 : Diagramme des blocs internes du module de cogénération

DT4 : Impact environnemental de la cogénération au centre nautique de la tour du pin

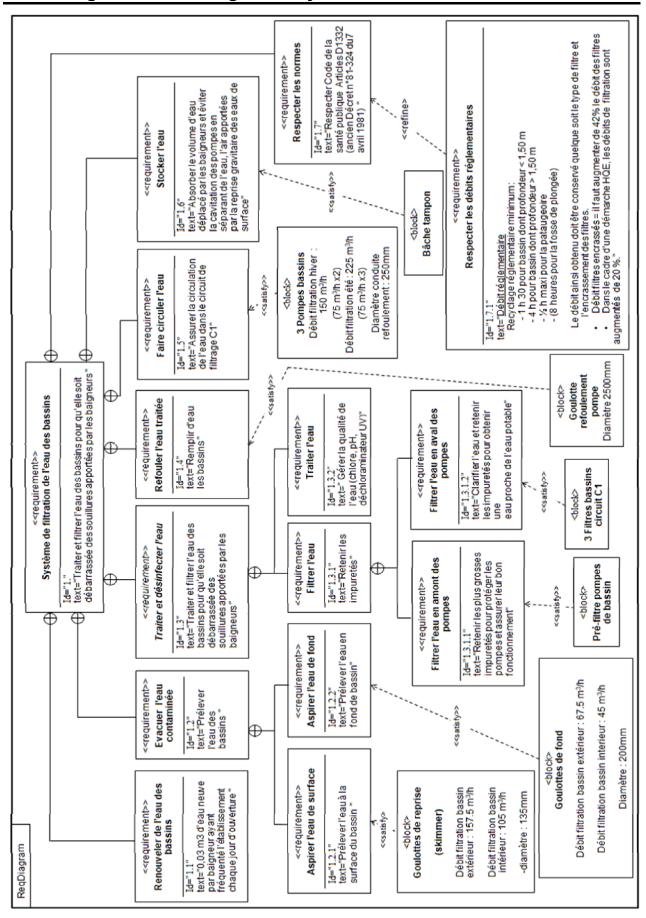
Rejets	Sans cogénération	Avec cogénération	Différentiel	Différentiel %
Emissions de Dioxyde de Carbone	138,25 t	149,4 t	+11,15 t	+8%
Emissions de Dioxyde de Soufre	71,87 kg	58,59 kg	-13,28 t	-18%
Emissions de Oxyde d'Azote	140,83 kg	137,6 kg	-3,23 t	-2%
Emissions d'autres particules	171,145 kg	155,61 kg	-15,535 t	-9%

21-2D2IDACME2 10/30

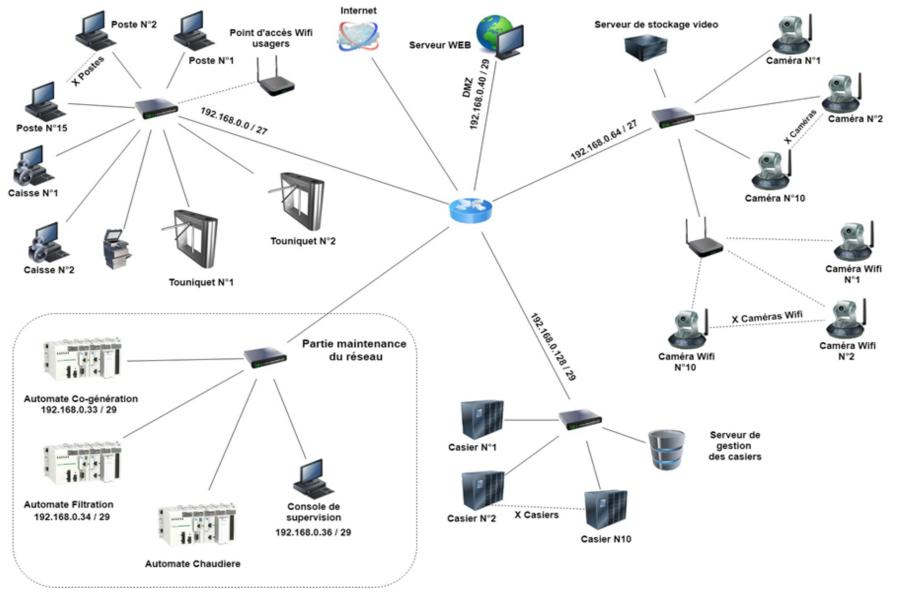

DT5 : Tarifs énergie gaz et électricité

Tarifs Énergie								
Prix gaz	32 € / MWh							
Prix électricité	90 € / MWh							
Tarif C16 (rachat électricité par EDF OA)	147,90 € / MWh							

