MODÉLISATION ET ANALYSE MULTIPHYSIQUE EN SSI

Distributeur automatique de savon

ACTIVITÉS ÉLÈVES

Distributeur automatique de savon

Sommaire

1.	MOD	ELISATIONS	2
	1.1.	Modélisation cinématique du mécanisme	2
		1.1.1. Schéma de principe du système bielle-manivelle	2
		1.1.2. Modélisation mathématique du système bielle-manivelle	2
		1.1.3. Modélisation cinématique de la transmission mécanique	2
		1.1.4. Modélisation mathématique de la cylindrée	3
2.	ACTIVITE 1 : MODELISATION DE LA CHAINE ENERGETIQUE		3
3.	ACT	IVITE 2 : MODELISATION LOGICIELLE AVEC SCILAB	6
	3.1.	Modélisation de l'alimentation moteur	6
	3.2.	Modélisation du piston	8
	3.3.	Modélisation du système bielle-excentrique (manivelle)	11
	3.4.	Modélisation du système complet	12
4.	АСТ	IVITE 3 : POUR ALLER PLUS LOIN	13

1.1.2. **Modélisation mathématique du système bielle-manivelle** Loi entrée-sortie :

$$y(t) = e \cdot \cos \theta(t) + \sqrt{L^2 - e^2 \cdot \sin^2 \theta(t)}$$

1.1.3. Modélisation cinématique de la transmission mécanique

1.1.4. Modélisation mathématique de la cylindrée

Diamètre Piston – Alésage : *D* Course piston : *H*

Cylindrée : V

$$V = \pi \times \frac{D^2}{4} \times H$$

2. ACTIVITÉ 1 : MODÉLISATION DE LA CHAINE ÉNERGÉTIQUE

Q1. En vous aidant de la chaine d'énergie ci-dessus, **qualifier** les grandeurs physiques d'entrée et de sortie du doseur de savon (mécaniques, électriques, thermiques, acoustiques, lumineuses, etc.) en précisant les grandeurs mise en jeu (force, intensité, tension puissance, vitesse linéaire, fréquence de rotation, température, couple, flux lumineux, pression, etc)

Identifier la chaine d'énergie

Q2. **Qualifier** les grandeurs d'entrées et les grandeurs de sorties du système isolé encadré en **précisant** la nature de l'effort et la nature du flux voir définition <u>Annexe 1</u>.

Savon dans le réservoir

Dose délivrée

En décomposant le système isolé défini ci-dessus on obtient la chaine d'énergie ci-dessous :

<u>Avec :</u>

Pour les différents flux :

- ω_i : les vitesses de rotation des organes en rotations

- v₄ : la vitesse de déplacement du piston en translation rectiligne en Pour les grandeurs d'efforts :

- C_i : les différents couples

- F : l'effort de poussé du piston sur le fluide (savon liquide) en @

 η_i : les différents rendements

r_{ij} : les différents rapports de réduction entre i et j

P_i : la puissance aux différents stades

- *P*₀ : puissance électrique absorbée par le moteur

Q3. **Préciser** de la même manière, la nature de l'effort et du flux à chaque étape de la transformation de puissance sur les liens 0, 1, 2, 3 et 4 ci-dessus.

Q4. Donner l'expression de la puissance pour chaque lien, respecter les indices 0, 1, 2, 3, 4.
Q5. Donner la relation entre P₀ et P₁ puis entre P₁ et P₂ puis P₂ et P₃ ainsi que P₃ et P₄.
Q6. En utilisant les expressions précédentes, donner la relation entre P₀ et P₄.

Q7. Sur la chaine cinématique du système isolé ci-dessous encadré, **donner** la relation entre ω_1 et ω_2 , et ω_2 et ω_3 , on pourra l'**exprimer** en fonction des données de la transmission, voir § 4.1.4.

3. ACTIVITÉ 2 : MODÉLISATION LOGICIELLE AVEC SCILAB

Lancer le logiciel de modélisation multiphysique Scilab Dans le menu « Applications », lancer Xcos. Dans le menu « Vue », afficher le « Navigateur de palettes » s'il n'apparait pas. Nous n'utiliserons ici que les blocs de la palette du module SIMM ci-contre.

