

FICHE ACTIVITÉ ÉLÈVE 3 DÉPLACER LE CHARIOT

ENSEIGNEMENT

SPÉCIALITÉ

H1-H2

Découverte du challenge - Analyse fonctionnelle - Cahier des charges

Ce travail est réalisé en commun par les élèves du groupe.

Découverte du mini-projet

Vous prenez connaissance des documents et observez les maquettes fournies.

Travail d'analyse fonctionnelle

À partir des documents fournis, en particulier le cahier des charges, vous complèterez le diagramme des cas d'utilisation et le diagramme des exigences SysML du projet *Imprimante_ Braille.mdzip*.

Vous pourrez utiliser pour cela le logiciel MagicDraw.

Le document réalisé sera rendu sous la forme d'un fichier.

Répartition des tâches

A l'issue de ces 2 heures, vous indiquerez à votre professeur qui a été choisi pour chacun des travaux :

- ÉLÈVE 1 Avancer la feuille;
- ÉLÈVE 2 Pointage des bosses;
- ÉLÈVE 3 Déplacer le chariot.

H3-H4

Activités expérimentales - Calculs

Retrouvez éduscol sur :

Cette activité va permettre de valider le choix d'un servomoteur pour déplacer le chariot. Pour cela, nous allons vérifier la capacité du servomoteur à produire un couple suffisant.

Mesures – Calculs

Matériel

Un dynamomètre. Le système sans le doigt2 pour déplacer le chariot.

Travail

- 1. Mesurer à l'aide d'un dynamomètre l'effort nécessaire pour déplacer le chariot. On fera 10 mesures afin d'obtenir un effort moyen.
- 2. Le système doit permettre le déplacement vers la droite ou vers la gauche du chariot (2,5 mm). On supposera que la position centrale correspond à α = α 90, on supposera que cet angle α 90=90°.
- Les dimensions nécessaires au calcul seront prises sur les dessins du modeleur volumique Solidworks.
 Déterminer par calcul les angles α correspondants aux positions droite et gauche par rapport à α90.
- 4. En négligeant les efforts de frottement entre le chariot et le doigt, déterminer dans les 3 positions le couple que devra fournir le servomoteur.
- 5. En vous référant au document constructeur, validez ou non le choix de ce servomoteur.

Document à fournir

Le compte-rendu du travail.

Vous disposez du mécanisme et du dessin d'ensemble Solidworks.

L'activité va consister à l'élaboration du schéma cinématique de la partie Déplacer le chariot.

1. Compléter le graphe des liaisons ci-dessous en indiquant les liaisons entre les blocs et les liaisons réalisées.

- Rechercher les classes d'équivalence.
 Rappel : on appelle classe d'équivalence cinématique, un ensemble de pièces mécaniques reliées entre elles par des liaisons encastrement.
- 3. Construire le schéma cinématique de cet ensemble.

H6-H7

Activités expérimentales et d'analyse

Mise au point des fonctions centre () droite () et gauche ()

Le déplacement du chariot fait appel à 3 fonctions selon que l'on void droite () veut pointer au centre, à droite ou à gauche.

Travail

Optimiser les valeurs passées au servoDG pour respecter le cahier des charges.

Partie 1 : fonction milieu ()

- Vérifier que le paramètre (90) permet de positionner le chariot en position milieu « servoDG. write (90); ».
- Sinon modifiez cette valeur. Pour rappel cet angle est noté α90 dans la partie H3-H4 que vous avez faite précédemment.
- Connaissant α90 vous pouvez maintenant calculer les deux angles correspondant aux deux positions droite et gauche.
- Modifier les paramètres du programme Arduino en conséquence.

Partie 2 : fonction droite ()

Nous allons mesurer les écarts entre le déplacement réel et celui du cahier des charges (2,5 mm).

Documents à fournir

Tableau d'analyse. Résultats. Le protocole pour vérifier le pointage.

H8

Activités expérimentales - Calculs

Validation des programmes

Vous allez tester les fonctions écrites précédemment et vérifier que les déplacements prévus correspondent à ceux définis dans le cahier des charges.

Matériel : imprimante; un ordinateur équipé du logiciel Arduino; le programme Arduino : **drga.** *ino.*

servoDG.write(60);

servoDG.write(100);

servoDG.write(80);

delay(300);

delay(250);

delay(250);

void gauche()

void milieu()

{

}

{

}

Travail

- 1. Entrer les paramètres d'angle trouvés lors de la séance H3-H4 dans le programme Arduino : **drga.ino**
- 2. Mesurer les positions du chariot obtenues par les 3 fonctions écrites précédemment.
- 3. Comparer aux valeurs données dans le cahier des charges.
- 4. Validez vos fonctions ou modifiez celles-ci pour un fonctionnement correct.

Document à fournir

Le compte-rendu du travail.

H9-H11

Chef de projet.

L'élève qui est chef de projet :

- s'occupe de la gestion des tâches réalisées par les 2 autres membres du groupe. Il tient à jour le fichier indiquant la progression du travail. Pour cela, il utilisera l'application .
 Voir pour cela dans les fiches guides : Utilisation de Trello.pdf;
- il réalise le diagramme de Gantt pour ordonnancer ou gérer le projet. Soit avec Trello et son extension TeamGantt, soit un logiciel spécialisé comme GanttProject;
- sert de soutien auprès des 2 autres membres du groupe. Il leur apporte ses connaissances, aide lorsqu'un élève est en difficulté ou lorsque le planning ne peut pas être respecté;
- est chargé de poser les questions au professeur concernant le projet de la part de tous les membres du groupe. C'est-à-dire que lorsqu'un élève rencontre un problème, il voit premièrement avec son chef de projet et si celui-ci peut lui apporter une solution. Dans le cas contraire, c'est au chef de projet de voir avec son professeur.

H12

Synthèse des programmes - Essais - Réglages

Synthèse des programmes

À partir des différentes expérimentations que vous avez faites, modifier le programme Arduino de commande en incluant tous les paramètres trouvés.

Compilez-le et téléchargez-le.

Essais

Faire des tests de fonctionnement sur la machine donnée.

Vérifier que le temps d'impression correspond à celui attendu.

Rédaction

Comment serait-il possible d'améliorer la performance de rapidité d'impression de cette machine?

Conclure.

Synthèse personnelle.

H12

Montage final et assemblage des programmes - Essais de réglage

Assemblage des programmes

À partir du programme de gestion du fonctionnement donné, construire le programme final en intégrant toutes les fonctions réalisées par les différents membres du groupe.

Essais

Faire des tests de fonctionnement sur la machine donnée.

Conclure.

H12

Rédaction du compte rendu

Vous réaliserez un diaporama de présentation du travail que vous avez réalisé :

- démarche;
- difficultés;
- réalisations;
- synthèse personnelle.