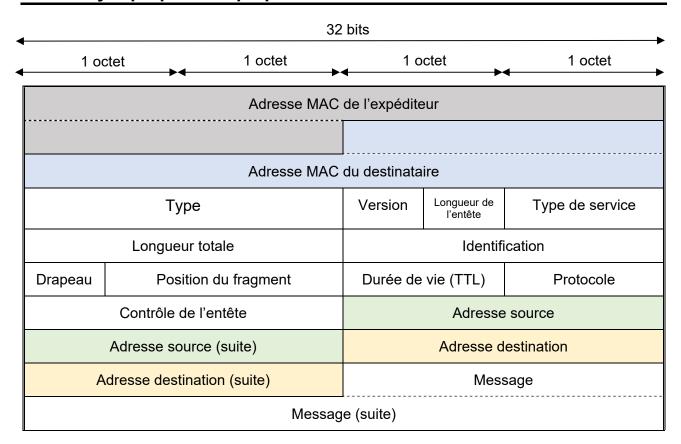
DT6 : Caractéristiques des moteurs de cogénération


Moteur	Puissance gaz	Puissance thermique	Puissance électrique	Investissement	Gain exploitation	Temps de retour sur investissement
ecoGEN33- Agc	98kW	73.4kW		97300 euros		
Gbox50	139 kW	97 kW	47 kW	103445 euros	16114 euros	6.4 ans
ecoGEN50- Agc	147 kW	84 kW	50 kW	123970 euros	13323 euros	9.3 ans
ecoGEN70- Agc	204 kW	114 kW	70 kW	141106 euros	19347 euros	7.3 ans
Aura 404	246 kW	141 kW	90 kW	184026 euros	24687 euros	7.5 ans

DT7 : Dimensions du bassin extérieur


21-2D2IDACME2 11/30

DT8 : Diagramme des exigences systèmes de filtration


21-2D2IDACME2 12/30

DT9: Schéma du réseau

21-2D2IDACME2 13/30

DT10: Synoptique d'un paquet ICMP

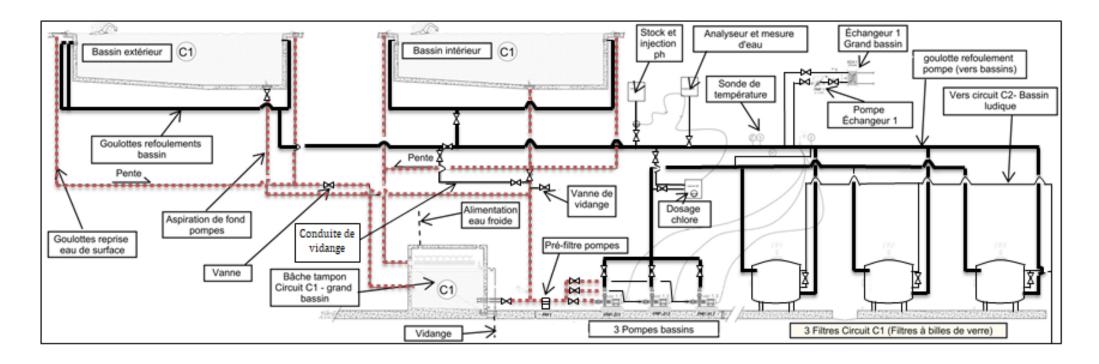
Capture réalisée par Wireshark

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0000	f4	са	e5	4f	а4	b0	f8	a2	d6	36	ff	14	80	00	45	00
0010	00	Зс	fb	48	00	00	80	01	bc	f9	с0	а8	00	24	c0	a8
0020	00	23	08	00	4c	8e	00	01	00	cd	61	62	63	64	65	66
0030	67	68	69	6a	6b	6c	6d	6e	6f	70	71	72	73	74	75	76
0040	77	61	62	63	64	65	66	67	68	69						