La modélisation est constituée d'un diagramme constitué de blocs pris dans la bibliothèque par glisser-déposer vers la zone graphique du diagramme.

3.1. Modélisation de l'alimentation moteur

Réaliser la modélisation de l'alimentation du moteur du distributeur de savon ci-dessous, aidez vous des tutoriels vidéo joints, l'**enregistrer** sous « alimentation moteur.Xcos » dans vos documents.

Cette modélisation est constituée :

Désignation	Symbole	Sous palettes SIMM	Paramétrage
Potentiel zéro	• -	SIMM/Electrique/Source/ MEAB_Ground	
Alimentation continue en tension	Const.	SIMM/Electrique/Source/ CEAS_predfVoltage	Type de signal : 0 V : 4.5 V
Moteur à CC Voir caractéristique § 4.1.2. du dossier technique		SIMM/Composant/Actionneurs/ MEMC_DCmotor	R : 4.5 L : 0.03 k : 0.002817 Jrotor : 0.00000019
Couple résistant		SIMM/Mecanique/Rotation 1D/Source/ CMRS_Torque0	
Signal constant Valeur du moment du couple résistant Cr = 0.00082 N·m	1	SIMM/Signaux/Sources/ MBS_Constant	k : 0.00082

Ne pas oublier de faire le paramétrage en double cliquant sur les symboles.

Lancer la simulation ⊵, si la fenêtre « info » s'affiche, c'est qu'il n'y a pas d'erreur. Ok.

Pour visualiser les résultats de simulation, il faut mettre des capteurs.

Insérer les capteurs comme sur le diagramme ci-dessous en n'oubliant pas la base de

Désignation	Symbole	Sous palettes SIMM	Paramétrage
Capteurs de puissance électrique absorbée <i>P</i> ₀	Power	SIMM/Electrique/Mesure/ CEAS_powerSensor	
associé à un affichage		SIMM/Utilitaires/Visualisation/ ISCOPE	Ok <i>puis</i> , P absorbée (P0)
Capteurs de puissance utile <i>P</i> ₁	Power	SIMM/Mecanique/Rotation 1D/Mesure/ CMRS_PowerSensor	
associé à un affichage		SIMM/Utilitaires/Visualisation/ ISCOPE	Ok <i>puis</i> , P utile (P1)
Capteur d'intensité moteur <i>Im</i>	Current	SIMM/Electrique/Mesure/ MEAS_CurrentSensor	
associé à un affichage		SIMM/Utilitaires/Visualisation/ ISCOPE	Ok <i>puis,</i> Im
Capteur de couple moteur C ₁	Токаче	SIMM/Mecanique/Rotation 1D/Mesure/ MMRS_TorqueSensor	
associé à un affichage		SIMM/Utilitaires/Visualisation/ ISCOPE	Ok <i>puis,</i> Cm (C1)
Capteur de vitesse de rotation arbre moteur ω_1	Position	SIMM/Mecanique/Rotation 1D/Mesure/ CMRS_GenSensor	Vitesse : 1
Gain : conversion d'unité radian·s⁻¹ en tr·min⁻¹		SIMM/Signaux/Math/ MBM_Gain	k : 30/(%pi)
associé à un affichage		SIMM/Utilitaires/Visualisation/ ISCOPE	Ok <i>puis</i> , Nm (N1) (tr/min)
Paramètres simulation : 5 s	Time 100	SIMM/Utilitaires/Visualisation/ IREP_TEMP	Durée de simulation : 5

Lancer la simulation 🕒 : les courbes s'affichent :

Enregistrer votre travail.

Q11. Analyser les courbes et les commenter.

3.2. Modélisation du piston

Créer un nouveau diagramme, l'enregistrer sous « piston.Xcos » dans vos documents.

Réaliser la modélisation du piston du distributeur de savon ci-dessous.

