

Plan National de Formation Professionnalisation des acteurs

Journée nationale de formation

« Enseignements pratiques interdisciplinaires : mathématiques, physique-chimie, sciences de la vie et de la Terre, technologie »

Mardi 29 mars 2016

Lycée-Collège international Honoré de Balzac - Paris

Atelier Bio-mimétisme : compte-rendu

Problématique : « En quoi les solutions trouvées par la nature peuvent-elles aider l'Homme à résoudre les problèmes techniques ? »

Présentation de Brigitte HAZARD, IGEN STVST — Myriam VIAL, IA-IPR de SVT — Anne-Laure DELPLANQUE et Lucie MARGUIN, professeures de SVT — Sébastien SADJIAN, professeur de technologie, collège Pierre Valdo, Vaux en Velin, académie de Lyon.

Contexte

Cet EPI a été testé en **SVT-PC-Technologie** en classe de 6ème dans le cadre d'un atelier scientifique.

Il s'agit ici d'une **transposition en 5**ème pour le cycle 4 à la **rentrée 2016**, élargie par rapport à la version testée dans ce collège REP+ où la tradition est de travailler en équipe. Les collègues de SVT et celui de technologie ont donc mobilisé leurs autres collègues de disciplines :

- Arts plastiques : ajout d'une vraie plus-value avec les zootropes et le dessin animé en termes de motivation ;
- Maths: introduction d'une nouvelle notion des programmes: la rotation;
- EPS: cycles escalade, ... et mouvement.

Présentation de l'EPI

Situation d'appel:

- fourmi (insecte) versus robot, type Curiosity;
- chaîne de construction dans une usine Renault, bras humain versus bras mécanique.

Objectifs : curiosité, esprit critique, observer, expérimenter, manipuler (levier : la démarche de projet).

Organisation : 3h/hebdomadaire de septembre à février.

<u>Précision</u>: cette durée moyenne de 3h/semaine ne concerne pas seulement les SVT et la technologie; elle inclut aussi les travaux au CDI, les mathématiques, les arts plastiques; dans ce

temps d'autres éléments du programme sont traités dans les disciplines concernées et non seulement celles qui correspondent au projet.

<u>Thèmes d'EPI</u> : « Développement durable et transition écologique et/ou Science, technologie, société ».

Déroulement:

- Septembre : définition, présentation d'un exemple choisi par les élèves (technologie) ; orientation vers le bio-mimétisme fonctionnel (mouvements) pour pouvoir traiter des points des programmes disciplinaires.
- Octobre : articulation, mouvement, besoins des muscles (SVT).
- Novembre : décomposition du mouvement, géométrie, patrons, échelle (mathématiques et arts plastiques).
- Décembre : CAO, application *Solid works* suivi de l'usage d'une imprimante 3D → façonner une pièce, simuler le mouvement.
- Janvier : circuits électriques (PC).
- Février : commande nerveuse (SVT) et système automatisé (technologie) ; zootrope (arts plastiques).

Productions prévues :

- un diaporama de présentation du bio-mimétisme en début de projet ;
- zootrope:
- une maquette au choix des élèves en fin de projet.

Évaluation : autoévaluation ; utilisation de curseurs.

<u>Difficulté identifiée par l'équipe</u> : passage d'un atelier à une généralisation à tous les élèves d'un niveau.

Plus-values de l'interdisciplinarité repérées par l'équipe :

- mise en place d'une démarche d'investigation complète reliant tous les domaines auxquels peuvent penser les élèves : les élèves décident de leurs besoins et les professeurs s'organisent pour intervenir en fonction des besoins ;
- Sujet vaste qui touche de nombreux domaines (scientifiques, artistiques...);
- Application d'un fait théorique dans des domaines pratiques ;
- Complémentarité des disciplines pour présenter un thème commun ;
- Développement de l'initiative et de l'autonomie : chaque élève est maître de sa progression ;
- Motivation des élèves par cette approche pratique, concrète et la possibilité de tâtonnement : solid works permet de contrôler l'objet conçu avant son façonnage ;
- découverte et développement des méthodes ou pratiques appliquées dans des métiers d'ingénierie, de pratiques de laboratoire, de chercheurs...