21-2D2IDACME2 14/30

DR1 : Nature des énergies mises en jeu dans le module de cogénération

	Energie	fossile	Energie m	nécanique	Energie é	electrique	Energie tl	nermique
	Absorbée /	Utile /	Absorbée /	Utile /	Absorbée /	Utile /	Absorbée /	Utile /
	Entrée	Sortie	Entrée	Sortie	Entrée	Sortie	Entrée	Sortie
Moteur thermique								
Alternateur								
Echangeur échappement							Х	Х
Echangeur circuits primaires/ secondaires								


DR2 : Récapitulatif des coûts d'exploitation

Récapitu		
Coût gaz consommé	-	(Question 2.1)
Coût du gaz économisé	+ 9376 euros/an	
Revente électricité	+	(Question 2.2)
Maintenance	- 1944 €/an	
Révision annuelle	- 1238 €/an	
Gain d'exploitation		(Question 2.3)

21-2D2IDACME2 15/30

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DR3 : Schéma hydraulique de la filtration du bassin

Compléter le tableau ci-dessous avec les termes « refoulement » ou « aspiration »

cheminement de l'eau	Couleur utilisée	Justification :
- Circuit de	•••••	
- circuit de		

21-2D2IDACME2 16/30

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

ARCHITECTURE ET CONSTRUCTION

Réhabilitation du centre nautique des Vals du Dauphiné

0	Présentation de l'étude et questionnement	pages	18	àź	21
0	Documents techniques	pages	22	à 2	26
0	Documents réponses	pages	27	à 3	30

Dans la partie spécifique, vous devez choisir entre traiter la partie B (choix 1) ou la partie E (choix 2).

Les autres parties sont à traiter obligatoirement.

21-2D2IDACME2 17/30

Mise en situation

Un des objectifs de la réhabilitation du centre nautique est l'amélioration de la performance énergétique du complexe. Dans ce but, le centre nautique disposera d'une isolation thermique des murs, ce qui n'était pas le cas.

Dans cette partie nous étudierons le mur présenté sur le DTS1. L'objectif de l'étude proposée est d'étudier la conception et la réalisation de l'isolation thermique pour atteindre les performances voulues par le bureau d'études ainsi que la mise en sécurité du bâtiment.

Travail demandé

Question A.5

est respectée.

DTS2

Partie A: la réglementation thermique du 22 mars 2017 est-elle respectée ?

Pour moderniser l'aspect extérieur du bâtiment, l'architecte envisage de mettre en place une ITE (Isolation Thermique par l'Extérieur) protégée par un bardage métallique couleur "gold".

Question A.1 DRS1	Compléter le tableau sur le document réponse DRS1 en précisant pour chaque critère les performances des deux principes d'isolation.
Question A.2 DTS1 DTS2	Préciser quelle doit être la valeur minimale de la résistance thermique R du mur étudié après rénovation, à partir de l'extrait de l'arrêté du 22 mars 2017 relatif aux caractéristiques thermiques et à la performance énergétique des bâtiments existants du document DTS2.
Question A.3 DTS1 DTS2	Expliquer pourquoi la valeur à retenir pour la somme des coefficients Rsi + Rse est égale à 0,17 m ² ·K ⁻¹ ·W ⁻¹
Question A.4 DTS1 DTS4 DRS2	Calculer la résistance thermique totale du mur après rénovation. Répondre sur le document réponse DRS2.

Vérifier, en expliquant, si la réglementation thermique du 22 mars 2017

21-2D2IDACME2 18/30

Choix 1

Partie B : comment choisir l'isolant adéquat ?

Question B.1 Citer deux paramètres qui permettent d'augmenter la résistance thermique du mur et expliquer comment ils doivent être modifiés.

Le bureau d'études souhaite obtenir un bâtiment dont la performance énergétique est supérieure à la valeur fixée par la réglementation thermique du 22 mars 2017. Il décide de mettre en œuvre un isolant dont la résistance thermique totale est R = 4,6 m²·K⁻¹·W⁻¹.

Question B.2

DTS4

Calculer la nouvelle épaisseur que doit avoir l'isolant pour que le mur ait une résistance thermique totale R = 4,6 m²·K⁻¹·W⁻¹. On gardera un isolant ayant la même conductivité thermique λ = 0,04 W·m⁻¹·K⁻¹. La composition du mur reste inchangée.

