
VASQUE A POSER

PRESENTATION

Votre entreprise est sollicitée par un fabricant de salles de bain afin d'assurer la conception et la fabrication de vasques à poser adaptables à ses meubles. (Voir exemple ci-dessous)

ANALYSE FONCTIONNELLE

ACADEMIE I	D'ORLEANS-TOURS	BTS INDUSTRIES CERA	MIQUES
Session 2014	Durée	: 2 heures Co	efficient : 1,5
Epreuve E5 – C	Conception des produits, des c	outillages et définition de processus	Feuille 1/5
Unité U 51 Co	onception d'un produit		IQE5CO

FP: Fonction principale. Fc: Fonction contrainte

	Fonction (énoncé de la fonction)	Critère (propriété ou caractéristique à vérifier)	Niveau (dimension ou valeur)	Flexibilité
FP		Dimension	9 litres	± 5%
Fc1	Etre étanche			
Fc2	Recevoir un robinet et	Robinetterie à un trou	Voir normes	Voir normes
	une bonde normalisés	Bonde standard		
Fc3		Trop plein	A définir	A définir
Fc4	Respecter les normes	Essai normalisé : voir	Rp = 50 MPa	
	de résistance	question III		
Fc5	S'adapter au meuble	Dimensions de la base		+ 5%
Fc6		Matière, couleur, forme		

TRAVAIL DEMANDE

A partir de l'analyse fonctionnelle, des feuilles de norme (2/5, 3/5, 4/5) et de l'ébauche de vasque qui vous est fournie sur la clé USB :

I/ Compléter l'analyse fonctionnelle.

II/ Terminer la vasque fournie sur la clef en respectant les fonctions : Fp, Fc2 et Fc3.

III/ La norme indique qu'une vasque de ce type doit résister à une charge statique de 130 Kg appliquée sur sa face supérieure. (Fc4)

- Calculer la section soumise à la compression. (Quel que soit le résultat obtenu on prendra $S = 25000 \text{ mm}^2$)
- Calculer la contrainte dans cette section, Conclure.

ACADEMIE	D'ORLEANS-TOURS	BTS INDUSTRIES CERA	MIQUES
Session 2014	Durée	: 2 heures Co	efficient: 1,5
Epreuve E5 – C	Conception des produits, des o	utillages et définition de processus	Feuille 2/5
Unité U 51	Conception d'un produit		IQE5CO

5.1.2 Cotes de raccordement

5.1.2.1 De la robinetterie d'alimentation (pour les appareils prévus pour recevoir une robinetterie)

5.1.2.1.1 Lavabo pour robinetterie à trois trous

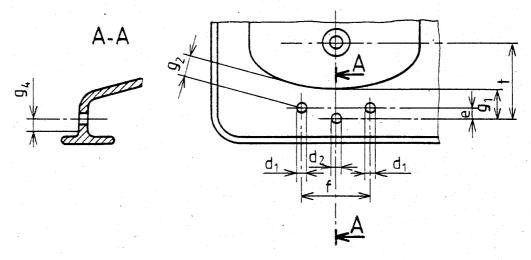


Figure 1

Tableau 2 — Dimensions de raccordement de la robinetterie trois trous

Repères des cotes	Valeurs en mm	Définitions et observations	
d ₁	30 ^{+ 2} 0	Diamètre des trous extérieurs.	
d ₂	35 ^{+ 2} _{- 1}	Diamètre du trou central.	
е	de O à 15	Distance de l'axe du trou central au plan vertical passant par les axes des deux trous extérieurs.	
f	200 ± 4	Distance entre les axes des deux trous extérieurs.	
91	≤ 80	Distance de l'axe du trou central au bord de la cuvette.	
92	≤ 65	Plus courte distance horizontale entre l'axe d'un trou extérieur et le bord de la cuvette.	
94	≥ 32	Largeur de la partie plane de la plage d'appui de la robinetterie située à l'arrière de l'axe du trou central de la robinetterie.	

ACADEMIE D'ORLE	ANS-TOURS	BTS INDUSTRIES CERA	MIQUES
Session 2014	Durée : 2	2 heures Co	efficient: 1,5
Epreuve E5 – Conception of	des produits, des out	illages et définition de processus	Feuille 3/5
Unité U 51 Conception of	l'un produit		IQE5CO

Tableau 3 — Dimensions du trou de raccordement

Repères des cotes	Valeurs en mm	Définitions et observations		
r	≥ 25	Rayon d'un cylindre de même axe que le trou, limitant un volume qui doit rester libre de 0 à 5 mm audessous du bord inférieur du trou de robinetterie.		
r ₁	≥ 30	Rayon d'un cylindre de même axe que le trou de la robinetterie, limitant un volume qui doit rester libre à 5 mm et plus au-dessous du bord inférieur du trou de la robinetterie.		
s	≤ 18	Épaisseur de la tablette portant la robinetterie dans la zone concentrique aux trous de robinetterie.	Figure 2	
. t	≤ 170	Distance horizontale de l'axe du trou cer	ntral de la robinetterie à l'axe du trou de bonde.	

5.1.2.1.2 Lavabo pour robinetterie à 1 trou

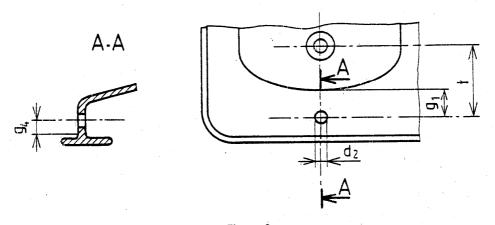


Figure 3

Les cotes indiquées sur la figure 3 ont la même valeur que celles de même indice fixées dans le tableau 2. Le profil et les dimensions du trou de raccordement sont identiques à ceux de la figure 2.

ACADEMIE D'ORLEA	NS-TOURS BTS INI	DUSTRIES CERAMIQUES
Session 2014	Durée : 2 heures	Coefficient: 1,5
Epreuve E5 – Conception de	es produits, des outillages et de	éfinition de processus Feuille 4/5
Unité U 51 Conception d'	un produit	IQE5CO

5.1.2.2 De la robinetterie de vidage

Tableau 4 — Détail du trou de bonde

Repères des cotes	Valeurs en mm	Définitions et observations	
d ₃	46 ^{+ 2} - 3	Alésage du trou de bonde.	40090
d₄	63	Diamètre de contact de la bonde.	100°5° d ₅
d ₅	≤ 75	Diamètre d'entrée du trou de bonde.	d ₄
d ₆	60 min	Diamètre de la face d'appui du joint d'étanchéité entre la bonde et le siphon.	EE
h	45 ^{+ 5} 0	Pour appareils avec tropplein.	d ₃
h ₁	45 O	Distance entre la circonfé- rence de contact de la bonde et la face d'appui du joint d'étanchéité.	Figure 4
Ρ	≤ 250	Distance verticale entre la plage de robinetterie et la face inférieure du trou de bonde.	
			l Figure 5

Surface plane pour joint : cette surface doit être perpendiculaire à l'axe du cône supérieur sur lequel s'appuie la bonde ; une pente maximale de 1 % est admise. De plus, afin d'assurer une portée normale du joint, les trous supérieur et inférieur sont concentriques.

ACADEMIE I	D'ORLEANS-TOURS BTS INDUSTRIES	S CERAMIQUES	
Session 2014	Durée : 2 heures	Coefficient: 1,5	
Epreuve E5 – C	Conception des produits, des outillages et définition de p	processus Feuille 5/5	
Unité U 51 Co	onception d'un produit	IQE5CO	