Remarques lors des échanges avec la salle :

- fort ancrage dans les programmes ;
- beaucoup de notions et de compétences disciplinaires de physique pourraient être traitées (matériaux, circuits électrique, signal, stéréoscopie...);
- les notions d'agrandissement et de rotation ne permettront pas, en elles-mêmes, d'intégrer véritablement les mathématiques qui ne pourraient que collaborer en nourrissant l'EPI par quelques séances disciplinaires. Une révision de la problématique pourrait permettre une intégration réelle en donnant du sens à l'interdisciplinarité;
- grande quantité de compétences identifiées et travaillées dans cet EPI : nécessité de faire un tri : identifier les compétences communes aux différents EPI proposés dans l'établissement pour trouver une complémentarité entre eux et les partager; discriminer les compétences spécifiques à cet EPI.

Annexes fournies:

- diaporama support utilisé lors du séminaire ;
- activité de SVT classe de 6^{ème} atelier scientifique ;
- activité de technologie classe de 6^{ème} atelier scientifique ;

- diaporama de début de projet réalisé par deux élèves de 6^{ème};
- programmation suivie en 6^{éme} lors de l'atelier scientifique et ayant servi de base à l'élaboration de l'EPI de 2016.

Complément à l'atelier

Suite aux échanges avec la salle, un prolongement de cet EPI a été proposé en physique-chimie ; en effet, d'autres exemples d'objets techniques fabriqués à partir d'une démarche « biomimétique » ont pu être identifiés et mis en lien avec des parties de programme de cycle 4 de cette discipline. Quelques exemples sont décrits succinctement ci-dessous :

1. Écholocation chez la chauve-souris et sonar ou radar : détection d'un obstacle ou mesure de distance à l'aide de signaux lumineux ou ultrasonores

Modélisation au laboratoire du principe des radars et sonars à l'aide de sources et de capteurs lumineux ou ultrasonores

Programme de physique-chimie du cycle 4

Signaux sonores

Décrire les conditions de propagation d'un son.

Relier la distance parcourue par un son à la durée de propagation :

- vitesse de propagation ;
- notion de fréquence : sons audibles, infrasons et ultrasons.
 - 2. Œil à facettes d'une mouche et systèmes de vision artificielle : détection des mouvements ou de proximité

Modélisation au laboratoire d'un œil à facettes

CurvACE est le dernier-né des systèmes de vision artificielle inspirés du monde vivant, également appelés bio-inspirés :

 $\frac{\text{http://www.cite-sciences.fr/fr/ressources/science-actualites/detail/news/curvace-loeil-artificiel-qui-fait-mouche/?tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=a74ed5d44c9ba748daa0be9c3f1d6c3e}{\text{d44c9ba748daa0be9c3f1d6c3e}}$

Programme de physique-chimie du cycle 4

Signaux lumineux

Exploiter expérimentalement la propagation rectiligne de la lumière dans le vide et le modèle du rayon lumineux :

- lumière : propagation, vitesse de propagation ;
- modèle du rayon lumineux.
 - 3. Articulation des membres inférieurs ou supérieurs des animaux et robot des chaines de construction : mouvement / Chaîne d'énergie

Programme de physique-chimie du cycle 4

Caractériser un mouvement

Caractériser le mouvement d'un objet.

Utiliser la relation liant vitesse, distance et durée dans le cas d'un mouvement uniforme :

- vitesse : direction, sens et valeur ;
- mouvements rectilignes et circulaires ;
- mouvements uniformes et mouvements dont la vitesse varie au cours du temps en direction ou en valeur.

Modéliser une interaction par une force caractérisée par un point d'application, une direction, un sens et une valeur

Identifier les interactions mises en jeu (de contact ou à distance) et les modéliser par des forces. Associer la notion d'interaction à la notion de force.

Identifier les sources, les transferts, les conversions et les formes d'énergie

Utiliser la conservation de l'énergie

Établir un bilan énergétique pour un système simple :

- sources :
- transferts;
- conversion d'un type d'énergie en un autre ;
- conservation de l'énergie ;
- unités d'énergie.

Utiliser la relation liant puissance, énergie et durée : notion de puissance.

Réaliser des circuits électriques simples et exploiter les lois de l'électricité