Question B.3 DRS3 **Noter, choisir et argumenter** le choix d'isolant parmi ceux proposés. Répondre sur le document réponse DRS3.

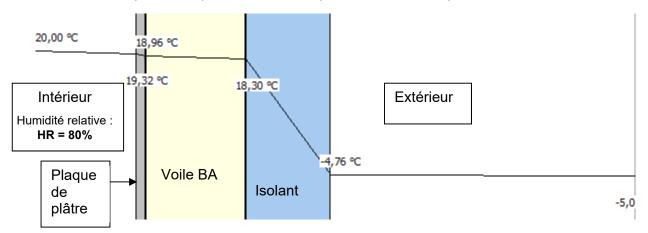
Partie C : comment empêcher l'isolant d'absorber l'humidité ?

Question C.1 **Expliquer** quelle sera la conséquence sur la résistance thermique de l'isolant s'il se gorge d'eau par un défaut d'étanchéité du bardage par exemple.

Proposer une solution pour y remédier.

L'humidité relative constatée dans le centre nautique est de 80% et la température intérieure est de 20°C.

Question C.2


Expliquer pourquoi il est important de connaître la valeur du point de rosée.

DRS4

Déterminer sa valeur en utilisant le diagramme de l'air humide sur le document réponse DRS4.

21-2D2IDACME2 19/30

On donne ci-après la répartition des températures dans la paroi :

Question C.3

DRS5

Dire, en expliquant, s'il y a risque de condensation dans l'isolant. Expliquer le rôle d'un pare vapeur.

Indiquer par une flèche sa position exacte sur le document réponse DRS5.

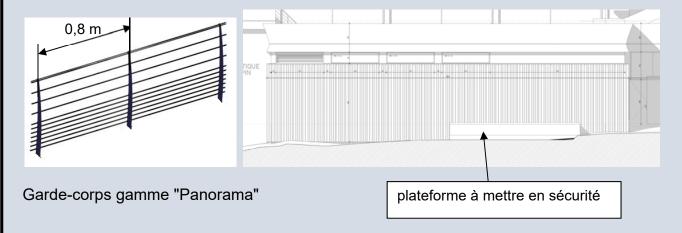
Partie D : combien de jour faut-il pour mettre en place l'Isolation Thermique par l'Extérieur (ITE)?

Le bardage métallique choisi par l'architecte repose contre 4 lisses horizontales.

Question D.1 DTS5 DRS5	Déterminer l'épaisseur des lisses horizontales permettant de fixer le bardage au mur en BA. Répondre sur le document réponse DRS5 en précisant la valeur de la cote manquante.
Question D.2 DTS5 DRS6	Déterminer le nombre de rangées de plaques de bardage pour réaliser le recouvrement de la partie de façade repérée sur le document réponse DRS6. Les plaques seront coupées en usine à la longueur de 4,4m, et ajustées sur place au niveau du trottoir.
Question D.3 DRS6	Déterminer l'aire de la façade à couvrir, ainsi que les temps de pose de l'ITE pour cette partie de façade étudiée. Dans un souci de simplification la présence du trottoir sera pégligée. Répondre sur DRS6

L'entreprise qui s'occupe de la pose de l'ITE prévoit pour ce chantier une équipe de 4 ouvriers travaillant 7h/jour sur le chantier.

la présence du trottoir sera négligée. Répondre sur DRS6.


Question D.4	Déterminer la durée de pose en jours de l'ITE pour la partie de façade
DRS6	étudiée. Répondre sur le document réponse DRS6.

21-2D2IDACME2 20/30

Choix 2

Partie E : Comment assurer la sécurité des usagers sur la plateforme de déchargement ?

Une plateforme de déchargement doit être conservée dans le nouveau projet (voir photos du DTS1). Sa mise en sécurité impose à l'architecte de mettre en place un garde-corps. Le modèle retenu est présenté ci-dessous :

L'entraxe des montants du garde-corps choisi par l'architecte est 0,8m.

Question E.1

DTS6

Préciser quelle est la valeur de la charge linéique réglementaire à utiliser et **déterminer** l'effort F_{utilisateur} en N supporté en tête de montant.

On précise que la hauteur réglementaire du garde-corps est de 1020 mm.