Désignation	Symbole	Sous palettes SIMM	Paramétrage
Signal sinusoïdal	\bigcap	SIMM/Signaux/Sources/	Amplitude : 0.0096
simulant un va et		MBM_Sine	Fréquence : 1.5
vient du piston en			Phase:0
position			Décalage : 0.0048
			Temps de
			décalage : 0
Entrée en position	Po <u>sit</u> ion	SIMM/Mecanique/Translation	
en translation		1D/Sources/	
		CMTS_ImposedKinematic	
Mesure puissance		SIMM/Mecanique/Translation	
en translation	الىلاسا 🔁	1D/Mesure/	
		CMTS_PowerSensor	
associé à un		SIMM/Utilitaires/Visualisation/	Ok <i>puis</i> ,
affichage		ISCOPE	P4
Mesure de la force		SIMM/Mecanique/Translation	
résistante		1D/Mesure/	
		CMTS ForceSensor	
associé à un		SIMM/Utilitaires/Visualisation/	Ok puis,
affichage		ISCOPE	F4
Piston : masse en		SIMM/Mecanique/Translation	m : 0.002
translation		1D/Basique/	longueur du
		CMTC_Mass	solide : 0.009
Piston libre		SIMM/Mecanique/Translation	
		1D/Basique/	
		CMTC_Free	
Capteur de position	Position	SIMM/Mecanique/Translation	Position : 0
du piston	ا سقسا	1D/Mesure/	
		CMIS_GenSensor	
associé à un		SIMM/Utilitaires/Visualisation/	Ok puis,
affichage		ISCOPE	y(t)
Capteur de vitesse	Position	SIMM/Mecanique/Translation	Vitesse : 1
linéaire du piston	لسلاسا ا	1D/Mesure/	
		CMTS_GenSensor	

...

associé à un		SIMM/Utilitaires/Visualisation/	Ok <i>puis,</i>
affichage		ISCOPE	y'(t) = v4
Effort résistant, force de frottement		SIMM/Mecanique/Translation 1D/Source/ CMTS_Force0	
Signal constant Valeur de l'effort résistant : 11 N	1	SIMM/Signaux/Sources/ MBS_Constant	k : 11
Paramètres	Time 100	SIMM/Utilitaires/Visualisation/	Durée de
simulation		IREP_TEMP	simulation : 5

Lancer la simulation 🕒 : les courbes s'affichent :

Enregistrer votre travail.

Q12. Analyser les courbes et les commenter.

3.3. Modélisation du système bielle-excentrique (manivelle)

La loi entrée-sortie du système bielle 4 - excentrique (manivelle) 3 est donnée par la modélisation mathématique au § 1.1.2. issue de la géométrie des solides. Rappel ci-dessous :

$$y(t) = e \cdot \cos \theta(t) + \sqrt{L^2 - e^2 \cdot \sin^2 \theta(t)}$$

On peut traduire cette modélisation : équation dans Scilab, Xcos, par les blocs « Math », de la palette SIMM/Signaux :

Créer un nouveau diagramme, l'**enregistrer** sous « bielle 4 - roue excentrique 3.Xcos » dans vos documents.

Réaliser la modélisation du système bielle 4 - roue excentrique (manivelle) 3 ci-dessus en prenant soin de définir au préalable les

variables paramétrées :

- e : l'excentration et
- L : la longueur de la bielle ;

pour ce faire : clic droit dans une zone du diagramme « Modifier le contexte », **taper** : e=0.0048 , *puis à la ligne*, L=0.020 Ok

Modifier le contexte
Vous pouvez entrer ici des instructions Scilab pour définir les paramètres symboliques utilisés dans les définitions de bloc à l'aide des instructions Scilab. Ces instructions sont évaluées après confirmation (c'est-à-dire diquez sur OK à chaque fois que le diagramme est chargé).
e=0.0048 L=0.020
Ok Annuler

Ces paramètres pourront être changés à volonté pour faire plusieurs essais de simulation en y accédant par clic droit dans une zone du diagramme « Modifier le contexte ».

On mettra en entrée un signal de type rampe et en sortie un affichage graphique :

Désignation	Symbole	Sous palettes SIMM	Paramétrage
Signal croissant :		SIMM/Signaux/Sources/	Amplitude : 2*%pi
Valeur de la position		MBS_Ramp	Durée : 2
angulaire de la roue			Décalage : %pi/2
excentrique $\theta(t)$			Temps de
			décalage : 0

Affichage de la sortie sous forme de graphique fonction du temps		SIMM/Utilitaires/Visualisation/ ISCOPE	Ok <i>puis</i> , y(t)
Paramètres	Time 100	SIMM/Utilitaires/Visualisation/	Durée de
simulation		IREP_TEMP	simulation : 5

Lancer la simulation 🕑 : les courbes s'affichent.