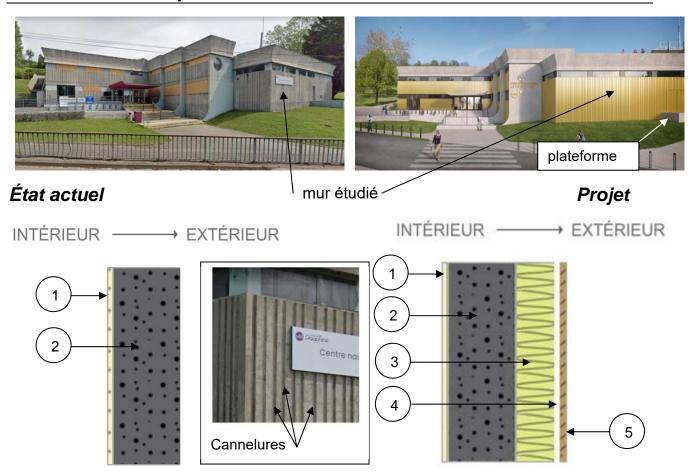
Question E.2

Écrire l'équation des moments au niveau du point A.

DTS6

En **déterminer** l'effort F_{ancrage} que doivent reprendre les deux goujons pour maintenir l'équilibre.

Quelques soient les résultats précédents, on considérera que chaque goujon supporte un effort de 7700 N.


Question E.3

DTS6

Choisir une référence (**préciser** le diamètre) pour les goujons à utiliser à partir du document DTS6.

21-2D2IDACME2 21/30

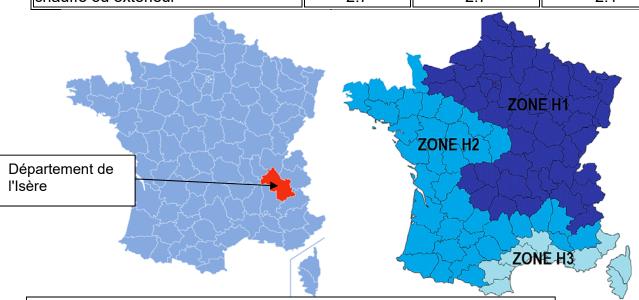
DTS1: Caractéristiques du mur étudié

Coupe de principe du mur avant rénovation

Coupe de principe du mur après rénovation

Composition du mur	Avant rénovation	Après rénovation
Couche 1	1,5 cm de plaque de plâtre	1,5 cm de plaque de plâtre, λ = 0,3 W/m.K
Couche 2	20 cm de béton armé, finition cannelée*.	20 cm de béton armé, finition cannelée*. λ = 1,65 W/m.K
Couche 3		10 cm d'isolant, λ = 0,04 W/m.K
Couche 4		lame d'air ventilée
Couche 5		Couche de finition (bardage métal), ne participe pas à l'isolation

λ conductivité thermique


21-2D2IDACME2 22/30

^{*:} La présence des cannelures sera considérée comme sans influence sur la résistance thermique.

DTS2 : Extrait de l'arrêté du 22 mars 2017

Lorsque des travaux d'installation ou de remplacement de l'isolation thermique sont entrepris sur une paroi, ceux-ci doivent être réalisés de telle sorte que la paroi isolée doit avoir une résistance thermique totale, exprimée en mètres carrés Kelvin par Watt (m².K/W), supérieure ou égale à la valeur minimale donnée dans le tableau ci-dessous en fonction du type de paroi concernée.

PAROIS	RÉSISTANCE thermique R minimale en zone H1	RÉSISTANCE thermique R minimale en zone H2 et zone H3, à une altitude supérieure à 800 mètres	RÉSISTANCE thermique R minimale en zone H3, à une altitude inférieure à 800 mètres					
Murs en contact avec l'extérieur et rampants de toitures de pente supérieure à 60°	2.9	2.9	2.2					
Murs en contact avec un volume non chauffé	2							
Toitures terrasses	3.3							
Planchers de combles perdus	4.8							
Rampants de toiture de pente inférieure 60°	4.4	4.3	4					
Planchers bas donnant sur local non chauffé ou extérieur	2.7	2.7	2.1					

Le centre nautique se situe dans la commune de la Tour du Pin, cette commune se situe dans le département de l'Isère et l'altitude de la commune est comprise entre 309 et 461 m

23/30

DTS3: Coefficients Rsi et Rse

Les résistances superficielles internes Rsi et externe Rse sont définies ci-dessous :

	nant sur : l'extérieur ou un ouvert ou un local ouvert	R _{si} m². K / W	R _{se} (1) m². K / W	R _{si} + R _{se} m². K / W
Paroi verticale	Flux horizontal	0,13	0,04	0,17
rizontale	Flux ascendant	0,10	0,04	0,14
Paroi horizontale	Flux descendant	0,17	0,04	0,21

⁽¹⁾ Si la paroi donne sur un autre local non chauffé, un comble ou un vide sanitaire, R_{si} s'applique des deux côtés.

DTS4 : Résistance thermique d'une paroi

La résistance thermique d'un matériau homogène est donnée par la relation suivante:

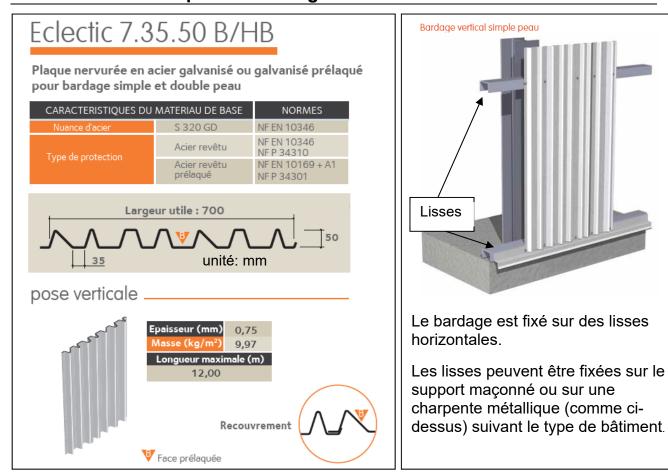
$$R = \frac{e}{\lambda}$$

Avec:

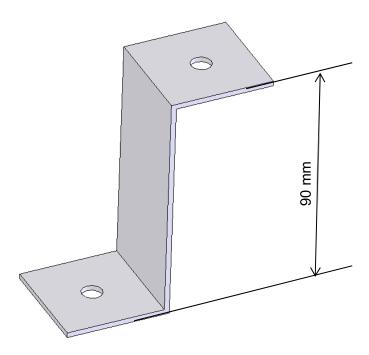
- R : résistance thermique m²/K.W

- e : épaisseur m

- λ : conductivité thermique W/m.K


La résistance totale thermique d'une paroi composée de matériaux homogènes est donnée par la relation suivante:

$$R_{global} = (R_{si} + R_{se}) + \sum R$$


21-2D2IDACME2 24/30

⁽²⁾ Un local est dit « ouvert » si le rapport de la surface totale de ses ouvertures permanentes sur l'extérieur, à son volume, est égal ou supérieur à 0,005 m²/m³. Ce peut être le cas, par exemple, d'une circulation à l'air libre, pour des raisons de sécurité contre l'incendie

DTS5 : Caractéristiques du bardage

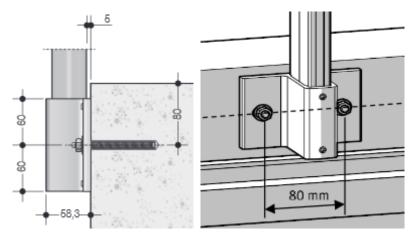
Équerre de fixation de bardage

21-2D2IDACME2 25/30

DTS6 : Caractéristiques du garde-corps et de ses fixations

Suivant le lieu où le garde-corps doit être implanté, les charges réglementaires appliquées au

garde-corps changent:

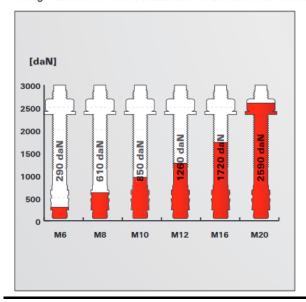

Tribune de stade : 1700 N/m

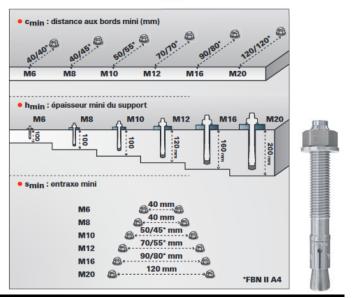
ERP (Établissement recevant du public) : 1000 N/m

Coursives et cages d'escaliers des habitations collectives : 600 N/m

Locaux privés: 600 N/m si la longueur est > à 3,25 m, sinon 1300 N/m.