Q13. Vérifier si les résultats obtenus sont conforme à ce que l'on peut s'attendre.

I		
1		1
1		1
1		1
1		1
1		
1		
·	 	 '

3.4. Modélisation du système complet

Ouvrir le fichier nommé « Distributeur de savon.Xcos », le système bielle 4 - roue excentrique (manivelle) 3 est déjà présent sous la forme d'un super bloc ainsi que deux blocs représentant les deux étages de réduction, le premier : vis sans fin (sortie moteur ω_1) – pignon arbré 2, le deuxième : pignon arbré 2 - roue excentrique (manivelle) 3.

-	
bie	lle 4 - roue

excentrique (manivelle) 3

Compéter le paramétrage comme indiquer dans le tableau ci-dessous

Désignation	Symbole	Sous palettes SIMM	Paramétrage
Réduction de vitesse - Vis sans fin (sortie moteur ω ₁) – Pignon	vis sans fin 1 - pignon arbré 2		Rapport de transmission (entrée/sortie) :
arbré 2 - Pignon arbré 2, le deuxième : Pignon arbré 2 - Roue excentrique (manivelle) 3	pignon arbré 2 - roue excentrique (manivelle) 3		à définir d'après les caractéristiques fournies § 4.1.3. du dossier technique.

Insérer en copiant –collant la totalité des blocs de votre modélisation de l'alimentation moteur § 3.1.

Raccorder votre « alimentation moteur » aux éléments déjà présents.

Rajouter les capteurs nécessaires pour prélever le couple C_2 et C_3 ainsi que la fréquence de rotation « ω_2 » exprimée en tr·min⁻¹ et « ω_3 » exprimée en en tr·s⁻¹.

	i
	ł
	Ì
	i
	į
	i
	i
	-
	i
	-
	ł
	ł
	ł
	ł
	Ì
	i
	į
	į
	·'
015 Interprétation des courbes : au hout de combien de temps la première dose de	
savon sera complètement délivirée	
Savon Sera completement delivree.	
	i
	i
Q16 Comparer la valeur trouvée à celle du cahier des charges (dossier technique)	
Conclure quant à la validité de la modélisation sur le critère de temps	
	ł
	Ì
	i

4. ACTIVITÉ 3 : Pour aller plus loin

Modéliser le volume de savon délivré en fonction de la course du piston 4.

Modélisation multi-physique

Annexe 1

Domaine	Effort (e)	Flux (f)	Déplacement (q)
Électrique	Tension (V)	Courant (A)	Charge (C)
Mécanique en translation	Effort (N)	Vitesse (m⋅s⁻¹)	Déplacement (m)
Mécanique en rotation	Couple (N·m)	Vitesse (rad⋅s ⁻¹)	Angle (rad)
Hydraulique	Pression (Pa)	Débit volumique (m ³ ⋅s ⁻¹)	Volume (m ³)
Magnétique	Force magnéto-motrice (A)	Dérivée flux (V)	Flux (Wb)
Chimique	Potentiel Chimique (J·mol ⁻¹)	Flux molaire (mol·s ⁻¹)	Quantité de matière (mol)
Thermodynamique	Température (K)	Flux entropique (W·K ⁻¹)	Entropie (J·K ⁻¹)
Acoustique	Pression (Pa)	Débit acoustique (m ³ ·s ⁻¹)	Volume (m ³)

Représentation **bond graph** : représentation graphique d'un système dynamique physique (mécanique, électrique, hydraulique, pneumatique, etc.) qui représente les transferts d'énergie dans le système.

Lien de puissance

Cet élément permet de symboliser les transferts d'énergie entre 2 sous-ensembles. Il est représenté comme suit :

On peut remarquer deux éléments sur cette liaison.

- La lettre e représente la composante effort de la liaison.
- La lettre *f* représente la composante flux de la liaison.

- La multiplication de ces deux termes doit donner la puissance qui transite par la liaison. Cet élément est orienté dans le sens où la puissance est positive