Toitures terrasses non accessibles au public : 300 N/m.




cotation en mm

A Dalle béton

Futilisateur

Goujon d'ancrage FBN II et FBN II A4 Charges limites de service maximales en traction d'une cheville dans un béton non fissuré C20/25.

Exemple de référence: Goujon d'ancrage FBN M8 A4

II : représente le diamètre

21-2D2IDACME2 26/30

DRS1 : Critères de performance de l'ITE

	Coût de mise en œuvre	Forte Inertie thermique	Suppression des ponts thermiques	Préservation de l'architecture extérieure
ITI (Isolation Thermique Intérieure)	+			
ITE (Isolation Thermique par l'Extérieur)	-			

Si la performance est bonne +, si la performance est mauvaise -

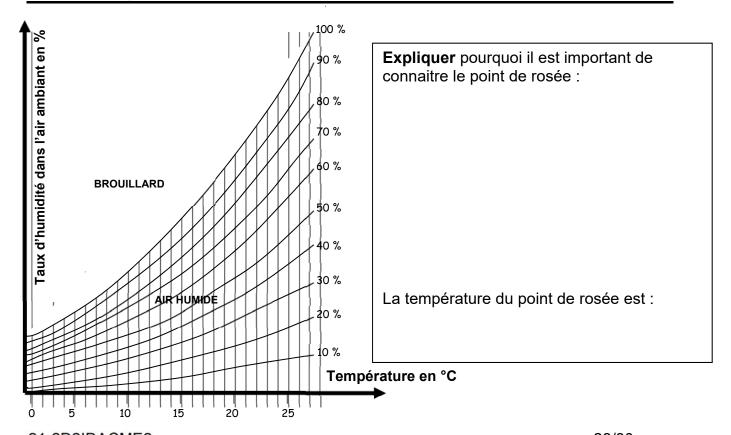
DRS2 : Calcul de la résistance thermique du mur

	Plaque de plâtre	Béton Armé	Isolant
Calcul de la résistance thermique de chacun des matériaux			
Calcul de la résistance thermique totale du mur			

21-2D2IDACME2 27/30

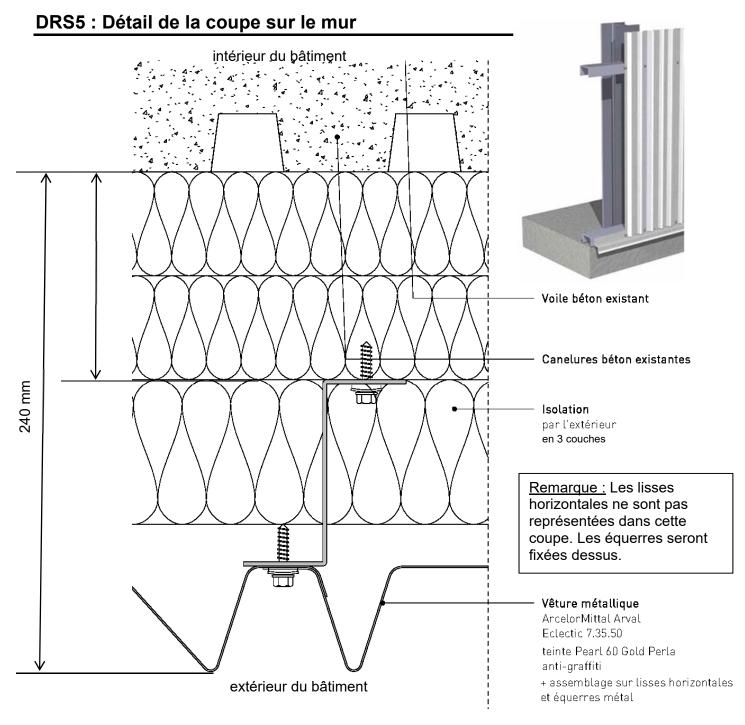
Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																					
PRENOM : (en majuscules)																					
N° candidat :	(Les nu		figure		la sen	vo en tie	n si b	osoin.	damaa	dor à :		oillant.		N° c	d'ins	crip	tio	1 :			
	(Les ni	umeros		ent sur	ia con	VOCATIO)n, si b	esom	Jeman	uer a t	in surv	emant	.,								
RÉPUBLIQUE FRANÇAISE Né(e) le :																					1.2

DRS3 : Classement multicritères des isolants


Isolants	Caracté	ristiques	Critères	de prix	Critères d'e	_	Critères de effet de s	Notes globales	
isolalits	λ W/m.K	Epaisseurs cm	Coûts <i>€/m</i> ²	Notes /6	Teneurs kWh/m²	Notes /6	Emissions kg CO ₂ /m ²	Notes /6	/18
Laine de verre	0,04	17	8,8	6	62.23		10.17		
Laine de roche	0,04	17	12,15	5	106.75		27.06		
Polystyrène expansé PSE	0,04	17	30	1	82.08		10.35		
Laine de coton recyclée	0,04	17	15,40	4	71.28		2.43		
Fibre de bois	0,04	17	28,20	2	120.02		-18.27		
Laine de chanvre	0,04	17	18,85	3	38.88		-0.58		

Rappel : λ représente la conductivité thermique du matériau.

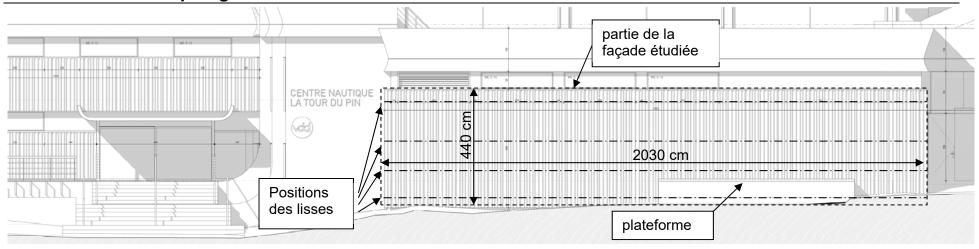
Système de notation : pour chaque critère (coût, énergie grise et C0₂) classez les isolants en attribuant une note allant de 1 à 6, la note 6 sera attribuée au meilleur isolant, exemple pour le coût : laine de verre = 6 car la moins chère, polystyrène expansé = 1 car le plus cher. La note finale est obtenue en additionnant les notes : coût, énergie grise et C0₂.


Choix de l'isolant :

DRS4 : Diagramme de l'air humide

21-2D2IDACME2 28/30

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																			
PRENOM: (en majuscules)																			
N° candidat :	dat : (Les numéros figurent sur la convocation, si besoin demander à un surveillant.)																		
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)						
RÉPUBLIQUE FRANÇAISE Né(e) le :																			1.2


Rôle du pare vapeur :

Calcul de l'épaisseur d'une lisse:

21-2D2IDACME2 29/30

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																			
PRENOM: (en majuscules)																			
N° candidat :	dat : (Les numéros figurent sur la convocation, si besoin demander à un surveillant.)																		
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)						
RÉPUBLIQUE FRANÇAISE Né(e) le :																			1.2

DRS6 : Plan de calepinage

Calcul de l'aire de la façade étudiée :

Tâche	TU (Temps Unitaire)	Nombre d'heures de main d'œuvre	Tâche	TU	Nombre d'heures de main d'œuvre
Traçage calepinage	0,08h/m²		Pose de l'isolant	0,15h/m²	
Pose des lisses	0,1h/m		Pose du pare pluie	0,05h/m²	
Pose des équerres	0,15h/m de lisse		Pose du bardage	0,1h/m²	
			Pose de la grille anti-rongeu	r 0,15h/m	
Nombre total d'heure d'œuvre	es de main total=		Durée de p	ose en jours	

21-2D2IDACME2 30/30

Modèle CCYC : © DNE NOM DE FAMILLE (naissance) : (en majuscules)																			
PRENOM: (en majuscules)																			
N° candidat :	dat : (Les numéros figurent sur la convocation, si besoin demander à un surveillant.)																		
	(Les ni	umeros	ngure	nt sur	ia con	/ocatio	טוו, או ט	esom	Jeman	uer a t	in surv	emant	.)						
RÉPUBLIQUE FRANÇAISE Né(e) le :																			1.2